
QoS-Aware Fault-Tolerant Scheduling for
Real-Time Tasks on Heterogeneous Clusters

Xiaomin Zhu, Member, IEEE, Xiao Qin, Senior Member, IEEE, and Meikang Qiu, Senior Member, IEEE

Abstract—Fault-tolerant scheduling plays a significant role in improving system reliability of clusters. Although extensive fault-tolerant

scheduling algorithms have been proposed for real-time tasks in parallel and distributed systems, quality of service (QoS)

requirements of tasks have not been taken into account. This paper presents a fault-tolerant scheduling algorithm called QAFT that

can tolerate one node’s permanent failures at one time instant for real-time tasks with QoS needs on heterogeneous clusters. In order

to improve system flexibility, reliability, schedulability, and resource utilization, QAFT strives to either advance the start time of primary

copies and delay the start time of backup copies in order to help backup copies adopt the passive execution scheme, or to decrease

the simultaneous execution time of the primary and backup copies of a task as much as possible to improve resource utilization. QAFT

is capable of adaptively adjusting the QoS levels of tasks and the execution schemes of backup copies to attain high system flexibility.

Furthermore, we employ the overlapping technology of backup copies. The latest start time of backup copies and their constraints are

analyzed and discussed. We conduct extensive experiments to compare our QAFT with two existing schemes—NOQAFT and

DYFARS. Experimental results show that QAFT significantly improves the scheduling quality of NOQAFT and DYFARS.

Index Terms—Heterogeneous clusters, real-time, scheduling, fault tolerance, quality of service (QoS), heuristic.

Ç

1 INTRODUCTION

HETEROGENEOUS clusters, consisting of a diverse compu-
ters interconnected by high-speed networks, have

been adopted as an efficient high-performance computing
platforms for computing-intensive [1] and data-intensive
applications [2], [3]. Besides, real-time application develop-
ment and deployment have been conducted on hetero-
geneous clusters, in which the correctness of the systems
depends not only on the logic results of computation, but
also on the time instants at which these results are produced
[4]. Examples of real-time systems include automated flight
control systems, systems for monitoring patients in critical
condition, signal processing systems, etc. Real-time sys-
tems, in which missing a deadline may be catastrophic, are
called hard real-time systems, an example being automated
flight control systems. Another category is called soft real-
time systems, like multimedia systems, where nothing
catastrophic happens if a deadline is missed [5].

In addition to timeliness requirements, quality of service
(QoS) requirements must be addressed in various hard and
soft real-time systems. It should be noted that the QoS in
this paper refers to the task quality after proceeded. For
example, Atdelzater et al. studied an automated flight
control system [6] utilized to fly a simulated model of an
F-16 flight aircraft. In this system, all the fight control tasks

including Guidance, Controller, Slow Navigation, Fast
Navigation, and Missile Control need to be completed
within deadlines. In order to improve the stability of the
system, each task selects different QoS levels by varying its
period or execution time. Different QoS levels provide
different flight qualities. More details of the automated
flight control system can be found in [7]. Another example,
taken from [41], is a real-time signal processing system, in
which signal data can be processed using different algo-
rithms. For example, a wide range of algorithms can be
employed for decoding block turbo codes [8], [9], [10].
High-complexity algorithms can guarantee that signal
processing has a higher QoS level (higher data accuracy)
at the expense of processing time, but low-complexity
algorithms produce the opposite.

Noticeably, the aforementioned QoS-aware real-time
systems must then incorporate inherent high reliability
features. Since the automated flight control system is used
in the military battle field, the system must ensure that each
task is executed within its deadline even in the presence of
hardware or software faults. For the signal processing
system, although some tasks missing their deadlines may
not result in disaster, the outdated or half-baked processed
data may be useless for users, especially in the field of
modern information battle. Therefore, the system must
guarantee its functional and timing correctness even when
faults occur. Consequently, providing a fault-tolerant
mechanism for such systems is mandatory due to the
critical nature of tasks in the systems.

Motivation. Growing evidence shows that scheduling is
an efficient approach to achieving high performance of
applications in parallel systems like clusters. A wide variety
of scheduling algorithms have been developed to provide
fault tolerance for clusters supporting real-time applica-
tions in the past decade (see, for example, [11], [12]). Many
QoS-based scheduling algorithms were proposed for real-
time applications in distributed systems in addition to
parallel systems [13], [14], [15].

800 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

. X. Zhu is with the Science and Technology on Information Systems
Engineering Laboratory, National University of Defense Technology,
Changsha, Hunan 410073, P.R. China. E-mail: xmzhu@nudt.edu.cn.

. X. Qin is with the Department of Computer Science and Software
Engineering, 3101E Shelby Center, Auburn University, Auburn, AL
36849-5347. E-mail: xqin@auburn.edu.

. M. Qiu is with the Department of Electrical and Computer Engineering,
University of Kentucky, Lexington, KY 40506.
E-mail: mqiu@engr.uky.edu.

Manuscript received 26 Sept. 2010; revised 25 Jan. 2011; accepted 1 Mar.
2011; published online 17 Mar. 2011.
Recommended for acceptance by J. Wu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-09-0537.
Digital Object Identifier no. 10.1109/TC.2011.68.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Unfortunately, to the best of our knowledge, no work has
been done on fault-tolerant scheduling for real-time tasks
with QoS requirements. It is a challenge to design and
implement novel QoS-aware fault-tolerant scheduling algo-
rithms for real-time tasks running on clusters in general and
heterogeneous clusters specifically. This challenge is moti-
vation to integrate fault tolerance with QoS-based schedul-
ing by developing a dynamic fault-tolerant scheduling
algorithm or QAFT for aperiodic, independent, real-time,
and QoS-aware tasks on heterogeneous clusters.

Contributions. The major contributions of this study are
summarized as follows:

. For the first time, we develop a novel QoS-aware
fault-tolerant model, which extends the conventional
primary-backup (PB) fault-tolerant model.

. We design a new dynamic real-time QoS-aware
fault-tolerant scheduling algorithm, QAFT, to sup-
port heterogeneous clusters.

. We demonstrate that, by considering heterogeneous
features of clusters, we can design a real-time
dynamic scheduling algorithm that significantly
improves the scheduling quality of conventional
scheduling algorithms for heterogeneous clusters.

The rest of this paper is organized as follows: Section 2
reviews related work in literature. Section 3 presents the
system model with fault tolerance and QoS requirements.
Section 4 describes the QAFT algorithm and the main
principles behind it. Section 5 gives simulation experiments
and performance analysis. Section 6 concludes the paper
with a summary and future work.

2 RELATED WORK

A large number of fault-tolerant techniques have been
developed because of the importance of fault tolerance in
safety-critical real-time systems. For example, Weber studied
a fault-tolerant technique using replicated hardware compo-
nents [16]. Kim and Damm proposed a hybrid approach to
integrating software checks at the end of hardware computa-
tion cycles [17]. To achieve fault masking of permanent
hardware faults, one can use redundant concurrent tasks to
carry out synchronous or asynchronous computations.

Scheduling is a popular way to facilitate fault tolerance
by allocating multiple copies of tasks on different proces-
sors [18]. Efficient fault-tolerant scheduling algorithms are
capable of improving the schedulability, reliability, and
flexibility of computer systems. Unfortunately, many
practical instances of scheduling problems have been found
to be NP-complete [22]. These problems motivate us in
order to investigate heuristic algorithms to address the
scheduling issues.

Fault-tolerant scheduling algorithms can be either static
(i.e., offline) or dynamic (i.e., online). In static algorithms,
assignments of tasks to nodes and the time at which the
tasks start to execute are determined a priori [11], [23]. Static
fault-tolerant scheduling algorithms are suitable for periodic
tasks [18]. However, aperiodic tasks whose arrival times are
not known a priori must be scheduled by dynamic fault-
tolerant scheduling algorithms [24], [25], [26]. Our work is
focused on scheduling aperiodic and independent real-time

tasks. Nevertheless, our approach can be applied to
dependent tasks because tasks having precedence con-
straints are equivalent to independent tasks by modifying
ready times and deadlines of dependent tasks [18]. More-
over, fault-tolerant scheduling algorithms can be classified
into two groups: preemptive scheduling [27], [28] and
nonpreemptive scheduling [25], [26], [32], [33]. In a pre-
emptive scheduling approach, an executing task can be
preempted by another task. In a nonpreemptive scheduling
mechanism, running tasks cannot be interrupted during
their executions and a task can be run only after the running
tasks are completed. Although preemptive scheduling is
able to achieve high system utilization, in many real-world
cases, hardware devices and software configuration make
preemptions either impossible or prohibitively expensive.
Nonpreemptive scheduling, on the other hand, has the
advantages of accurate response time analysis, ease of
implementation, no synchronization overhead, and reduced
stack memory requirements [19], [20], [33]. Nonpreemptive
scheduling has proven to be beneficial in many applications,
such as multimedia applications [21]. Therefore, in this
study, we focus on nonpreemptive scheduling.

Increasing attention has been directed toward dynamic
fault-tolerant scheduling algorithms using the primary-
backup model (or PB in short). In the PB model, two copies
of one task are scheduled on two different nodes, and an
acceptance test is used to check the correctness of schedules
[11]. Ghosh et al. proposed two techniques called deal-
location and overloading, to improve schedulability while
providing fault tolerance with a low overhead. Multiple
backup copies in the overloading scheme may overlap in
the same time slot on the same processor. The deallocation
scheme is the reclamation of resources reserved for backup
copies when the corresponding primary copies are com-
pleted successfully [29]. Manimaran et al. extended the
algorithm proposed in [29] by: 1) considering resource
constraints among tasks and, 2) partitioning processors into
groups to tolerate more than one failure at a time [18].
Al-Omari et al. studied a PB overloading technique which
allows the primary copy of one task to overlap with the
backup copy of another task to achieve high schedulability
[30]. One of the common characteristics in the aforemen-
tioned algorithms is that the backup copy of a task is
permitted to execute only if a fault occurs in the primary
task. This strategy is referred to as the passive backup-copy
scheme, in which real-time tasks must have enough laxity to
restart their backup copies. Thus, the laxity is larger than
the computation time of tasks. An important assumption in
the passive backup-copy schemes is that the laxity of a task
must be at least twice as large as its computation time.
However, this assumption is unrealistic in practice, parti-
cularly when real-time systems are heavily loaded.

Unlike the passive backup-copy scheme, the active
backup-copy scheme is adequate for tasks with small laxities.
For example, Tsuchiya et al. proposed a technique in which
two copies of each task are concurrently executed with
different start times [31]. Yang et al. studied a fault-tolerant
scheduling algorithm where the two copies of a task were
executed simultaneously in order to improve schedulability
[32]. Al-Omari et al. investigated an adaptive scheme that

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 801

controlled the overlap interval between the primary copy

and backup copy of a task based on the primary-fault

probability and the task’s laxity [33]. Although these

methods overcome the drawbacks of the passive backup-

copy scheme, the existing scheduling solutions are still

inadequate for a heterogeneous computing environment.
Luo et al. proposed a dynamic and reliability-driven real-

time fault-tolerant scheduling algorithm—DYFARS—in

heterogeneous systems [34]. DYFARS considers both active

and passive backup copies, thereby providing high system

flexibility. However, the DYFARS algorithm does not take

the QoS requirements of real-time tasks into account while

supporting fault tolerance.
In this paper, we pay our attention on the issues of

nonpreemptive fault-tolerant scheduling of real-time aper-

iodic tasks with QoS needs on heterogeneous clusters. The

new dynamic algorithm allows a heterogeneous cluster to

tolerate one node’s failure. Given a dynamically changing

load, our algorithm adaptively switches between the active

backup-copy scheme and passive backup-copy scheme. To

achieve high flexibility and schedulability, the algorithm

maximizes the QoS benefits of real-time tasks by adjusting

the tasks’ QoS levels.

3 SCHEDULING MODEL

In this section, we will introduce the models, notions, and

terminology used in this paper.

3.1 Fault Model

The fault-tolerance problem addressed in this study is

outlined as a fault model with the following three

features [11]:

. At one time instant, only one node can be failed.
Before another node is failed, those failures of
primary copies of tasks on the fault node can be
successfully executed by their backup copies.

. Faults can be transient or permanent and are
independent, i.e., a fault on one node will not affect
the other nodes.

. There exists a fault-detection mechanism, such as
acceptance tests, to detect node failures. The sche-
duler will not schedule tasks to a known faulty node
any more.

This fault model can be easily extended to tolerate

multiple nodes’ faults in a large-scale system with an

extremely large number of nodes. The extension can be

processed by the following two steps. First, the large set of

nodes are divided into several small groups. Second, the

fault model outlined above is employed in each group [30].

3.2 Scheduler Model

A scheduler can be implemented in a distributed or a

centralized manner. In the distributed scheduler model,

tasks arrive independently at each local scheduler, which

produces schedules in parallel with other schedulers. In the

centralized scheduler model, all tasks arrive at a central

node called scheduler, from which the tasks are distributed

to nodes in a cluster for further execution.

In this study, we focus on the centralized scheduler
model because centralized schedulers have two attractive
features compared with distributed schedulers. First, it is
straightforward to design a centralized fault-tolerant
scheduler using a backup scheduler that concurrently
executes with the primary scheduler. Second, the imple-
mentation of a centralized scheduler is simpler and easier
than that of a distributed scheduler [37]. Therefore, we use
in this study the centralized scheduler model (see Fig. 1)
like those described in the literature [4], [11], [40], [42], [43].

3.3 Task Model

We consider a set T ¼ ft1; t2; . . . ; tng of real-time tasks that
are independent and aperiodic. Since the primary-backup
technique is used in our fault-tolerant scheduling scheme,
each task ti has two copies (i.e., tPi and tBi) executed on two
different nodes.

A heterogeneous cluster in this study is composed of a
set N ¼ fn1; n2; . . . ; nmg of heterogeneous nodes with
different processing powers connected by high-speed
interconnects such as Myrinet and InfiniBand.

Given a task ti 2 T , we denote the arrival time and

deadline of task ti as ai and di, respectively. Let fPi and fBi
be the finish times of primary copy tPi and backup copy tBi ,

respectively. lPi denotes the laxity of tPi , i.e., lPi ¼ di � fPi . Let

ESTP ¼ ðestPijÞn�m be an earliest start time matrix of the

tasks’ primary copies, where element estPij denotes the

earliest start time of tPi on node nj. Likewise, LSTB ¼
ðlstBijÞn�m is a latest start time matrix of the tasks’ backup

copies, where element lstBij denotes the latest start time of tBi
on node nj. nðtPi Þ, and nðtBi Þ represents the nodes to which

tPi and tBi are allocated, respectively.

Let ZP ¼ ðzPijÞn�m be a binary matrix, where zPij equals 1 if

and only if tPi has been allocated to node nj, otherwise

zPij ¼ 0. Similarly, ZB ¼ ðzBijÞn�m is also a binary matrix, in

which an element zBij equals to 1, if and only if, tBi has been

assigned to nj, otherwise zBij equals 0. Consequently, nðtPi Þ ¼
j, zPij ¼ 1 and nðtBi Þ ¼ j, zBij ¼ 1. After tPi is allocated to

nj, if nj does not fail until tPi is successfully finished, then

oPij ¼ 1, or oPij ¼ 0. If tPi fails to be finished successfully, but

its corresponding backup copy tBi can be successfully

finished, then oBij ¼ 1, else oBij ¼ 0.

The QoS requirement of a task is specified by users or

application developers. We model QoS requirements using a

QoS level setQ ¼ fq1; q2; . . . ; qkg, where q1 < q2 < � � � < qk. In

this paper, we assume all the tasks belong to a single

802 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 1. Scheduler model.

application (e.g., tasks in a real-time signal processing

application). Thus, these tasks share the same QoS require-

ment scope. XP
i and XB

i represent all possible schedules for

primary copy tPi and backup copy tBi , respectively. xPi 2 XP
i

is a scheduling decision of tPi . Similarly, xBi 2 XB
i is a

scheduling decision of tBi . The QoS level of tPi adopting the

scheduling decision xPi can be represented by qðxPi Þ. As such,

qðxBi Þ is the QoS level of tBi using the scheduling decision xBi .

xPi and xBi are feasible scheduling decisions if 1) fPi � di and

fBi � di; 2) q1 � qðxPi Þ � qk and q1 � qðxBi Þ � qk. Let eijðqðxPi ÞÞ
and eikðqðxBi ÞÞdenote the execution time of tPi using QoS level

qðxPi Þ on node nj and the execution time of tBi using QoS level

qðxBi Þ on node nk, respectively. We assume that execution

times of tasks can be estimated and given a priori. This is a

commonly used assumption in scheduling research [35]. It is

a reasonable assumption since execution times can be

estimated by code profiling and statistical prediction

techniques (see, for example, [38], [39]). One of our

scheduling objectives (see (1)) is to obtain the maximal QoS

benefit, i.e., to maximize the QoS levels of all accepted tasks

under timing constraints.

QBðXP
i ;X

B
i Þ ¼ max

xPi 2XP
i ;x

B
i 2XB

i

SQL=SSTf g; ð1Þ

where SQL ¼
Pm

j¼1

Pn
i¼1 z

P
ijqðxPi ÞoPij þ

Pm
j¼1

Pn
i¼1 z

B
ijqðxBi ÞoBij

and SST ¼
Pm

j¼1

Pn
i¼1 z

p
ijo

p
ij þ zBijoBij.

Recall that backup copies may be active or passive. Our
scheme adaptively decides the backup-copy mode (i.e.,
active or passive) based on the laxities of primary copies.
Let sðtBijÞ denote backup-copy mode of tBi on node nj. The
backup-copy mode can be expressed as

sðtBijÞ ¼
passive; if lPi � eij

�
qðxBi Þ

�
;

active; else:

�
ð2Þ

3.4 Reliability Model

A reliability model can be used to quantitatively evaluate a
system’s level of fault tolerance [11], [34]. Reliability is
defined as the probability that none of real-time tasks fail,
even in the presence of hardware failures. Reliability cost is
a very important metric for a system’s reliability. We
assume that fault arrival rate is constant and the distribu-
tion of the fault count for any fixed time interval is
approximated using a Poisson distribution, which means
the reliability cost can then be defined as [11], [34], [36]:

rc ¼
Xm
j¼1

Xn
i¼1

�jzijeij; ð3Þ

where �j denotes the failure rate of node nj. zij represents the
allocation of task ti on node nj, zij ¼ 1 means ti is allocated to
nj, else zij ¼ 0. Also, eij represents the execution time of task
ti on node nj. It is worth noting that the above reliability
model assumes that nodes in a cluster are fault-free, hence
the model is unable to estimate the reliability of the cluster
when one node fails.

The reliability-cost model neither reflects any QoS
requirement of real-time tasks, nor does it consider the
execution scheme of backup copies employing the

PB technique. To further enhance the reliability of the
real-time clusters, we propose an improved model that
incorporates the PB fault-tolerant technology, QoS require-
ments, and execution schemes of backup copies. Equation 4
represents the reliability cost contributed by primary copies;
(5) gives the reliability cost of backup copies.

rcðZP Þ ¼
Xm
j¼1

Xn
i¼1

�jz
P
ijo

P
ijeij

�
qðxPi Þ

�
; ð4Þ

rcðZBÞ ¼
Xm
j¼1

Xn
i¼1;oPij¼1;sðtBijÞ¼active

�jz
B
ijo

B
ijre

B
ij

þ
Xm
j¼1

Xn
i¼1;oPij¼0

�jz
B
ijo

B
ijeij

�
qðxBi Þ

�
;

ð5Þ

where reBij represents the real execution time of backup copy
tBi on node nj. re

B
ij depends not only on the execution

scheme of tBi , but also on the execution result of tPi .
Specifically, reBij can be calculated from (14) below.

reBij ¼
0; if oPij ¼ 1 ^ sðtBijÞ ¼ passive;

ð0; eij
�
qðxBi Þ

�
�; if oPij ¼ 1 ^ sðtBijÞ ¼ active;

eij
�
qðxBi Þ

�
; if oPij ¼ 0:

8><
>: ð6Þ

The reliability cost of a set of real-time tasks on a
heterogeneous cluster can be derived from (4) and (5) as

rc ¼ rcðZP Þ þ rcðZBÞ: ð7Þ

The reliability r of a cluster with respect to a set of real-
time tasks is expressed as (8). A similar reliability model can
be found in [36].

r ¼ e�rc: ð8Þ

3.5 Scheduling Principles

Equation 7 suggests that our scheduling algorithm has to
aim at minimizing reliable cost to improve system
reliability, indicating that nodes offering small reliability
cost should be chosen in task allocations. Our algorithm
follows the following two scheduling principles:

. Given the same execution time, the algorithm should
schedule tasks on nodes with low failure rates.

. For a group of nodes with the same failure rate, the
algorithm needs to assign tasks in order to the nodes
providing short execution times.

Thus, tasks should be allocated to computing nodes with
powerful processing capacities and lower failure rates to
improve the cluster’s reliability.

4 FAULT-TOLERANT SCHEDULING ALGORITHM

QAFT

In this section, we present an efficient QoS-aware fault-tolerant
scheduling algorithm (QAFT) for real-time, independent,
aperiodic tasks with QoS requirements on heterogeneous
clusters. QAFT efficiently considers the QoS needs, system
reliability, system resource utilization, and schedulability. To
facilitate the presentation of the QAFT algorithm, it is
necessary to introduce some properties.

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 803

Property 1. A system can tolerate one node’s permanent failure if
and only if the primary copy and backup copy of a real-time
task are allocated to two different nodes:

8ti 2 T; n
�
tPi
�
6¼ nðtBi Þ: ð9Þ

Property 1 indicates that the primary copy and backup
copy of a real-time task cannot be allocated to the same node,
or when the node meets a fault, both copies will not be
successfully finished, thus failing to realize fault tolerance.

Property 2. A task’s QoS level is determined by its start time,
execution time, and deadline, that is:

8ti 2 T; eij q
�
xPi
�� �
� di � estPij; ð10Þ

8ti 2 T; eik q
�
xBi
�� �
� di � lstBik; ð11Þ

where j 6¼ k. Equations 10 and 11 indicate that if a real-time
task can be accepted, its primary copy and backup copy
must satisfy timing constraints. Also, the primary copy and
backup copy of a real-time task may select different QoS
levels, which will greatly improve the system’s flexibility.
However, in traditional real-time fault-tolerant scheduling
algorithms, if a backup copy cannot be processed as the
same execution time as its corresponding primary copy, the
real-time task will be rejected. Thus, the flexible selection of
QoS levels for primary copies and backup copies in our
fault-tolerant scheduling algorithm efficiently improves the
schedulability.

In order to save the system resource, the backup copy of
a real-time task should try to employ passive scheme. If a
backup copy has to adopt active scheme, its execution time
should be as little as possible. Therefore, the primary copy
should be scheduled as early as possible, but the backup
copy is just opposite, which means the backup copy should
be scheduled as late as possible.

Property 3. The earliest start time estPij of a primary copy tPi on
node nj must satisfy the following two constraints:

. Node nj has an idle time slot sufficient to
accommodate tPi .

. The finish time of tPi must be earlier than or equal to
the deadline of ti, i.e., fPi � di.

Without loss of generality, before estPij can be computed,
it is assumed that tasks ti1; ti2; . . . ; tiq have been allocated to
node nj. Note that these tasks can be primary copies or
backup copies. The idle time slots on nj are ½0; si1�;
½fi1; si2�; . . . ; ½fiðq�1Þ; siq�; ½fiq;1�. In order to get estPij, all idle

time slots must be scanned from left to right. Consequently,
the first idle time slot ½fik; siðkþ1Þ� that satisfies the following
inequality is chosen:

siðkþ1Þ �maxfai; fikg � eij
�
qðxPi Þ

�
: ð12Þ

Thus, the earliest start time estPij of ti on nj is determined
as follows:

estPij ¼ maxfai; fikg: ð13Þ

As far as the computation for the latest start time of
backup copy tBi is concerned, we do not necessarily select an
idle time slot to accommodate tBi . This is because in our
fault-tolerant scheduling algorithm, multiple backup copies
may overlap in the same time slot on the same node.

We can now discuss the latest start time of a task’s
backup copy. For any backup copy tBi on node nj, the latest
start time lstBij can be computed as

lstBij ¼
stxj � eijðqðxBi Þ; if di � stxj;
di � eijðqðxBi Þ; else:

�
ð14Þ

where stxj denotes the the start time of task tx that executes
following tBi and cannot overlap with tBi . It should be noted
that the latest start time needs to satisfy some constraints
while computing. Now, we consider four cases.

Case 1. 9ti 2 T; tj 2 T , if sðtBi2Þ ¼ passive, sðtBj2Þ ¼ passive,
nðtPi Þ 6¼ nðtPj Þ, nðtBi Þ ¼ nðtBj Þ, and tBi is allocated first. Fig. 2
shows scenarios of this case.

From the scenarios, we can observe that if the two
backup copies are both passive schemes, there is no
constraint for computing the latest start time of tBj .

Case 2. 9ti 2 T; tj 2 T , if sðtBi2Þ ¼ passive, sðtBj2Þ ¼ active,
nðtPi Þ 6¼ nðtPj Þ, nðtBi Þ ¼ nðtBj Þ, and tBi is allocated first. Fig. 3

illustrates three scenarios of this case.
In scenario 1 of case 2, tBj cannot start at the timing

instant illustrated in this scenario, because if node n1 fails
before fPi , then tBi should execute. Since tBi and tBj overlap
with each other on the same node n2, and tBj employs active
scheme, this will result in tBi and tBj executing simulta-
neously in some time slot. Thus, the system is not able to
realize fault tolerance.

Similarly, the system cannot realize fault tolerance in
scenario 3 if tBj starts to execute at the timing instant shown
in this scenario.

Case 3. 9ti 2 T; tj 2 T , if sðtBi2Þ ¼ active, sðtBj2Þ ¼ passive,
nðtPi Þ 6¼ nðtPj Þ, nðtBi Þ ¼ nðtBj Þ, and tBi is allocated first. Fig. 4
illustrates three scenarios of this case.

Scenarios 2 and 3 in this case show that tBj cannot start
executing at the illustrated start time. The reason is as
follows: If n3 fails before fPj , tBj must execute. Since tBi and

804 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 2. Scenarios of case 1.

tBj overlap on the same node n2, and tBi executes using
active scheme, which makes tBi and tBj execute at the same
time in some time slot. As a result, the fault tolerance cannot
be achieved.

Case 4. 9ti 2 T; tj 2 T , if sðtBi2Þ ¼ active, sðtBj2Þ ¼ active,
nðtPi Þ 6¼ nðtPj Þ, nðtBi Þ ¼ nðtBj Þ, and tBi is allocated first. Fig. 5
depicts three scenarios of this case.

The three scenarios in this case all cannot realize fault
tolerance if tBj starts to execute at the timing instant
portrayed in these scenarios. This can be explained that
node n1 or n3 fails, which may result in tBi and tBj executing
at the same time in some slot.

Theorem 1. Backup copy tBj is able to overlap with backup copy
tBi , and tBi is allocated first, if the overlapping start time of tBi
and tBj is later than the finish time of tPi and tPj .

Proof. Suppose the overlapping start time of tBi and tBj can be
earlier than the finish time of tPi or tPj . If the node with tPi or
tPj fails, which is possible in order to make tBi and tBj execute
simultaneously in some time slots like the scenarios in
cases 2-4, then it means that the assumption is incorrect,
which completes the proof for this Theorem. tu

The pseudocode of primary copy allocation in QAFT
algorithm is outlined in Fig. 6.

At the beginning, the primary copy tPi is destined for
maximal QoS level (see line 2). In order to make the
corresponding backup copy tBi employ passive scheme, tPi
should execute as earlier as possible to compute the earliest
start time estPij of tPi on node nj (see line 6). If tPi can be
allocated to nj, it must finish within its deadline (see lines
7-8). If tPi can execute on several nodes, it can select the
node which makes the system reliability maximal. Line 9 is

used to calculate the reliability. It is worth noting that, at
this point, backup copy tBi has not been scheduled yet, so its
reliability cost of tBi is set to zero. If some nodes make the
system have identical reliability to accommodate tPi , the
node on which the start time of tPi is earliest must be
selected. This operation strives to make tBi use passive
scheme, or it strives to make the simultaneous execution

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 805

Fig. 4. Scenarios of case 3.

Fig. 5. Scenarios of case 4.

Fig. 6. The pseudocode of primary copy allocation in QAFT.

Fig. 3. Scenarios of case 2.

time of tPi and tBi minimal (see lines 10-12). If employing a
higher QoS level cannot satisfy the timing constraint of tPi
on any node, degrade one QoS level and select a feasible
node again. Otherwise, exist the loop (see lines 15-19). If
line 23 can be executed, it indicates tPi cannot finish using
minimal QoS level within its deadline on any node, thus it
rejects tPi or allocates tPi (see lines 21-25).

The objectives of primary copy allocation in QAFT is to
allocate primary copies to the node which makes the system
reliability maximal, and to make the QoS levels of primary
copies maximal within the timing constraints.

Now, we will evaluate the time complexity of primary
allocation in QAFT as shown below:

Theorem 2. The time complexity of primary copy allocation in
QAFT is OðkmqÞ, where m is the number of nodes in a cluster,
k is the number of QoS levels, and q is the number of waiting
tasks in a node.

Proof. To obtain the earliest start time estPij of primary copy
tPi on node nj, the time complexity is OðqÞ (see line 6).
The time complexity of calculating the system reliability
rj after tPi being allocated to node nj is Oð1Þ (see line 9).
For other lines between lines 6 and 15, they only
consume Oð1Þ. Degrading one QoS level will take a
constant time Oð1Þ. The time complexity of allocating tPi
to nj is a constant Oð1Þ. Thus, the time complexity of
primary copy allocation in QAFT is calculated as follows:
OðkÞðOðmðOðqÞÞÞÞ ¼ OðkmqÞ. tu

The pseudocode of backup-copy allocation in QAFT
algorithm is illustrated in Fig. 7.

The goal of backup allocation in QAFT is to allocate
backup copies to the node, which makes the system
reliability maximal within the timing constraints. Mean-
while, it also strives to make backup copies use active
scheme and enhance their QoS levels.

First, the backup copy tBi is destined for maximal QoS
level (see line 2). In order to make tBi employ passive
scheme, tBi should begin to execute as late as possible, thus
we can calculate the latest start time lstBij of tBi on node nj
(see line 7). If tBi can be allocated to nj, t

B
i must satisfy

Theorem 1 and finish within its deadline (see lines 8-9). If
the latest start time of tBi is later than or equal to the finish
time of tPi , tBi is capable of employing passive scheme (see
lines 10-11). As a result, tBi does not need to use active
scheme on other nodes any more. If tBi can execute using
active scheme on some nodes, select the node on which the
allocation make the system reliability maximal (see lines 13-
15). If the latest start time of tBi is earlier than the finish time
of tPi , tBi must execute by active scheme. In this condition,
the simultaneous execution time of tPi and tBi should be as
little as possible, so select the node on which tBi has the
latest start time (see lines 17-19). If employing higher QoS
level cannot satisfy timing constraint of tPi and Theorem 1
on any nodes, degrade one QoS level and select feasible
node again (see lines 23-27). If line 29 can be executed,
which indicates tBi cannot satisfy timing constraint or
Theorem 1 on any nodes using minimal QoS level, reject
tBi and its corresponding primary copy tPi , then otherwise
allocate tBi (see lines 29-33).

Theorem 3. The time complexity of backup-copy allocation in
QAFT is OðkmqÞ, where m is the number of nodes in the

system, k is the number of QoS levels, and q is the number of
waiting tasks in a node.

Proof. To obtain the latest start time lstBij of backup copy tBi
on node nj, the time complexity is OðqÞ (see line 7). The

time complexity of calculating the system reliability rj is

Oð1Þ after tBi is allocated to node nj (see line 12). For

other lines between lines 5 and 22, they only consume

Oð1Þ. Degrading one QoS level will take a constant time

Oð1Þ. The time complexity of allocating tBi to nj is a

constant Oð1Þ. Thus, the time complexity of the backup-

copy allocation in QAFT is calculated as follows:

OðkÞðOðmðOðqÞÞÞÞ ¼ OðkmqÞ. tu

Theorems 2 and 3 intuitively show that the running time
of the algorithm is proportional to the number of computing
nodes, the number of QoS levels, and system load (i.e., the
number of waiting tasks in a node).

5 PERFORMANCE EVALUATION

In this section, we present several groups of experimental
results obtained from extensive simulations to evaluate the
performance of QAFT. A competitive advantage of con-
ducting simulation experiments is that performance evalua-
tion on a large-scale distributed system can be accomplished
without additional hardware cost [4]. To show performance

806 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 7. The pseudocode of backup-copy allocation in QAFT.

improvements gained by QAFT, we compare it with
DYFARS, which is lately proposed in the literature [34],
and NOQAFT, a nonoverlapping QoS-aware fault-tolerance
scheduling algorithm. The DYFARS and NOQAFT algo-
rithms are briefly described as follows:

. DYFARS: In a process of allocating each primary
copy, DYFARS chooses a node offering the minimal
reliability cost. Given a backup copy, DYFARS
schedules the backup copy as a passive copy, and
if the backup copy has to be an active copy during
the scheduling process, DYFARS makes an effort to
schedule the active backup copy to a node that
provides the minimal system reliability cost.

. NOQAFT: This is a baseline scheduling algorithm
developed for comparison purposes. NOQAFT is a
variant of the QAFT algorithm. The difference
between QAFT and NOQAFT is the fact that
NOQAFT does not consider the overlapping of
backup copies. The goal of introducing NOQAFT is
to observe the performance gap between NOQAFT
and QAFT in order to evaluate the effectiveness of
applying the backup-copy overlapping technology.

To make the comparison fair, we slightly modify
DYFARS in such a way that it arbitrarily picks a QoS level
within the QoS range of tasks. Though DYFARS is intended
to schedule real-time tasks with QoS requirements, it makes
no effort to maximize the QoS level of tasks.

In our experiments, we compare QAFT, NOQAFT, and

DYFARS with the following metrics:

. Guarantee Ratio (GR), defined as: GR ¼ Total number
of tasks guaranteed to meet their deadlines/Total
number of tasks �100%.

. QoS Level Average (QLA) is used to test the QoS
levels of accepted tasks.

. Reliability Cost in a time unit (RC) to measure the
system reliability.

. Overall System Performance (OSP) defined as a product
of guarantee ratio, QoS level average, and reliability
cost in a time unit, OSP ¼ GR�QLA� expð�RCÞ),
which is like the definition in paper [4].

5.1 Simulation Method and Parameters

The experimental parameters in our simulation studies are

similar as those used in the literature [42], [43].

. In order to present the node heterogeneity, we use gj,
a positive real number, to represent the node power
of node nj. Parameters powerAverage and powerSpan
denote the average processing power of all nodes
and variable scope taking powerAverage as center,
respectively. gj is uniformly distributed between
powerAverage� powerSpan a n d powerAverageþ
powerSpan.

. We employ hi, a positive real number, to denote the
hardness of task ti. The bigger the value of hi is, the
longer the execution time of ti. Parameters
hardnessAverage and hardnessSpan denote the
average hardness of all tasks and variable scope
taking hardnessAverage as center, respectively.
Similarly, the value hi is uniformly distributed

b e t w e e n hardnessAverage� hardnessSpan a n d
hardnessAverageþ hardnessSpan.

. Because our scheduling model is a general one,

without losing generality, we only need to give a
general definition of QoS level. Suppose that 0 �
qðxPi Þ � 1 is the current QoS level of tPi , and 0 �
qðxBi Þ � 1 is the current QoS level of tBi . qðxPi Þ and

qðxBi Þ are in ½0; 0:1; 0:2; . . . ; 0:9; 1�.
. The execution time matrix E ¼ ðeijÞn�m can be

classified into two classes: consistent and inconsistent.
For an consistent matrix E, if node nx has a shorter
execution time than node ny for task tk, then the same
is true for any task ti. For an inconsistent matrix E, if
node nx has a shorter execution time than node ny for
task tk, then the same is not true for the other task, ti. In
our study, the matrixE belongs to the consistent type.
The execution time eij of task ti on node nj can be
generated as: eij ¼ qðxiÞ � baseTime� ðhi=gjÞ. More
precisely, eijðqðxPi ÞÞ ¼ qðxPi Þ � baseTime� ðhi=gjÞ,
and eijðqðxBi ÞÞ ¼ qðxBi Þ � baseTime� ðhi=gjÞ. Para-
meter baseTime is a random positive real number.

. The deadline di of task ti is chosen as follows:
di ¼ ai þmaxfeijg þ baseDeadline [1 1] , w h e r e
baseDeadline is a random positive real number.
baseDeadline determines whether the tasks have
loose deadlines or not.

. The arrival rate ai is described as: ai ¼ ai�1 þ
intervalT ime, where intervalT ime is a random
positive real number, and a0 ¼ 0.

. The failure rate of node nj is uniformly distributed
and the time unit is 10�7=h.

Table 1 gives the simulation parameters and their values.

5.2 Performance Impact of Node Number

In this section, we present a group of experimental results to
observe the performance comparison of QAFT, NOQAFT,
and DYFARS with respect to the impact of node number.

Fig. 8 illustrates the performance impact of node
number. Fig. 8a shows that with the increase of node
number, the guarantee ratios of QAFT, NOQAFT, and
DYFARS all get increased. This is because the system node
power is enhanced with the number of nodes being
increased, which leads to more real-time tasks being
accommodated. In addition, from Fig. 8a, the guarantee
ratios of QAFT and NOQAFT turn out to be higher than
that of DYFARS. This result can be attributed to the fact that
DYFARS cannot adaptively adjust tasks’ QoS levels, making
some tasks unable to be accepted. However, NOQAFT and

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 807

TABLE 1
Parameters for Simulation Studies

QAFT are able to increase the guarantee ratios by degrading
the QoS levels of some tasks when the system is in heavy
load. Thereby, NOQAFT and QAFT have excellent flex-
ibility. Furthermore, we observe that the guarantee ratio of
QAFT always remains higher than that of NOQAFT. The
reason is that QAFT adopts backup-copy overlapping
technology based on NOQAFT, which enhances the utiliza-
tion of system resource.

From Fig. 8b, it is found that the QoS level of QAFT is
lower when the node number is small. This is because the
system is in heavy load when the system has less nodes.
QAFT is able to degrade the QoS levels of accepted real-
time tasks in order to increase the guarantee ratio. Also,
when the node number increases, the QoS level of QAFT
increases accordingly, which indicates that the system
processing power increases as the node number increases.
When the node number is less than or equal to 64, QAFT
can guarantee higher QoS levels than NOQAFT. The reason
is that QAFT improves the schedulability by degrading the
QoS levels within an acceptable QoS range for real-time
tasks. Fig. 8b also reveals that the highest QoS level average
is about 0.5. This can be attributed to the fact that DYFARS
randomly selects QoS levels for coming real-time tasks.
Those tasks with higher QoS levels are easily rejected for
longer execution time when the system is in heavy load.
However, when the system is in light load, it can accept
tasks with higher QoS levels leading to an increased QoS
level average. Since DYFARS arbitrarily selects QoS levels
for real-time tasks from 0.1 to 1, the QoS level average is
close to 0.5 when the system is in light load, making is
possible to accept more tasks. For QAFT and NOQAFT,
they can adaptively adjust tasks’ QoS levels by the system
load. Thus, the QoS level average can be 1 when the node
number is large enough.

Fig. 8c depicts the reliability cost of QAFT, NOQAFT,
and DYFARS. The reliability of them decreases with the
increase of node number. The change of DYFARS is
obvious, because the failure rate of nodes is uniformly
distributed. When the node number increases, the number
of nodes with higher reliability increases, but the task
number is constant. This leads to more tasks being allocated
to the nodes with higher reliability. Hence, the reliability
cost decreases gradually. However, the reliability little,
because QAFT and NOQAFT can adaptively increase tasks’
QoS levels to use system resource. In addition, Fig. 8c shows
that the reliability cost of DYFARS is the smallest, and that
of NOQAFT is the largest. This is because DYFARS makes
more tasks execute on nodes with higher reliability,

whereas QAFT and NOQAFT allocate tasks to nodes with
relatively lower reliability for optimal utilization of system
resource, which is the reason that QAFT and NOQAFT can
provide higher guarantee ratio and higher QoS level
average. Meanwhile, NOQAFT has a higher reliability cost
than QAFT because QAFT employs the backup-copy
overlapping technology which enhances the system utiliza-
tion of nodes with higher reliability, making more tasks
execute on themselves.

The overall system performances of QAFT, NOQAFT,
and DYFARS are shown in Fig. 8d. QAFT outperforms
NOQAFT and DYFARS by 14.8 and 86 percent on average,
respectively.

5.3 Performance Impact of Node Heterogeneity

In this section, we carry out a group of experiments to
observe the performance impact of node heterogeneity on
QAFT, NOQAFT, and DYFARS. Parameter powerSpan
represents the node heterogeneity. If powerSpan increases,
the system heterogeneity is enlarged.

The experimental results are shown in Fig. 9. Fig. 9a
demonstrates that when powerSpan varies from 160 to 400,
QAFT always has a higher guarantee ratio than NOQAFT
and DYFARS, whether the system is heterogeneous or not.
The reason for this is that QAFT employs the backup-copy
overlapping technology that improves the system resource
utilization. In addition, we observe from Fig. 9a that the
guarantee ratios of QAFT and NOQAFT increase slightly
because tasks are preferentially allocated to nodes with
higher processing power (nodes with higher processing
power have better reliability) when the system heterogene-
ity is changed. Nodes with higher processing power will
then be further enhanced in terms of processing power.
Thus improving the guarantee ratio on these nodes. In
contrast, the nodes with lower processing power are just the
opposite. However, the adaptivity, with respect to QoS
levels of QAFT and NOQAFT, counteracts the negative
impact. So far as DYFARS is concerned, it cannot adaptively
adjust the QoS levels of real-time tasks allocated to nodes
with lower processing power, and the total processing
power is invariable, thus guaranteeing the ratio of DYFARS
experiences no obvious changes.

It can be found from Fig. 9b that the QoS level average of
QAFT is lower than that of NOQAFT and DYFARS due to
the fact that QAFT adaptively degrades the tasks’ QoS
levels, so as to improve the schedulability.

Fig. 9c shows that there is no obvious impact of node
heterogeneity on QAFT, NOQAFT, and DYFARS because

808 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 8. Performance impact of node number.

all algorithms sufficiently consider node heterogeneity and
system reliability cost while scheduling.

Fig. 9d shows the overall system performances of QAFT,
NOQAFT, and DYFARS. QAFT outperforms NOQAFT and
DYFARS in terms of overall system performance by 16.2
and 81 percent, respectively.

5.4 Performance Impact of Task Heterogeneity

This section observes the performance impacts of task
heterogeneity on QAFT, NOQAFT, and DYFARS through a
series of experiments. Parameter hardnessSpan stands for
the variance in direct proportion of task heterogeneity,
which increases as task heterogeneity increases and
decreases as task heterogeneity decreases. Fig. 10 shows
the result.

Fig. 10a shows that QAFT always has a higher guarantee
ratio than NOQAFT and DYFARS, while hardnessSpan
ranges from 40 to 280. This means that whether the same
granularity or relative difference is shared or not, QAFT
displays better performance. Also, there is no performance
degradation with the growth of difference in granularity.
The reason why QAFT shows higher guarantee ratio than
NOQAFT and DYFARS is the same as the reason described
in the previous section. QAFT adopts the backup-copy
overlapping technology, which increases utilization effi-
ciency, and owns higher guarantee ratio while scheduling.
Fig. 10 illustrates that the guarantee ratios of both DYFARS
and NOQAFT increase as task heterogeneity increases. In
this instance, as task heterogeneity increases, the execution
time of some small-granularity tasks decreases, and its
counterpart of large-granularity increases. As for DYFARS,
shorter execution time of small-granularity tasks contri-
butes to its acceptance; execution time, however, of large-
granularity tasks cannot be accepted whatever the situation
is. Thus, longer execution time of large-granularity tasks
does not influence its guarantee ratio. Therefore, on the

whole, an increase in task heterogeneity contributes to an
increase in guarantee ratio of scheduling. For NOQAFT,
however, shorter execution time of small-granularity tasks
contributes to its acceptance. Large-granularity tasks can be
accepted by adjusting QoS levels, which does not have a
significant influence of guarantee ratio. Owing to QAFT’s
making use of backup-copy overlapping technology, ex-
ecution time change of small-granularity tasks does not lay
significant influence on guarantee ratio, but large-granular-
ity can be accepted by adjusting QoS levels. This does not
lay significant influence on guarantee ratio and no obvious
change of guarantee ratio takes place.

Based on Fig. 10b, we can see that as task heterogeneity
increases, the QoS level averages of QAFT and NOQAFT
increase. This is because the execution time of some small-
granularity tasks decreases and the execution time of some
large-granularity tasks increases with the increase of task
heterogeneity. For tasks with relatively short execution time,
QAFT and NOQAFT can heighten QoS levels by adaptive
adjusting, but for tasks with relatively long execution time,
QoS level’s heightening is limited. Thus, on the whole, due
to the adoption of QoS adapting, QAFT can make full use of
system resources to increase QoS levels.

Fig. 10c shows that almost no reliablility cost change of
QAFT, NOQAFT, and DYFARS can be found with change
of task heterogeneity. The reason why no significant
influence takes place is that all of the three algorithms take
system reliability cost into full consideration and incorpo-
rate it into scheduling algorithms.

Fig. 10d shows the overall system performance of QAFT,
NOQAFT, and DYFARS as task heterogeneity changes. We
come to the conclusion that regardless of the change in the

task heterogeneity, QAFT always has the best performance
and outperforms NOQAFT and DYFARS by 13.6 and
87 percent on average, respectively.

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 809

Fig. 10. Performance impact of task heterogeneity.

Fig. 9. Performance impact of node heterogeneity.

5.5 Performance Impact of Task Deadline

This section illustrates the performance impact of task

deadline on QAFT, NOQAFT, and DYFARS. Parameter

baseDeadline varies from 360 to 1,440 with step 180.
Fig. 11 illustrates the experimental results. Fig. 11a shows

the change trends with respect to task deadline of QAFT,
NOQAFT, and DYFARS. DYFARS basically keeps the
ascending trend because the tasks’ deadlines are prolonged,
causing the system to have loose time to accommodate more
tasks. Thus, the guarantee ratio is increased. From Fig. 11a,
we observe that when the parameter baseDeadline is 720,
NOQAFT is with the minimal guarantee ratio, and QAFT has
a minimal guarantee ratio when the value of baseDeadline is
900. Therefore, QAFT and NOQAFT employ the adaptive
method in terms of QoS level adjusting, the QoS level is
enhanced preferentially resulting in longer execution time of
accepted tasks. This condition will lead to some tasks not
being accepted due to a later start time. As a result, the
guarantee ratio is lightly degraded. However, when dead-
lines become looser, tasks can be accepted, despite higher
QoS levels. Hence, the guarantee ratios of QAFT and
NOQAFT increase.

Fig. 11b depicts that the QoS level of DYFARS keeps

increasing until the QoS level value approaches 0.5 because

DYFARS randomly selects QoS levels for real-time tasks

from 0.1 to 1. The QoS level average is close to 0.5 when the

system accepts more tasks. In contrast, the QoS levels of

QAFT and NOQAFT always increase even though all the

while their guarantee ratios do not increase. We can explain

this that the looser deadlines are able to make QAFT and

NOQAFT enhance tasks’ QoS levels further.
Observed from Fig. 11c, the reliability costs of QAFT,

NOQAFT, and DYFARS have no obvious change when

deadlines become looser. This can be attributed to the fact

that the three algorithms take the reliability cost into
consideration while scheduling.

Fig. 11d shows that QAFT outperforms NOQAFT and
DYFARS with respect to overall system performance by 9.5
and 76 percent on average, respectively.

5.6 Performance Impact of Arrival Rate

This section shows the performance impact of arrival rate
on QAFT, NOQAFT, and DYFARS. Parameter intervalT ime
varies from 1 to 7 with the 1 step.

The experimental results are depicted in Fig. 12. Fig. 12a
shows that when the value of intervalT ime is smaller, real-
time tasks arrive quickly. This may result in some tasks
arriving later and violating their deadlines due to their later
start time. With the increase of intervalT ime, the arrival rate
of real-time tasks becomes slower, so less tasks are waiting
on nodes, leading to tasks having earlier start time.
Consequently, the guarantee ratios of QAFT, NOQAFT,
and DYFARS are increased. From Fig. 12a, it also can be
observed that QAFT has a higher guarantee ratio than
NOQAFT and DYFARS. This is because QAFT is capable of
adaptively adjusting tasks’ QoS levels and employing
backup-copy overlapping technology, so as to sufficiently
utilize the system resource. Thus, more tasks can be
accommodated. However, DYFARS cannot dynamically
change tasks’ QoS levels, and NOQAFT does not develop
the backup-copy overlapping technology, therefore their
guarantee ratios are not as high as those of QAFT.

Fig. 12b depicts that the QoS level averages of QAFT and
NOQAFT increase when the value of intervalT ime varies
from 1 to 7. This explains why the system load becomes
lighter when tasks arrive slowly. Thereby, the system has
more spare time to process more tasks and provides higher
QoS levels for them. Besides, the QoS level average of QAFT
is higher than that of NOQAFT. We attribute this result to
the fact that QAFT employs the backup-copy overlapping

810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

Fig. 11. Performance impact of task deadline.

Fig. 12. Performance impact of arrival rate.

technology, thus more system resource can be gained to
enhance the accepted tasks’ QoS levels. The QoS level
average of DYFARS increases slightly with the increase of
intervalT ime, but the maximal value is about 0.5. This is
because DYFARS randomly selects tasks’ QoS levels and
cannot adaptively adjust them.

It should be noted that QAFT and NOQAFT first guarantee

schedulability, then strive to enhance tasks’ QoS levels. For

instance, in Fig. 12a, the guarantee ratios of QAFT and

NOQAFT basically approach 1 (the values of intervalT ime

are 4, 5, 6, and 7) with no obvious variation, but in Fig. 12b, the

QoS level averages of QAFT and NOQAFT increase ob-

viously on the same values of intervalT ime.
Fig. 12c shows that the reliability cost of DYFARS

decreases with the increase of intervalT ime because, when

tasks arrive slowly, these tasks are inclined to be allocated

to those nodes with higher reliability. On the contrary, we

find that the variation with respect to the reliability costs of

QAFT and NOQAFT is small. The reason is that QAFT and

NOQAFT constantly guarantee the sufficient utilization of

all nodes. Thus, the impact is not obvious.
From Fig. 12d, we can see that QAFT shows superiority

to NOQAFT and DYFARS in terms of overall system

performance by 6.8 and 85 percent on average, respectively.

6 CONCLUSIONS AND FUTURE WORK

This paper presents an efficient QoS-aware fault-tolerant

scheduling algorithm—QAFT—that schedules independent

real-time tasks tolerating hardware failures in a heteroge-

neous cluster. The fault-tolerant capability is incorporated

into the QAFT algorithm by implementing the primary-

backup model. To sufficiently utilize system resources,

QAFT employs the backup-copy overlapping technology,

striving to advance the start time of primary copies and delay

the start time of backup copies, within timing constraints.

QAFT enhances system flexibility because QAFT adaptively

adjusts the QoS levels of real-time tasks based on the dynamic

changing of system load. More importantly, QAFT improves

the reliability of heterogeneous clusters by assigning tasks to

nodes offering low reliability cost.
The QAFT algorithm is the first of its kind reported in

the literature; it comprehensively addresses the issues of

fault tolerance, reliability, real-time, QoS requirements,

and heterogeneity. To evaluate the performance of QAFT,

we conduct extensive simulations to compare QAFT with

the two existing scheduling algorithms—NOQAFT and

DYFARS. The experimental results show that compared

with the existing solutions, QAFT significantly improves

the schedulability and QoS levels of real-time tasks on

heterogeneous clusters.
The following issues will be addressed in our future

studies: First, we will extend our fault-tolerant scheduling

model to multidimensional computing resources including

memory, network bandwidth, and data storage. Second, we

will combine the communication and dispatching times into

QAFT to make the scheduling results more precise. Third,

we plan to implement QAFT in a scheduling mechanism of

a heterogeneous cluster.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their

insightful suggestions and comments. This research was

supported by the National Basic Research Program of China

under Grant No. 6136101, the National High-Tech Research

and Development Plan of China under Grant No.

2008AA7070412, the US National Science Foundation (NSF)

under Grants CCF-0845257 (CAREER), CNS-0917137 (CSR),

CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0831502

(CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM),

DUE-0837341 (CCLI), DUE-0830831 (SFS), Auburn Univer-

sity under a startup grant and a gift (No. 2005-04-070) from

the Intel Corporation, as well as NSFC 61071061 and the

University of Kentucky Start Up Fund.

REFERENCES

[1] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology,
Architecture, Programming. McGraw-Hill, 1998.

[2] A. Goller and F. Leberl, “Radar Image Processing with Clusters of
Computers,” IEEE Aerospace and Electronics Systems Magazine,
vol. 24, no. 1, pp. 18-22, Jan. 2009.

[3] H.Y. Chang, K.C. Huang, C.Y. Shen, S.C. Tcheng, and C.Y. Chou,
“Parallel Computation of a Weather Model in a Cluster Environ-
ment,” J. Computer-Aided Civil and Infrastructure Eng., vol. 16, no. 5,
pp. 365-373, Sept. 2001.

[4] T. Xie and X. Qin, “Scheduling Security-Critical Real-Time
Applications on Clusters,” IEEE Trans. Computers, vol. 55, no. 7,
pp. 864-879, July 2006.

[5] C.M. Krishna and K.G. Shin, Real-Time Systems. McGraw-Hill,
2001.

[6] T.F. Atdelzater, E.M. Atkins, and K.G. Shin, “QoS Negotiation in
Real-Time Systems and Its Application to Automated Flight
Control,” IEEE Trans. Computers, vol. 49, no. 11, pp. 1170-1183,
Nov. 2000.

[7] S. Liden, “The Evolution of Flight Management Systems,” Proc.
IEEE/AIAA 13th Digital Avionics Systems Conf. (DASC ’94), pp. 157-
169, Oct. 1994.

[8] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near Optimal
Decoding of Product Codes,” Proc. IEEE Global Telecomm. Conf.
(GLOBECOM ’94), pp. 339-343, Nov./Dec. 1994.

[9] Z. Chi, L. Song, and K.K. Parhi, “A Study on the Performance,
Complexity Tradeoffs of Block Turbo Decoder Design,” Proc. IEEE
Int’l Symp. Circuits and Systems (ISCAS ’01), vol. 4, pp. 65-68, May
2001.

[10] P. Adde and R. Pyndiah, “Recent Simplifications and Improve-
ments in Block Turbo Codes,” Proc. Second Int’l Symp. Trubo Codes
and Related Topics (ISTCRT ’00), pp. 133-136, Sept. 2000.

[11] X. Qin and H. Jiang, “A Novel Fault-Tolerant Scheduling
Algorithm for Precedence Constrained Tasks in Real-Time
Heterogeneous Systems,” J. Parallel Computing, vol. 32, no. 5,
pp. 331-356, Aug. 2006.

[12] A. Amin, R.A. Ammar, and S.S. Gokhale, “An Efficient Method to
Schedule Tandem of Real-Time Tasks in Cluster Computing with
Possible Processor Failures,” Proc. Eighth IEEE Int’l Symp.
Computers and Comm. (ISCC ’03), pp. 1207-1212, June 2003.

[13] F. Harada, T. Ushio, and Y. Nakamoto, “Adaptive Resource
Allocation Control for Fair QoS Management,” IEEE Trans.
Computers, vol. 56, no. 3, pp. 344-357, Mar. 2007.

[14] L. He, S.A. Jarvis, and D.P. Spooner, “Dynamic Scheduling of
Parallel Jobs with QoS Demands in Multiclusters and Grids,” Proc.
Fifth IEEE/ACM Int’l Workshop Grid Computing (Grid ’04), pp. 402-
409, Nov. 2004.

[15] A. Do�gan and F. Özgüner, “Scheduling of a Meta-Task with
QoS Requirements in Heterogeneous Computing Systems,”
J. Parallel and Distributed Computing, vol. 66, no. 2, pp. 181-196,
Feb. 2006.

[16] M. Weber, “Operating-System Enhancements for a Fault-Tolerant
Dual-Processor Structure for the Control of an Industrial Process,”
Software: Practice and Experience, vol. 17, no. 5, pp. 345-350, May
1987.

ZHU ET AL.: QOS-AWARE FAULT-TOLERANT SCHEDULING FOR REAL-TIME TASKS ON HETEROGENEOUS CLUSTERS 811

[17] K.H. Kim and A. Damm, “Fault-Tolerance Approaches in Two
Experimental Real-Time Systems,” Proc. Seventh IEEE Workshop
Real-Time Operating Systems and Software (RTOSS ’90), pp. 94-98,
May 1990.

[18] G. Manimaran and C.S.R. Murthy, “A Fault-Tolerant Dynamic
Scheduling Algorithm for Multiprocessor Real-Time Systems and
Its Analysis,” IEEE Trans. Parallel and Distributed Systems, vol. 9,
no. 11, pp. 1137-1152, Nov. 1998.

[19] R. Jejurikar and R. Gupta, “Energy Aware Non-Preemptive
Scheduling for Hard Real-Time Systems,” Proc. 17th Euromicro
Conf. Real-Time Systems (ECRTS ’05), pp. 21-30, July 2005.

[20] W. Li, K. Kavi, and R. Akl, “A Non-Preemptive Scheduling
Algorithm for Soft Real-Time Systems,” Computers and Electrical
Eng., vol. 33, no. 1, pp. 12-29, Jan. 2007.

[21] S. Dolev and A. Keizelman, “Non-Preemptive Real-Time Schedul-
ing of Multimedia Tasks,” J. Real-Time Systems, vol. 17, no. 1,
pp. 23-39, July 1999.

[22] J.D. Ullman, “NP-Complete Scheduling Problems,” J. Computer
and System Sciences, vol. 10, no. 3, pp. 384-393, Oct. 1975.

[23] C.C. Han, K.G. Shin, and J. Wu, “A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults,” IEEE Trans. Computers, vol. 52, no. 3, pp. 362-372, Mar.
2003.

[24] O. González, H. Shrikumar, J.A. Stankovic, and K. Ramamritham,
“Adaptive Fault Tolerance and Graceful Degradation under
Dynamic Hard Real-Time Scheduling,” Proc. 18th IEEE Real-Time
Systems Symp. (RTSS ’97), pp. 79-89, Dec. 1997.

[25] M. Naedele, “Fault-Tolerant Real-Time Scheduling under Execu-
tion Time Constraints,” Proc. Sixth Int’l Conf. Real-Time Computing
Systems and Applications (RTCSA ’99), pp. 392-395, Dec. 1999.

[26] Q. Zheng, B. Veeravalli, and C.K. Tham, “On the Design of Fault-
Tolerant Scheduling Strategies Using Primary-Backup Approach
for Computational Grids with Low Replication Costs,” IEEE
Trans. Computers, vol. 58, no. 3, pp. 380-393, Mar. 2009.

[27] Y.S. Hong and H.W. Goo, “A Fault-Tolerant Scheduling Scheme
for Hybrid Tasks in Distributed Real-Time Systems,” Proc. Third
IEEE Workshop Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS ’05), pp. 3-6, May 2005.

[28] P. Mejia-Alvarez and D. Mosse, “A Responsiveness Approach for
Scheduling Fault Recovery in Real-Time Systems,” Proc. Fifth IEEE
Symp. Real-Time Technology and Applications (RTAS ’99), pp. 4-13,
June 1999.

[29] S. Ghosh, R. Melhem, and D. Mossé, “Fault-Tolerance Through
Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 3,
pp. 272-284, Mar. 1997.

[30] R. Al-Omari, A.K. Somani, and G. Manimaran, “Efficent Over-
loading Technique for Primary-Backup Scheduling in Real-Time
Systems,” J. Parallel and Distributed Computing, vol. 64, no. 5,
pp. 629-648, May 2004.

[31] T. Tsuchiya, Y. Kakuda, and T. Kikuno, “A New Fault-Tolerant
Scheduling Technique for Real-Time Multiprocessor Systems,”
Proc. Second Int’l Workshop Real-Time Computing Systems and
Applications (RTCSA ’95), pp. 197-202, Oct. 1995.

[32] C.H. Yang, G. Deconinec, and W.H. Gui, “Fault-Tolerant
Scheduling for Real-Time Embedded Control Systems,” J. Com-
puter Science and Technology, vol. 19, no. 2, pp. 191-202, Feb. 2004.

[33] R. Al-Omari, A.K. Somani, and G. Manimaran, “An Adaptive
Scheme for Fault-Tolerant Scheduling of Soft Real-Time Tasks in
Multiprocessor Systems,” J. Parallel and Distributed Computing,
vol. 65, no. 5, pp. 595-608, May 2005.

[34] W. Luo, J. Li, F. Yang, G. Tu, L. Pang, and L. Shu, “DYFARS:
Boosting Reliability in Fault-Tolerant Heterogeneous Distributed
Systems through Dynamic Scheduling,” Proc. Eighth ACIS Int’l
Conf. Software Eng., Artificial Intelligence, Networking, and Parallel/
Distributed Computing (SNPD ’07), pp. 640-645, Aug. 2007.

[35] T.D. Braun, H.J. Siegel, and N. Beck, et al., “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems,” J. Parallel
and Distributed Computing, vol. 61, no. 6, pp. 810-837, June 2001.

[36] S. Srinivasan and N.K. Jha, “Safety and Reliability Driven Task
Allocation in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 10, no. 3, pp. 238-251, Mar. 1999.

[37] X. Qin and H. Jiang, “A Dynamic and Reliability-Driven
Scheduling Algorithm for Parallel Real-Time Jobs Executing on
Heterogeneous Clusters,” J. Parallel and Distributed Computing,
vol. 65, no. 8, pp. 885-900, Aug. 2005.

[38] H.J. Siegel, H.G. Dietz, and J.K. Antonio, “Software Support for
Heterogeneous Computing,” The Computer Science and Eng. Hand-
book, CRC Press, 1997.

[39] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C.L. Wang,
“Heterogeneous Computing: Challenges and Opportunities,”
Computer, vol. 26, no. 6, pp. 18-27, June 1993.

[40] M. Qiu and E.H.-M. Sha, “Cost Minimization while Satisfying
Hard/Soft Timing Constraints for Heterogeneous Embedded
Systems,” ACM Trans. Design Automation of Electronic Systems,
vol. 14, no. 2, pp. 1-30, Mar. 2009.

[41] X. Zhu and P. Lu, “Study of Scheduling for Processing Real-
Time Communication Signals on Heterogeneous Clusters,” Proc.
Ninth Int’l Symp. Parallel Architectures, Algorithms, and Networks
(I-SPAN ’08), pp. 121-126, May 2008.

[42] X. Zhu and P. Lu, “Multi-Dimensional Scheduling for Real-Time
Tasks on Heterogeneous Clusters,” J. Computer Science and
Technology, vol. 24, no. 3, pp. 434-446, Mar. 2009.

[43] X. Zhu and P. Lu, “A Two-Phase Scheduling Strategy for Real-
Time Applications with Security Requirements on Heterogeneous
Clusters,” Computers and Electrical Eng., vol. 35, pp. 980-993, Nov.
2009.

Xiaomin Zhu (M’10) received the BS and MS
degrees in computer science from Liaoning
Technical University, China, in 2001 and 2004,
respectively, and the PhD degree in computer
science from Fudan University, China, in 2009.
He is currently an assistant professor in the
School of Information System and Management
at National University of Defense Technology,
China. His research interests include cluster
computing, fault-tolerant computing, green com-

puting, and performance evaluation. He is a member of the IEEE, the
IEEE Communication Society, and the ACM.

Xiao Qin (S’99-M’04-SM’09) received the BS
and MS degrees in computer science from
Huazhong University of Science and Technol-
ogy in 1992 and 1999, respectively. He received
the PhD degree in computer science from the
University of Nebraska-Lincoln in 2004. He is
currently an associate professor in the Depart-
ment of Computer Science and Software En-
gineering at Auburn University. Prior to joining
Auburn University in 2007, he had been an

assistant professor with New Mexico Institute of Mining and Technology
(New Mexico Tech) for three years. He won an NSF CAREER award in
2009. His research is supported by the US National Science Foundation
(NSF), Auburn University, and Intel Corporation. He has been on the
program committees of various international conferences, including
IEEE Cluster, IEEE MSST, IEEE IPCCC, and ICPP. His research
interests include parallel and distributed systems, storage systems, fault
tolerance, real-time systems, and performance evaluation. He is a
member of the ACM and a senior member of the IEEE.

Meikang Qiu (SM’07) received the BE and ME
degrees from Shanghai Jiao Tong University,
China. He received the MS and PhD degrees
of computer science from the University of
Texas at Dallas, in 2003 and 2007, respec-
tively. He had worked at Chinese Helicopter
R&D Institute and IBM. He is currently an
assistant professor of ECE at the University of
Kentucky. He has published more than 100
peer reviewed papers, including 35 journal

papers. He has been on various chairs and TPC members for many
international conferences. He served as the Program Chair of IEEE
EmbeddCom ’09 and EM-Com ’09. He received Air Force Summer
Faculty Award 2009. He won three best paper awards (IEEE
Embedded and ubiquitous Computing (EUC ’09), IEEE/ACM Green-
Com ’10, and IEEE CSE ’10) and one best paper nomination. His
research interests include embedded systems, computer security, and
wireless sensor networks. He is a senior member of the IEEE.

812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011

