
J. Parallel Distrib. Comput. 72 (2012) 751–763
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled
heterogeneous clusters
Xiaomin Zhu a,∗, Chuan He a, Kenli Li b, Xiao Qin c

a Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, PR China
b School of Computer and Communication, Hunan University, Changsha 410082, PR China
c Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849-5347, USA

a r t i c l e i n f o

Article history:
Received 24 February 2011
Received in revised form
27 June 2011
Accepted 9 March 2012
Available online 20 March 2012

Keywords:
Cluster
Real-time
Scheduling
Energy-efficient
Adaptivity
Dynamic voltage scaling

a b s t r a c t

Developing energy-efficient clusters not only can reduce power electricity cost but also can improve
system reliability. Existing scheduling strategies developed for energy-efficient clusters conserve energy
at the cost of performance. The performance problem becomes especially apparent when cluster
computing systems are heavily loaded. To address this issue, we propose in this paper a novel scheduling
strategy – adaptive energy-efficient scheduling or AEES – for aperiodic and independent real-time tasks on
heterogeneous clusterswith dynamic voltage scaling. The AEES scheme aims to adaptively adjust voltages
according to the workload conditions of a cluster, thereby making the best trade-offs between energy
conservation and schedulability. When the cluster is heavily loaded, AEES considers voltage levels of both
new tasks and running tasks to meet tasks’ deadlines. Under light load, AEES aggressively reduces the
voltage levels to conserve energy while maintaining higher guarantee ratios. We conducted extensive
experiments to compare AEES with an existing algorithm – MEG, as well as two baseline algorithms –
MELV,MEHV. Experimental results show that AEES significantly improves the scheduling quality ofMELV,
MEHV and MEG.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

In the past decade, computer cluster computing systems have
increasingly become a popular cost-effective platform to run
computing-intensive and data-intensive real-time applications
like real-time weather forecast, image processing, signal pro-
cessing, and stock trading [4,15,38,6]. Much of this trend can
be attributed to the rapid enhancements in processing power
of commodity-off-the-shelf hardware components and their low
cost. The TOP500 supercomputer list made on June 2010 showed
that clusters accounted for 84.8% within the fastest 500 computers
in the world [26], indicating that a majority of high-performance
supercomputers are built using inexpensive personal comput-
ers connected by high-speed networks. Especially, heterogeneous
clusters have received a good deal of attention, because a homoge-
neous cluster becomes a heterogeneous one after newly purchased
hardware components are incorporated into the cluster with old
components.With the advance of cloud computing, heterogeneous
clusters are widely applied in modern data and supercomputing

∗ Corresponding author.
E-mail addresses: xmzhu@nudt.edu.cn (X. Zhu), chuanhe@nudt.edu.cn (C. He),

lkl510@263.net (K. Li), xqin@auburn.edu (X. Qin).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.03.005
centers. In this study we focus on heterogeneous clusters, which
significantly affect the global scientific and business communi-
ties [18].

Although clusters are able to provide high-performance com-
puting solutions, large-scale clusters consume tremendous amount
of energy. For example, the total power of a 360-Tflops high-
performance cluster (e.g. IBM Blue Gene/L) with traditional pro-
cessors could exceed 10 megawatts, possibly approaching 20
megawatts. The total power of a large-scale cluster is approxi-
mately equal to the amount of power used in 22,000 US house-
holds [8]. In addition, high-temperature heat dissipation caused
by large-scale clusters requires cooling equipments (e.g., air condi-
tioners) to control temperature in supercomputers and data cen-
ters. The primary design goal of Google’s data centers is not high
performance but high energy efficiency, because data centers can
consume as much electricity as a city [25].

High energy consumption of clusters has three disadvantages.
First, the energy cost of running clusters is very high. For example,
the total energy cost of a single 200 W server (e.g., IBM 1U*300)
is 180 $/year [2]. A large cluster with hundreds or thousands
of computing nodes can lead to huge cost of electricity. Second,
the high energy consumption has negative impacts on environ-
ment. It is evaluated that producing 1 kW electricity power needs
to consume 0.4 kg coal and 4L water. Meanwhile, 0.272 kg solid
powder, 0.997 kg CO2, and 0.03 kg SO2 are produced [21]. High

http://dx.doi.org/10.1016/j.jpdc.2012.03.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:xmzhu@nudt.edu.cn
mailto:chuanhe@nudt.edu.cn
mailto:lkl510@263.net
mailto:xqin@auburn.edu
http://dx.doi.org/10.1016/j.jpdc.2012.03.005


752 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
energy consumption leads to huge carbon dioxide emissions. If
electricity used by clusters is generated by thermal power stations,
the negative impacts become more pronounced. Last, high energy
consumption caused by a large number of computing nodes in a
cluster results in high temperature that greatly affects the system
reliability. Evidence shows (the Arrhenius equation) that comput-
ing in high temperature is more error-prone than in a normal
environment, because the expected failure rate of an electronic
component doubles for every 10 °C increased [7]. Therefore, re-
ducing energy consumption of computing platforms is highly in-
dispensable; we must make future clusters energy efficient.

The dynamic voltage scaling technique or DVS is an efficient
approach to reducing energy consumption [22]. DVS exploits
the relationship between CPU supply voltages of devices and
power usages (e.g., Crusoe [1] and ARM7D [5]). DVS has been
implemented in real-world processors like Intel SpeedStep and
AMD PowerNow!. Most modern processors supporting DVS use
discrete voltage levels. Thus, one can save a processor’s energy by
degrading CPU voltage while keeping the processor to operate at a
slow speed.

In addition to the DVS technique, a second approach to conserv-
ing energy is to turn off idle computing nodes. This approach is ef-
ficient if most idle periods are very large. In real-time applications
where idle periods are small, turning off computing nodes not only
has a high overhead, but also introduces a high latency. A similar
justification can be found in a previous study [30]. In our study, we
focus on dynamic scheduling of real-time tasks on heterogeneous
clusters with medium and high loads. Due to high overhead, fre-
quently turning on and off computing nodes is not an ideal solution
to conserve energy for clusters supporting real-time applications.
Therefore, we decide to apply the DVS technology to adjust volt-
ages of running nodes as an energy-saving energy approach.

The correctness of real-time tasks depends not only on the logic
results of computation, but also on the time instants atwhich these
results are produced [34]. Since the DVS technique conserves a
CPU’s energy consumption through CPU voltage (clock frequency)
reduction at the expense of increasing the execution time of real-
time tasks, applying DVS to save energy for real-time tasks must
carefully adjust the execution times of the real-time tasks within
their timing constraints.

Motivation. In addition to conserving energy consumption
caused by real-time tasks, improving performance (e.g., guarantee
ratio) is desirable and, in many cases, mandatory for real-
time applications. For example, a real-time military surveillance
application requires real-time response besides significant energy
conservation, because missing deadlines makes the application
worthless [36]. Task scheduling strategies that only focus on
reducing energy consumption are inadequate for many real-time
applications. To address this problem, we attempt to incorporate
adaptivity into energy-efficient scheduling schemes for real-time
applications. Specifically, our approach first gives high priority to
deal with schedulability when a real-time system is heavily loaded
even though much energy consumption may be produced. When
the system is under light load, our approach strives to reduce
energy consumption while achieving high schedulability for real-
time tasks.

Most existing energy-efficient scheduling algorithms do not ad-
dress the adaptivity issue in the context of real-time heteroge-
neous clusters. This problemmotivates us to design and implement
a novel adaptive energy-efficient scheduling strategy for real-time
tasks on DVS-enabled heterogeneous clusters.

Contributions. Our main contributions are summarized as fol-
lows:

(1) We constructed an energy consumptionmodel that adequately
considers the adaptivity.
(2) Wedeveloped an adaptive energy-efficient scheduling strategy
or AEES for real-time tasks running on heterogeneous clusters.

(3) We conducted experimental evaluation of AEES using a
simulated heterogeneous cluster.

The rest of this paper is organized as follows. The related
work is summarized in Section 2. Section 3 presents the adaptive
power-aware scheduling model. Section 4 describes the AEES
scheduling strategy that contains two algorithms—EEGS and LVA.
Themain principles of EEGS and LVA are also discussed in Section 4.
Simulation experiments and performance analysis are presented
in Section 5. Section 6 concludes the paper with a few future
directions.

2. Related work

Over the past decade, increasing attention has been directed
toward energy conservation for high-performance clusters [18,28,
37,20,13,44]. Among many energy-saving techniques, scheduling
is an efficient approach to reducing energy consumption on
clusters. A scheduling mechanismmakes an effort to allocate tasks
to computing nodes in a cluster where the nodes can be operated
at the possibly lowest voltage level. Many practical scheduling
algorithms developed for multiprocessors are NP-complete [32],
motivating researchers to design heuristic algorithms to solve the
scheduling problems.

In a broad sense, the scheduling algorithms exist in two
forms: static and dynamic [17]. Static scheduling algorithms make
scheduling decisions before tasks are submitted to a cluster, and
are often applied to schedule periodic tasks [29,10]. However,
aperiodic tasks whose arrival times are not known a priori
must be handled by dynamic scheduling algorithms (see, for
example, [9,27]). In this study, we focus on scheduling aperiodic
and independent real-time tasks. Our algorithm can be extended
to deal with taskswith precedence constraints, because dependent
tasks are equivalent to independent tasks by modifying ready
times and deadlines of the dependent tasks [23]. Moreover,
some scheduling algorithms of real-time tasks are preemptive,
whereas our scheduling algorithm is non-preemptive, i.e., an
executing task cannot be preempted by another task, which is
more efficient, particularly fit for soft real-time applications than
the preemptive approaches because of reducing the overheads
required for switching among tasks [19]. Consequently, the non-
preemptive scheduling scheme is employed in this paper.

Laszewski et al. focused on reducing energy consumption
of virtual machines on a homogeneous cluster using DVS-
based scheduling. Zong et al. investigated a two-phase energy-
efficient scheduling strategy called EETDS for dependent taskswith
intensive communications. EETDS applies a duplication-based
method to shrink communication energy cost when allocating
parallel tasks to a heterogeneous cluster [44]. Kotla et al. employed
the execution characteristics of tasks running on clusters to
predict their performance at available frequency settings and
to schedule these tasks with the lowest frequency [16]. Xie
et al. proposed a scheduling scheme – BEATA – that considers
both energy consumption and schedule length to solve the
energy-latency dilemma for tasks of parallel applications in
heterogeneous embedded systems [35]. Hu et al. described an
approach exploiting live migration of virtual machines to transfer
load among computing nodes to reduce energy consumption on
homogeneous and heterogeneous clusters [11]. Although these
scheduling strategies are able to achieve high performance for
non-real-time applications, they are inadequate for real-time
applications due to the lack of guarantee to finish real-time tasks
within their deadlines.

Previous studies have incorporated energy conservation into
real-time scheduling. Nélis et al. considered the problem of



X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 753
minimizing energy consumption caused by a set of sporadic
constrained-deadline real-time tasks scheduled on a fixed number
of processors. Their scheduling algorithm is preemptive; each
process can start its execution on any processor and may migrate
at run-time from one processor to another if it gets preempted by
earlier-deadline processes [28]. Kim et al. presented two power-
aware scheduling algorithms (space-shared and time-shared)
for bag-of-tasks real-time applications on DVS-enabled clusters
to minimize energy dissipation while meeting applications’
deadlines [13]. Unfortunately, the above methods were designed
for homogeneous computing environments, having no inherent
capability of supporting heterogeneous systems. Energy saving
on heterogeneous clusters is complicated, because a high-voltage
node may yield lower energy consumption due to its higher
processing speed.

Yu et al. studied the allocation problem of a set of independent
tasks in a real-time system consisting of heterogeneous DVS-
enabled processing elements [37]. Yu’s scheduling scheme, which
is static in nature, can efficiently schedule periodic real-time
tasks. Wilkins et al. investigated the energy-aware task allocation
problem for assigning a set of real-time tasks onto heterogeneous
machines of a computational grid each equipped with DVS feature
using non-cooperative game theory [33]. Liu et al. developed an
algorithm or PASS for real-time tasks with different priorities
and deadlines on DVS-enabled heterogeneous clusters [20]. PASS
schedules both hard and soft real-time tasks. First, PASS schedules
hard real-time tasks in order to meet their deadlines. Next,
slack times are utilized to execute soft real-time tasks within
timing constraints. PASS is a batch-style scheduling algorithm, in
which submitted tasks are collected and scheduled as a meta-task
when a scheduling event is triggered. Regarding the batch-style
scheduling, although more tasks information can be used to make
the scheduling more efficient, in real-time systems, it may result
in some tasks arriving earlier miss their deadlines due to waiting
delay [39]. Therefore, in our study, we employ the immediate-style
scheduling, i.e., scheduling a task once it arrives.

In our previous studies [40,39,43,42], we investigated a set
of scheduling strategies for real-time tasks on heterogeneous
clusters. However, we did not address the energy saving issues on
heterogeneous clusters. In this paper, we pay attention to adaptive
energy-efficient scheduling for non-preemptive, real-time, and
aperiodic tasks on DVS-enabled heterogeneous clusters. Aiming at
improving energy efficiency and schedulability, our new dynamic
strategy can adaptively adjust supply voltage levels according to
workload conditions.

3. Systemmodel

This section introduces the models, notion, and terminology
used throughput this paper. For future reference, we summarize
notation used in this study in Table 1.

3.1. Energy-efficient real-time scheduling architecture

Let us concentrate on a m-node cluster, in which m heteroge-
neous nodes (i.e., with different processing powers) are connected
via a high-speed interconnection network (e.g., Myrinet and Infini-
Band) to execute real-time tasks submitted by n users. Let a het-
erogeneous cluster be composed of a set N = {n1, n2, . . . , nm} of
heterogeneous nodes. Fig. 1 shows the architecture of an energy-
efficient real-time scheduling mechanism.

The scheduler in Fig. 1 encompasses a real-time controller
and an adaptive voltage controller. The real-time controller and
adaptive voltage controller work together and determine if an
arriving task in the global queue can be admitted or not. Once the
task is accepted, a voltage level will be assigned by the scheduler.
Table 1
Definitions of notation.

Notation Definition

nj The jth computing node in the node set
N = {n1, n2, . . . , nm} of a cluster

ti The ith task in the task set T = {t1, t2, . . . , tn}
ai The arrival time of ti
di The deadline of ti
rj The remaining execution time of the running task on nj
est ij The earliest start time of ti on nj
xij xij is ‘‘1’’ if ti is assigned to nj; otherwise, xij is ‘‘0’’
oij The execution order of ti on nj
wij wij is ‘‘1’’ if ti is waiting in the local queue of nj , and is ‘‘0’’

else
Vjk The kth voltage level of nj
vij The selected voltage of ti on nj, vij ∈ Vj
eij(vij) The execution time of ti on nj using the voltage level vij
emax
i The maximal execution time of ti
si The task size of ti
mjk The processing speed of nj with voltage level vk
fj(vij) The frequency of nj with voltage level vij
ec ij The energy consumption of ti on nj
pidlej The power of nj when it is idle
Edynamic The dynamic energy consumption
Estatic The static energy consumption
E The sum of dynamic energy consumption and static

energy consumption
ecactive(T ,N, X, V ) The total energy consumption of nodes when they are

active
ec idle(T ,N, X, V ) The total energy consumption of nodes when they are

idle
ec(T ,N, X, V ) The total energy consumption of nodes of a cluster
EV (T ,N, X, V ) The minimal energy consumption of a cluster
AN(X) The maximal number of accepted tasks

Fig. 1. Energy-efficient real-time scheduling architecture.

Each node in the clustermaintains a local queue inwhich admitted
tasks are queuing up for execution on the node. The local voltage
controller in each node aims at minimizing the voltage levels for
admitted tasks to reduce energy consumption.

When a new task arrives, the scheduler follows three steps
below to allocate and schedule the task.

Step 1: The scheduler checks system status information (e.g.,
voltage levels of the nodes, tasks running on the nodes, tasks
waiting in the local queues, and actual execution times of
finished tasks). It is critical to collect and manage the system
status information, because schedulers largely depend on such
information to choose the most energy-efficient computing nodes
to run new tasks. All the information can be stored andmaintained
by the scheduler. The system information can be gathered in two
approaches.

• First, the status information can be periodically collected. A
short period (e.g., a few seconds) increases accuracy at the cost
of high overhead, whereas a long period (e.g., a few minutes)
reduces both monitoring overhead and accuracy. The periods,
regardless of their lengths, should be adjusted by a system
administrator based on application requirements.
• Second, the status information can be gatheredwhen anew task

arrives. Compared with the first approach, the second scheme



754 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
incurs lower overhead under low workload conditions. When
the load becomes very high (e.g., many tasks arrive in a very
short time period), the first approach is better than the second
one.
It is worth noting that run-time execution conditions may

be different with stored information, because execution times
are estimated and computing nodes may fail due to various
reasons. Fortunately, this problem is addressed by periodically
collecting system status information. After the system information
is gathered in a real-time manner, the system status data are
immediately updated.

Step 2: The scheduler decides whether or not the new task
can be allocated to a node and completed within its deadline by
the energy-efficient global scheduling algorithm or EEGS. In the
process of scheduling, EEGS makes the best effort to schedule a
new task to a node with the possibly lowest voltages. If the new
task’s deadline is not guaranteed, it will be dropped to the rejected
queue. Otherwise the taskwill be transferred to a destination node.

Step 3: The status information including node voltage, sequence
of the new task, execution time of tasks waiting in this node are
passed on to this destination node.

After a task in one node is executed, the local voltage
adjuster relies on the local voltage adjusting algorithm or LVA
to dynamically reduce the node voltage subject to the timing
constraints of tasks waiting in the local queue. The dynamic
voltage scaling approach can achieve high energy efficiency of the
heterogeneous clusters.

3.2. Task model

We consider a set T = {t1, t2, . . . , tn} of soft real-time tasks
that are independent, non-preemptive, and aperiodic. There is no
communication among tasks. Each task can be executed on only
one node; a task cannot be partitioned and distributed across
multiple nodes.

Let ai and di be the arrival time and deadline of task ti,
respectively. Let EST = (est ij)n×m be an earliest start time matrix
of tasks, where element est ij denotes the earliest start time of task
ti on node nj. To model the heterogeneity of a cluster, we denote
E = (eij)n×m as an execution time matrix of tasks, where element
eij denotes the execution time of task ti on node nj.

The aforementioned task model largely relies on a way of
estimating execution times of tasks assigned to given computing
nodes. The task execution times must be approximately estimated
and provided prior to scheduling tasks on clusters. A few
execution-time estimation techniques are commonly used in
the scheduling research community [3]. Such an execution-time
estimation process is reasonable and practical, because execution
times can be estimated by the code profiling and statistical
prediction techniques (see, for example, [31,12]).

An allocation matrix X = (xij)n×m is used to reflect a mapping
of n tasks to m nodes. Element xij in X is ‘‘1’’ if task ti is assigned
to node nj; otherwise, xij is ‘‘0’’. Let O = (oij)n×m be an execution
order matrix, where element oij represents the execution order of
task ti on node nj. wij = 1 if task ti is waiting in the local queue of
node nj, else wij = 0. fij is the finish time of task ti on node nj.

3.3. Energy consumption model

It is assumed that the processor of each computing node in
a cluster is DVS enabled in the sense that the processor can
be operated in multiple voltages with different frequencies by
CMOS circuits. The main energy consumption E caused by a
cluster includes two parts—dynamic energy consumption Edynamic
due to circuit switching activities in systems and static energy
consumption Estatic for the leakage currents in the circuits [13].
Thus, we have
E = Edynamic + Estatic . (1)
Generally speaking, energy consumption is dominated by the
dynamic energy consumption [41,24]. Although the leakage energy
consumption cannot be ignored when the deep-micro technology
is applied, the contribution of the leakage energy to the overall
energy consumption follows a similar trend to the dynamic energy
consumption. To simplify our energy consumptionmodel,we focus
on the dynamic energy consumption that can be approximated as:

E = αfV 2
dd△t, (2)

where Vdd is supply voltage, f is the number of clock cycles per
second, i.e., processor clock frequency,△t is the execution period,
and α is a constant. Clock frequencies are positive correlated
with supply voltages. Reducing voltages can result in low clock
frequencies.

Eq. (2) suggests that the energy consumption can be reduced
by lowering the supply voltage at the cost of speed (i.e., slowdown
of the execution time). One can save energy by degrading voltage
levels and delaying the execution time of real-time tasks as long as
timing constraints are met (see, for example, [13]).

We denote V = {V1, V2, . . . , Vj} as a set of voltages of all nodes
in a cluster. Let Vj = {Vj1, Vj2, . . . , Vjk} be a set of supplied voltages
for node nj. For simplicity, we assume that Vj1 < Vj2 < · · · < Vjk.
vij ∈ Vj is a selected voltage of task ti on node nj. The execution
time of task ti on node nj using voltage level vij is represented
as eij(vij). vij is a feasible voltage level, which should satisfy the
following two inequalities, (1) fij ≤ di, and (2) Vj1 ≤ vij ≤ Vjk.
We have eij(vij) = si/mjk, where si is the size of task ti, and mjk is
the processing speed of node nj with supply voltage level vk. In this
equation, vk equals to vij. Thus, the energy consumption ec ij of task
ti on node nj can be written as follows:

ec ij = αfj(vij)v
2
ijeij(vij), (3)

where fj(vij) denotes the frequency of node nj with voltage vij.
Given a real-time application with task set T , a node set

N , an allocation matrix X , and voltage set V , the total energy
consumption of all tasks in this application is:

ecactive(T ,N, X, V ) =

m
j=1

n
i=1

xijec ij

=

m
j=1

n
i=1

xijαfj(vij)v
2
ijeij(vij). (4)

Note that Eq. (4) does not incorporate energy consumption
caused by idle nodes. In this study, we set the voltage to the lowest
level when a node is idle, and the power of node nj is denoted as
pidlej when it is idle. Consequently, the total energy consumption of
idle nodes is expressed as:

ec idle(T ,N, X, V )

=

m
j=1

pidlej


n

max
i=1
{fij} −

n
i=1

xijeij(vij)



=

m
j=1

αfj(Vj1)V 2
j1


n

max
i=1
{fij} −

n
i=1

xijeij(vij)


, (5)

where maxni=1{fij} is the finish time of task that is the latest
executed on node nj, and maxni=1{fij} −

n
i=1 xijeij(vij) is the total

idle time on node nj.
Therefore, the total energy consumption of the nodes in a

cluster is derived form Eqs. (4) and (5) as:

ec(T ,N, X, V )

= ecactive(T ,N, X, V )+ ec idle(T ,N, X, V )



X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 755
=

m
j=1

n
i=1

xijαfj(vij)v
2
ijeij(vij)

+

m
j=1

αfj(Vj1)V 2
j1


n

max
i=1
{fij} −

n
i=1

xijeij(vij)


. (6)

One of our scheduling objectives is to minimize the energy
consumption of nodes in a cluster. Thus, the following energy
value function needs to be minimized, subject to certain timing
constraints:

EV (T ,N, X, V ) = min {ec(T ,N, X, V )} . (7)

Importantly, a node running a task with the least energy
consumption could result in a late finish time for the task, which
in turn may affect the admissions of subsequently arriving tasks.
Energy savings gained by low voltage levels can negatively affect
the schedulability of clusters. In our design, we aim to maximize
the number of admitted real-time tasks within a range of voltage
levels of nodes. Hence, the function representing the number of
accepted tasks must be maximized under timing constraints:

AN(X) = max


m
j=1

n
i=1

xij


. (8)

Energy conservation and guarantee ratio are two conflicting
objectives in the context of real-time task scheduling on a cluster.
Our energy-efficient scheduling strategy AEES (see next section)
makes the best trade-offs between energy saving (see Eq. (7))
and guarantee ratio (see Eq. (8)) according to the workload of a
cluster. If the cluster is heavily loaded, AEES favors schedulability
over energy efficiency. In contrast, when the cluster is under light
load, AEES degrades the voltage levels for admitted tasks to reduce
energy consumption.

4. The scheduling AEES strategy

We are now in a position to present in this section an adaptive
energy-efficient scheduling strategy or AEES for independent ape-
riodic soft real-time tasks on DVS-enabled heterogeneous clusters.
AEES takes the issues of schedulability, energy conservation, and
system workload into account. The AEES strategy is composed of
two algorithms—the EEGS algorithm and the LVA algorithm (see
the two subsections below). EEGS and LVA are seamlessly inte-
grated to adaptively adjust voltage levels of computing nodes in
a cluster in accordance to the cluster’s workload.

4.1. The EEGS algorithm

The EEGS algorithm, used to accommodate new tasks, executes
the earliest deadline first (EDF) policy to improve the schedulabil-
ity of real-time clusters. To facilitate the presentation of EEGS, we
introduce the following two properties.

Property 1. If a real-time task ti is scheduled on node nj, then the
following condition must be met.

st ij + eij(vij) ≤ di, (9)

∀tk, okj > oij, wkj = 1 : stkj + ekj(vkj) ≤ dk, (10)

where st ij and stkj are the start time of task ti on node nj, and the
start time of task tk on node nj, respectively.

Property 1 states that if a task can be allocated to a node, the
task must be finished before its deadline. Furthermore, waiting
tasks whose execution orders are later than that of the new task in
the node’s local queue must be completed before their deadlines.
Because the execution time of a real-time task will be increased
Fig. 2. A case of Property 2: Since task ti is admitted, the earliest deadlines for tasks
tk+2, tk+3 , and tk+4 are updated.

when the voltage level of its located node is lowered, the voltage
levels of all the computing nodes must be adaptively adjusted to
ensure schedulability.

In Eq. (9), the start time st ij of task ti on node nj is a value
anywhere between ti’s earliest start time est ij and latest start time.
In this paper, the start time st ij ismeasured by ti’s earliest start time
est ij to make ti finish as earlier as possible. Thus, it is important
to compute the earliest start time as follows (see Eq. (11) for a
formal description). If node nj is sitting idle, the earliest start time
of task ti on node nj equals the task’s arrival time. Otherwise, the
taskwill have towait in the local queue for all the taskswith earlier
deadlines to be completed. Thus, est ij can be calculated as:

est ij = ai +


okj<oij,wkj=1

ekj(vkj)+ rj, (11)

where rj is the remaining execution time of the running task on
node nj.

Property 2. The earliest start times of waiting tasks in a local queue
will be recalculated if a higher voltage level is applied to accommodate
a new task. The earliest start times should be updated in the following
three cases:

Case 1. If any task tk is waiting in the local queue of node nj, and tk
has the earliest execution order, then

est ′kj = estkj. (12)

Case 2. If any task tk is waiting in the local queue of node nj, and tk’s
execution order is earlier than that of new task ti but not the
earliest execution order, then

est ′kj = estkj −


okj>omj,wmj=1

emj(vmj)− emj(v
′

mj). (13)

Case 3. If any task tk is waiting in the local queue of node nj, and tk’s
execution order is later than that of new task ti, then

est ′kj = estkj + eij(vij)

−


okj>omj,wmj=1

emj(vmj)− emj(v
′

mj) (14)

where est ′kj is the new earliest start time of task tk on node
nj, and emj(v

′

mj) is the new execution time of task tm on node
nj when a higher voltage level v′mj is applied to accommodate
new task ti.

Fig. 2 illustrates a case described in the above Property 2.
If a cluster is under heavy load, it is likely that no computing

node in the cluster can guarantee a new task’s deadline. The reason
is two-fold. First, tasks have longer execution time due to lower
voltage levels on nodes. Second, the new task has later start time
in one node, because many other tasks allocated to the same node
are waiting in the local queue.

Our EEGS algorithm improves the adaptivity of the scheduling
mechanism in the following way. If a new task cannot be allocated



756 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
with current voltage levels of nodes in a cluster, then the
voltage levels of some nodes will be increased to enhance the
schedulability by admitting the new task rather than rejecting the
task.

Algorithm 1 Pseudocode of EEGS algorithm
1: for each new task ti do
2: find ← FALSE; findNode ← NULL; v ← Vmax; ec ← ∞;

f ←∞;
3: for each node nj in a cluster do
4: Calculate the earliest start time estij(vij) using the highest

voltage level, i.e., vij ← Vmax;
5: if estij(vij)+ eij(vij) ≤ di then
6: while vij ≥ Vmin do
7: Degrade one voltage level of nj: vij −−;
8: Calculate the estij(vij) and finish time fij;
9: if estij(vij) + eij(vij) > di or ∃tk, okj > oij, wkj == 1 :

estkj(vkj)+ ekj(vkj) > dk then
10: vij ++;
11: break;
12: end if
13: end while
14: Calculate the energy consumption ecij;
15: if (ecij < ec) or (ecij == ec and fij < f ) then
16: v← vij; findNode← nj; find← TRUE;
17: end if
18: end if
19: end for
20: if find == TRUE then
21: Allocate ti to findNode;
22: Adjust the voltage level of findNode to v;
23: else
24: Reject task ti;
25: end if
26: end for

EEGS is a heuristic scheduling algorithm. When a new task
arrives, the admission test is performed on each node. Initially, the
maximal voltage level is tested on a node, then EEGS decreases
the voltage level of the node until the new task or waiting tasks
cannot be completed before their deadlines. EEGS selects the node
with the lowest energy consumption to save energy. Performing
the maximal-voltage-level-admission test is to guarantee high
schedulability. If all the nodes running at the highest voltage levels
cannot accommodate the new task, then the task is rejected.

The pseudocode of EEGS is described inAlgorithm 1. EEGS tests if
a new task’s deadline can be guaranteed with the highest voltage
level of a node (see Lines 4–5). If the initial test is passed, EEGS
decreases the voltage level of thenodeuntil the new task orwaiting
tasks in the node’s local queue cannot have their timing constraints
satisfied (see Lines 6–13). An iteration is performed on each node
to obtain the lowest voltage level. After the energy consumption
at the lowest voltage levels is computed, EEGS chooses a node
with the minimum energy consumption. If several nodes have
sameminimumenergy consumption, the node offering the earliest
finish time to the new task is selected to break the tie (see Lines
14–17). If all nodes cannot admit the new task even at the highest
voltage levels, the task is rejected. Otherwise the new task is
allocated (see Lines 20–25).

The time complexity (see the Theorem below) of EEGS depends
on the number of computing nodes in a cluster, the number of tasks
in a local queue, and the number of voltage levels.

Theorem 1. The time complexity of the EEGS scheduling algorithm is
O(mkq), where m is the number of computing nodes, q is the number
of tasks in a local queue, and k is the number of voltage levels.
Proof. The time complexity of calculating the earliest time of tasks
in a local queue isO(q) (see line 4 and line 8). It takesO(k) (see lines
6–13) to determine the lowest voltage level (i.e., lowest energy
consumption to accommodate a newly arrived task). It only takes
O(1) to execute the other lines. Hence, the time complexity of EEGS
is calculated as follows: O(m)(O(k)+ O(k)(O(q))) = O(mkq). �

4.2. The LVA algorithm

The LVA algorithm is implemented in the local voltage adjuster
to dynamically control voltages to conserve energy. LVA strives to
decrease voltage level of a node after each running task finishes
its execution. The design of LVA is indispensable, because a node’s
voltage may be scaled up since a running task needs a higher node
voltage to guarantee the task’s deadline. Tasks in the node’s local
queuemay just need low voltage to satisfy their timing constraints.
In our design, node voltages are scaled when all the tasks in a local
queue are considered together to meet their timing requirements.
Thus, all the temporary supply voltages of tasks in a local queue
are degraded if the tasks’ timing constraints can be guaranteed.
When another task is finished, LVA is invoked again. Therefore, the
actual supply voltages for the tasks may be different. LVA is able
to efficiently reduce energy consumption and enhance the system
adaptivity. The LVA has the following properties.

Property 3. The voltage level of a node can be decreased and the
following constraint must be met.

∀tk, wkj = 1 : est ′kj + ekj(v′kj) ≤ dk, (15)

where est ′kj and ekj(v′kj) denote the new earliest start time and new
execution time after the voltage level of node nj is degraded.

Since the execution times of tasks in a local queue may be
increased, some tasks can miss their deadlines due to either an
increased execution time or a later start time. The start time of
waiting tasks must be recomputed if a new task is admitted. Thus,
we have the following property.

Property 4. The earliest start time of waiting tasks in a local queue
must be recalculated if the voltage level is decreased for energy saving
purpose.

est ′kj = estkj +


okj>omj,wkj=1,wmj=1

(emj(v
′

mj)− emj(vmj)). (16)

The pseudocode of LVA is outlined in Algorithm 2.

Algorithm 2 Pseudocode of LVA algorithm
1: Get the voltage level vp of node nq;
2: while vp > Vmin do
3: Degrade one voltage level of node nq: vp −−;
4: for each task tk waiting in local queue of nq do
5: Calculate the new earliest start time est ′kq and the new

execution ekq(v′p);
6: if est ′kq + ekq(v′p) > dk then
7: Enhance one voltage level of node nq: vp ++;
8: break;
9: end if

10: end for
11: end while

The objective of LVA is to minimize the voltage levels of
computing nodes. If the voltage level of a node is not set to
the lowest value, LVA will test if a lower voltage level can also
guarantee the deadlines of all the waiting tasks in the local queue.



X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 757
If the deadlines can be met, LVA calculates the new earliest start
times and execution times of the waiting tasks under the lower
voltage level (see Line 5 in Algorithm 2). If the lower voltage
level fails to guarantee the deadline of any task, the voltage-level
degradation process is terminated and the voltage level is rolled
back to the former value (see Lines 6–9 in Algorithm 2). The time
complexity of LVA can be found in the following theorem.

Theorem 2. The time complexity of the LVA algorithm is O(kq), where
k is the number of voltage levels and q is the number of waiting tasks
in a local queue.
Proof. It takes O(q) time to check whether or not all the tasks in
the local queue canmeet their deadlineswhen a lower voltage level
is chosen. The time complexity of adjusting voltage levels is O(k).
Therefore, the time complexity of LVA is O(k)(O(q)) = O(kq). �

5. Performance evaluation

We evaluate in this section the performance of the proposed
adaptive energy-efficient scheduling strategy (AEES). To demon-
strate the performance improvements gained by AEES, we quan-
titatively compare it with an existing MEG (minimum energy
greedy) algorithm presented in the literature [14,37], and two
baseline algorithms—MEHV (the minimum energy highest voltage
algorithm) and MELV (the minimum energy lowest voltage al-
gorithm), in which static (highest or lowest) voltage levels are
employed. Note that using baseline algorithms to demonstrate
strengths of proposed algorithms is widely used in many similar
studies (see for example, [13]).

MEG, MEHV, and MELV are briefly described as follows:
(1) MEG. For each task allocation, MEG selects a node that yields

the least energy consumptionbydynamically adjusting voltage
levels.

(2) MEHV. All computing nodes run at the highest voltage level. A
node offering the least energy consumption is chosen when a
newly arrived task is allocated.

(3) MELV. All nodes run at the lowest voltage level. MELV selects
a node providing the least energy consumption for each task
allocation.
The performance metrics by which we evaluate the system

performance include:
(1) Guarantee Ratio (GR) defined as: GR = Total number of tasks

guaranteed to meet their deadlines/Total number of tasks
×100%.

(2) Total Energy Consumption (TEC) used to embody the total
energy consumption.

(3) Energy Consumption Per Task (ECPT ) calculated as: ECPT =
TEC/Total number of tasks guaranteed tomeet their deadlines.

(4) CPU Utilization (CU) expressed by: CU = Time to execute
tasks/Total running time of nodes in a cluster.
Note that the values of TEC and ECPT are normalized; similar

expressions can be found in the literature [18,20,13,16].

5.1. Simulation method and parameters

The frequencies and voltages used in our simulations were
obtained by testing Athlon-64 machines (see Table 2). The
processing speed at 2 GHz was assumed to be 10,000 MIPS in
average [13]. To reflect node heterogeneities, we varied the CPU
processing speed of Athlon-64 in the range between4000MIPS and
10,000 MIPS (see Table 3).
(1) The voltage levels of all the nodes in a simulated cluster

are chosen from values in the range from 0.9 to 1.5 V with
an increment of 0.1 V. Also, AEES can be used in a cluster
where DVS intervals between nodes are different. To study
the heterogeneity issue, we let parameter minMIPS represent
processing speed in terms of MIPS (million instructions per
Table 2
Frequencies and voltages of simulated nodes in a cluster. The
values are obtained by testing Athlon-64 machines.

Frequency (GHz) Voltage (V) Average MIPS

0.8 0.9 4,000
1.0 1.0 5,000
1.2 1.1 6,000
1.4 1.2 7,000
1.6 1.3 8,000
1.8 1.4 9,000
2.0 1.5 10,000

second) with the lowest voltage. The processing speeds of
the computing nodes under the lowest voltage is normally
distributed in the range of minMIPS. Similarly, parameter
maxMIPS represents the processing speed under the highest
voltage level. The processing speed increases 1000 MIPS and
frequency increases 0.2 GHz when the voltage level increases
0.1 V. Noted that if the lower bound (i.e., minMIPS) and upper
bound (i.e., maxMIPS) increase, the node heterogeneity level is
increased. Thus, a wide variety of heterogeneity levels can be
adjusted by changing the values of minMIPS and maxMIPS.

(2) Parameter taskSize represents task size. Without loss of
generality, we assume that the distribution of task size is a
normal distribution. We examine three task sizes: small tasks,
middle tasks and large tasks. For example, the size is 0.1–10 GI
for small tasks, 10–40 GI for middle tasks, and 40–100 GI
for large tasks. The tasks used in our experiments belong to
synthetic tasks, which are flexible and rational to exhibit the
task heterogeneity and to vary the system workload.

(3) The deadline assignments are controlled by the deadline base
(Tbase) denoted as β , which determines if tasks have loose
deadlines or tight deadlines. The deadline di of task ti in
Eq. (17) is chosen similar as that described in [29],

di = ai + (1+ β)× emax
i , (17)

where emax
i is the maximal execution time computed below:

emax
i = max{eij(Vj1)}. (18)

(4) The arrival rate of tasks abides Poisson distribution.
intervalTime is a random positive real number to represent the
timing interval between two consecutive tasks.

Table 3 summarizes the values of parameters used to simulate
heterogeneous computing nodes and real-time tasks submitted
to heterogeneous clusters. The task size parameter in Table 3
is measured in term of the sum of CPU instructions using the
execution-time estimation techniques mentioned in Section 3.2.

The energy consumption of each computing node can be
easily measured in our simulation studies. For example, assume
parameter minMIPS is [2000, 6000], maxMIPS is [8000, 12000],
taskSize is [10, 60], α is 1, node number is 64, and task number
is 2048, then, based on the operating points in Table 2, we can
calculate the normalized energy consumption of the ith task on jth
node at 1.2 V as follows: enij(vij) = 1 · 1.4 · 1.22

· (10 + (60 −
10)/2048 · i) · 103/(5000 + (9000 − 5000)/64 · j). As such, we
can obtain the energy consumption of the ith task on the jth node
at other voltages. It is worth noting that the arrival sequences of
tasks are random in our simulations.

A basic yet important rule used in our simulations is ‘‘Once
Tuning One Parameter (OTOP)’’, which has been widely ap-
plied in many simulation experiments reported in the literature
[20,29,44,40,14]. In each experiment, we change a single parame-
ter while keeping the other parameters fixed. Tuning one parame-
ter at a time allows us to clearly observe impacts of the parameter
on performance and energy efficiency of clusters.



758 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
a b

c d

Fig. 3. Performance impact of node number.
Table 3
The values of parameters used to simulate heterogeneous computing nodes and
real-time tasks submitted to heterogeneous clusters.

Parameter Value(fixed)–(varied)

Node number (64)–(8, 16, 32, 64, 96, 128)
Task number (2048)
minMIPS (MIPS) ([2000, 6000])–([3000, 5000]), ([2000, 6000]), ([1000,

7000])
maxMIPS (MIPS) ([8000, 12000])–([9000, 11000]), ([8000, 12000]),

([7000, 13 000])
intervalTime (s) (0.7)–(0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5)
taskSize (GI) ([10, 60])–([0.5, 10], [10, 60], [60, 100])
TBase (s) (2.0)–(1.1, 1.5, 2.0, 2.5, 3.0, 3.5)

5.2. Scalability

In this experiment, let us study the scalability of our AEES
strategy. The node number varies from 8 to 128. Fig. 3 shows
the performances of MEG, MELV, MEHV, and AEES in terms of
guarantee ratio, energy consumption, and CPU utilization.

We observe from Fig. 3(a) that MEHV always has higher
guarantee ratio than those of the other schemes, because MEHV
sets the voltage to the highest level all the time making tasks
have less execution times and earlier start times. As a result,
MEHV decreases the probability of missing deadlines. In contrast,
MELV always keeps the lowest voltage level resulting in the lowest
guarantee ratio. Besides, Fig. 3(a) shows that the guarantee ratio
of AEES is higher than that of MEG. This result can be attributed
to the fact that when the guarantee ratio does not achieve 100%
reflecting heavy system workload, schedulability becomes the
main objective of AEES, meaning that AEES strives to increase
the voltage levels for waiting tasks in local queues. MEG simply
increases the voltage level for the newly arrived tasks under heavy
workload conditions, ignoring thewaiting tasks in the local queues.

Although MEHV has the highest guarantee ratio (see Fig. 3(a)
and (b)), MEHV’s energy efficiency is the lowest regardless of
the cluster’s workload. MELV makes the cluster very energy
efficient because of the lowest voltage levels. Both algorithms lack
adaptivity, because neither MEHV nor MELV can adjust voltages
according to the system load. Interestingly, Fig. 3(b) shows that the
total energy consumption of the cluster when AEES is employed
increases if the number of computing node is less than 32. The
reason is that when the system is over loaded, AEES improves
the schedulability by increasing voltages. When the number of
nodes is larger than 32, AEES is able to efficiently enhance the
energy efficiency of the cluster while yielding a high guarantee
ratio. Further, we observe that when the number of nodes is larger
than 96, the total energy consumption of the AEES-enabled cluster
increases again. This is because when the number of nodes is
further increased in the cluster, most of the computing nodes will
be sitting idle. Many idle computing nodes can lead to an increased
idle energy consumption even when most of the nodes run in the
lowest voltage levels. Also, when the node number is less than
96, the energy consumption of the cluster powered by AEES is
more than that of the same cluster supported by MEG. This is
becausewhen a real-time cluster is heavily loaded, our AEES firstly
gives high priority to deal with schedulability at the cost of energy
efficiency (see Fig. 3(a), AEES accepts more tasks than MEG does
when the number of nodes is less than 96). Unfortunately, MEG is
unable to offer high schedulability when the cluster’s load is high.

Fig. 3(c) reveals that the energy consumption per task decreases
first and then increases with the increase of the number of
nodes. This is because when the number of nodes increases, the
cluster’s load becomes relatively light, which allows the tasks to be
completed at lower voltage levels to conserve energy. On the other
hand, when the number of nodes is large, a handful of computing
nodes are sitting idle. Therefore, the energy consumption per
task increases due to idle energy consumption caused by an
increasing number of idle nodes. Fig. 3(c) shows thatMEHV has the
highest energy consumption per task; MELV has the least energy
consumption per task. When the number of nodes is less than 96,
a cluster under the AEES strategy consumes more energy than the
same cluster under MEG. We attribute this trend to the fact that
AEES adaptively adjusts voltage levels to improve schedulability
when system load is heavy. When it comes to a large-scale
cluster (e.g., the number of nodes is larger than 96), the energy
efficiency of AEES is improved (i.e., AEES is as energy efficient
as MEG). The experimental results demonstrate that AEES can



X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 759
adaptively decrease energy dissipation on heterogeneous clusters
while achieving high schedulability.

Fig. 3(d) illustrates that AEES consistently outperforms the
others in terms of the CPU utilization, meaning that AEES is able
to efficiently utilize the CPU resources. MEHV has the worst CPU
utilization, because MEHV uses the highest voltage yielding more
idle time slots than the other schemes do. In contrast, AEES strives
to lower voltage levels while guaranteeing tasks’ deadlines. Thus,
tasks scheduled by AEES have longer execution time with higher
CPU utilization.

In this experiment, we set the number of tasks is a constant
while varying the number of computing nodes. This experiment
is equivalent to an experiment where the number of tasks is varied
with a fixed number of nodes. Due to the space limit, we do not
show the impact of the number of tasks onperformance and energy
efficiency. It is intuitive to show that the number of tasks can
affect energy efficiency, because increasing thenumber of tasks can
increase energy consumed by the tasks.

5.3. Workload conditions

To examine the performance sensitivities of the four algorithms
or strategies to the arrival rate of tasks, in this set of experiments,
we vary the parameter intervalTime from 0.1 to 1.5 with increment
of 0.1. Fig. 4 plots the performance ofMEG,MELV,MEHV, and AEES.

Fig. 4(a) shows that when the parameter intervalTime is small,
the high arrival ratemakes a large number of tasks wait in the local
queues. Thus, some late arriving tasks may miss their deadlines.
With the increase of intervalTime, the number of tasks waiting in
local queues decreases and tasks have earlier start times. Such light
workload gives rise to a high guarantee ratio. Again, MEHV and
MELV have the highest and lowest guarantee ratios, respectively.
The guarantee ratio of AEES is higher than that of MEG. This result
is consistent with that plotted in Fig. 3(a).

Fig. 4(b) reveals that the MEHV-enabled cluster consumes the
most energy and the MELV-enable cluster is the most energy
efficient one. It should be noted that our AEES has unique
features. For example, when the parameter intervalTime is less
than 0.3 (i.e., the system is heavily loaded), AEES makes an effort
to improve the schedulability of clusters by increasing voltage
levels for waiting tasks in local queues, whereas MEG has no
intention to adjust the voltages for real-time tasks in the local
queues. Therefore, compared with MEG, AEES causes clusters to
consume more energy. When tasks arrive rate is low (i.e., light
system load), AEES dynamically degrades the voltage supply to
reduce energy consumption, thus, we find that AEES has similar
energy consumption with MEG. The total energy caused by the
AEES-enabled cluster increases again when intervalTime is larger
than 0.9, because idle time is increasing when the workload
becomes very light. An increasing idle time contributes the slightly
increased energy consumption.

Fig. 4(c) shows that MEHV and MELV have the highest and
lowest energy consumption per task. Again, we observe that AEES
has good adaptivity in the sense that AEES trades low energy
efficiency for high schedulability under heavy load. When the
cluster’s load becomes lighter, AEES favors high energy efficiency
against guarantee ratio. An interesting result plotted in Fig. 4(c) is
that the four schemes lead to more energy consumption per task
when the intervalTime is large enough. This is because with the
increasing arrival rate, the cluster has longer active times. Thus, the
total energy consumption increases. However, the accepted task
number has little impact to make this phenomenon happen. AEES
causes more energy than MEG when intervalTime is smaller than
0.9, which can be attributed to the high schedulability of AEES.

Fig. 4(d) shows that AEES has the best performance in terms of
CPUutilization. This is especially truewhen task arrival rate is high.
The results are consistent with those plotted in Fig. 3(d).
5.4. Deadlines

The goal of this experiment is to investigate the impacts of task
deadlines on the performance of MEG, MELV, MEHV, and AEES.We
vary the parameter TBase from 1.1 to 3.5. Fig. 5 plots performances
of the four policies.

It is observed from Fig. 5(a) that with the increase of TBase
(i.e., deadlines become looser), the guarantee ratios of MEG, MELV,
MEHV, and AEES increase accordingly. This trend is true because
the time constraints are not very tight and tasks can be finished
at later timing instants. In addition, we observe from Fig. 5(a)
that MEHV and MELV have the highest guarantee ratio and lowest
guarantee ratio, respectively. AEES’s guarantee ratio is higher than
that of MEG. This result is consistent with the one observed from
the previous experiments (see Figs 3(a) and 4(a)).

MEHV has the worst energy efficiency (see Fig. 5(b)), although
MEHV’s guarantee ratio is the highest (see Fig. 5(a)). Basically, all
the schemes keep the similar total energy consumption regardless
of the change of task deadlines. The reason is that the total
execution time is increased due to the long queues of nodes
after the last task arrives, but the voltages are degraded because
of looser deadlines. Therefore, the total energy consumption
remains unchanged. In addition, we observe that unlikeMEG, AEES
always makes clusters consume more energy consumption. This
observation is reasonable under highworkload conditions, because
AEES tries to accept more real-time tasks at the cost of energy.

Results plotted in Fig. 5(a) and (b) can be used to explain the
trend observed in Fig. 5(c). The total energy consumption does not
dramatically change, but the number of accepted tasks increases
when the deadlines of tasks become looser. As a result, the energy
consumption per task decreases accordingly.

Fig. 5(d) shows that AEES has the similar performance in
terms of CPU utilization with MEG, and is better than MEHV
and MELV. The results indicate that AEES can efficiently use the
CPU resources in the cluster while making best trade-off between
energy efficiency and schedulability.

5.5. Task size
We evaluate in this set of experiments the performance impact

of task size. Three tested configurations of task size can be found
in Table 3. We assume that the distribution of the size is a normal
distribution. Fig. 6 shows the performances of MEG, MELV, MEHV,
and AEES under small, middle, and large task sizes.

It is easy to conclude from Fig. 6(a) that when the task size
is small, all the tested strategies have the 100% guarantee ratios
due to short execution times. When it comes to median and large
tasks, MEHV always offers the highest guarantee ratio; MELV’s
guarantee ratio is lowest. This is becauseMEHVandMELVare static
algorithms and; therefore, they cannot adjust voltages according
to the cluster’s load. AEES has higher guarantee ratio than MEG,
because when the cluster is heavily loaded, AEES can improve the
schedulability at the cost of energy efficiency.

Fig. 6(b) illustrates the cluster’s total energy consumptionwhen
the task size is small. Under this light workload, MELV, MEG, and
AEES have similar energy efficiency except MEHV. This means that
AEES can conserve energy at light system load. However, when the
tasks have medium or large size (i.e., heavy system load), AEES
increases energy consumption to improve system schedulability.
Although MEG makes clusters consume less energy than AEES
does when task sizes are medium or large, MEG’s schedulability
is obviously inferior to that of AEES.

Energy consumption per task shown in Fig. 6(c) proves that the
adaptivity of AEES is high. These results are consistent with the
ones plotted in Figs. 4(c) and 5(c).

Fig. 6(d) proves that AEES has better CPU utilization than all
the other scheduling strategies, indicating AEES outperforms the
alternative solutions regardless of task size.



760 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
a b

c d

Fig. 4. Performance impact of arrival rate.
a b

c d

Fig. 5. Performance impact of task deadline.
5.6. Heterogeneity levels

In this experiment, let us investigate the impact of node hetero-
geneity on the cluster performance. Specifically, we evaluate three
node heterogeneity degrees: small heterogeneity, middle hetero-
geneity, and large heterogeneity. Fig. 7 depicts the performances of
MEG, MELV, MEHV, and AEES under three different heterogeneity
levels.
Fig. 7(a) shows that the guarantee ratios of all the evaluated
strategies are slightly enhanced with the increasing heterogeneity
level. This can be attributed to the fact that the increased tasks
accepted by nodes whose processing power increased exceed
the decreased tasks accepted by nodes whose processing power
decreased. Moreover, we realize that our AEES always has higher
guarantee ratio than the other schemes except MEHV regardless
of the heterogeneity level. This is because AEES can adjust the
voltages of the new tasks as well as waiting tasks to improve



X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 761
a b

c d

Fig. 6. Performance impact of task size.
a b

c d

Fig. 7. Performance impact of node heterogeneity.
schedulability, whereas MEHV holds the highest guarantee ratio
by consuming the most energy without any adaptivity.

Fig. 7(b) indicates that when the heterogeneity level is
small, AEES leads to more total energy consumption in the
cluster than MELV and MEG do. A low heterogeneity level
means low processing performance and; thus, AEES strives to
increase energy consumption to improve schedulability. However,
when the heterogeneity level becomes high, the cluster has
higher processing capability, AEES is able to reduce energy
consumption as much as possible. Therefore, we can observe that
the performance difference among AEES, MEG and MELV becomes
smaller than that under low heterogeneity level. Additionally,
MEG has better energy efficiency than AEES, but AEES offers high
schedulability under heavy workload.

Fig. 7(c) shows when the cluster has lower processing power,
AEES treats the schedulability as the primary scheduling goal. Thus,
the energy consumption per task of AEES is the highest. However,
when the processing power becomes high, AEES can efficiently



762 X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763
decrease energy consumption to achieve the best energy efficiency
compared with the other three schemes.

Fig. 7(d) shows that AEES has the best performance in terms of
CPU utilization. The implication behind these results is that AEES
can demonstrate its strength in heterogeneous clusters where its
node heterogeneity varies.

6. Conclusions and future work

Wepresented in this paper a novel adaptive scheduling strategy
or AEES for aperiodic, independent real-time tasks on DVS-
enabled heterogeneous clusters. AEES seamlessly integrates two
algorithms—EEGS and LVA. EEGS is implemented in the scheduler
that is able to adaptively adjust voltages according to system load
to guarantee deadlines of all waiting tasks in local queues. LVA,
implemented in the local adjuster, can decrease voltage levels of
waiting tasks to conserve energy when a task is scheduled and
dispatched to a computing node. With EEGS and LVA in place,
AEES efficiently improves the adaptivity and schedulability of real-
time heterogeneous clusters. The extensive simulation studies
using practical system parameters show that AEES is an excellent
energy-efficient scheduling strategy designed for DVS-enabled
heterogeneous clusters in dynamic environments.

The AEES algorithm and our simulation studies are the first step
toward the development of energy-efficient real-time scheduling
mechanisms for heterogeneous clusters. In one of our future
studies, we plan to develop a prototype using a real-world
heterogeneous cluster to test the effectiveness of our proposed
energy-efficient scheduling algorithm.

With the prototype system in place, we will address the
following five issues in our future studies: First, we will extend
our AEES strategy to deal with other computing resources in
addition to CPU. Other resources to be considered includememory,
network bandwidth, and data storage systems. Second, we will
implement a new schedulingmechanism inwhich communication
and dispatching times are taken into account. Third, we plan to
investigate energy-efficient and fault-tolerant scheduling schemes
for real-time heterogeneous clusters. Fourth, we will consider
a way of scheduling real-time tasks in a batch manner. Last,
we will integrate the Ant Colony algorithm and the Particle
Swarm algorithmwith our AEES algorithm to further optimize our
scheduling objectives.

Acknowledgments

The authors are grateful to the anonymous referees for
their insightful suggestions and comments. This research was
supported by the National Natural Science Foundation of China
under Grant No. 61104180, the National Basic Research Program
of China under Grant No. 6136101, the National High-Tech
Research and Development Plan of China under Grant No.
2008AA7070412, theUSNational Science Foundation underGrants
CCF-0845257 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR),
CCF-0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251
(CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFS).

References

[1] http://www.transmeta.com.
[2] R. Bianchini, R. Rajamony, Power and energy management for server systems,

Computer 37 (11) (2004) 68–74.
[3] T.D. Braun, H.J. Siegal, N. Beck, et al. A comparison study of static mapping

heuristics for a class of meta-tasks on heterogeneous computing systems,
in: Proc. 8th Heterogeneous Computing Workshop, HCW 1999, April 1999,
pp. 15–29.
[4] H.Y. Chang, K.C. Huang, C.Y. Shen, S.C. Tcheng, C.Y. Chou, Parallel computation
of a weathermodel in a cluster environment, J. Comput.-Aided Civ. Infrastruct.
Eng. 16 (5) (2001) 365–373.

[5] http://www.arm.com.
[6] G. Donoho, Building aweb service to provide real-time stock quotes, in:MCAD.

Net, February 2004.
[7] W. Feng, Making a case for efficient supercomputing, ACM Queue 1 (7) (2003)

54–64.
[8] A. Gara, A. Blumrich, D. Chen, G.L.-T. Chiu, P. Coteus, M. Giampapa, R.A. Haring,

P. Heidelberger, D. Hoenicke, G.V. Kopcsay, T.A. Liebsch, M. Ohmacht, B.D.
Steinmacher-Burow, T. Takken, P. Vranas, Overview of the blue Gene/L system
architecture, IBM J. Res. Dev. 49 (2–3) (2005) 195–212.

[9] O. González, H. Shrikumar, J.A. Stankovic, K. Ramamritham, Adaptive fault
tolerance and graceful degradation under dynamic hard real-time scheduling,
in: Proc. 18th IEEE Real-Time Systems Symp., RTSS 1997, December 1997, pp.
79–89.

[10] C.C. Han, K.G. Shin, J. Wu, A fault-tolerant scheduling algorithm for real-time
periodic taskswith possible software faults, IEEE Trans. Comput. 52 (3) (2003).

[11] L. Hu, H. Jin, X. Liao, X. Xiong, H. Liu, Magnet: a novel scheduling policy for
power reduction in clusterwith virtualmachines, in: Proc. 2008 IEEE Int’l Conf.
Cluster Computing, CLUSTER 2008, September 2008, pp. 13–22.

[12] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, C.L. Wang, Heterogeneous
computing: challenges and opportunities, IEEE Comput. 26 (6) (1993) 18–27.

[13] K.H. Kim, R. Buyya, J. Kim, Power-aware scheduling of bag-of-tasks appli-
cations with deadline constraints on DVS-enabled clusters, in: Proc. 7th
IEEE/ACM Int’l Symp. Cluster Computing and the Grid, CCGrid 2007,May 2007,
pp. 541–548.

[14] J. Kim, H.J. Siegel, A.A. Maciejewski, R. Eigenmann, Dynamic resource
management in energy constrained heterogeneous computing systems using
voltage scaling, IEEE Trans. Parallel Distrib. Syst. 19 (11) (2008) 1445–1457.

[15] G. Klimeck, M. McAuley, R. Deen, F. Oyafuso, G. Yagi, E.M. DeJong, T.A. Cwik,
Near real-time parallel image processing using cluster computers, in: Proc. 1st
Int’l Conf. SpaceMission Challenges for Information Technology, SMC-IT 2003,
July 2003, pp. 13–16.

[16] R. Kotla, S. Ghiasi, T. Keller, F. Rawson, Scheduling processor voltage and
frequency in server and cluster system, in: Proc. 19th Int’l Symp. Parallel and
Distributed Processing, IPDPS 2005, April 2005, pp. 234–241.

[17] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv. 31 (4) (1999) 406–471.

[18] G. Laszewski, L. Wang, A.J. Younge, X. He, Power-aware scheduling of
virtual machines in DVFS-enabled clusters, in: Proc. IEEE Int’l Conf. Cluster
Computing, August 2009, pp. 1–10.

[19] W. Li, L. Kavi, R. Akl, A non-preemptive scheduling algorithm for soft real-time
systems, J. Comput. Electr. Eng. 33 (1) (2007) 12–29.

[20] C. Liu, X. Qin, S. Li, PASS: power-aware scheduling of mixed applications
with deadline constraints on clusters, in: Proc. 17th Int’l Conf. Computer
Communications and Networks, ICCCN 2008, August 2008.

[21] http://www.dostor.com.
[22] G. Magklis, G. Semeraro, D. Albonesi, S. Dropsho, S. Dwarkadas, M.

Scott, Dynamic frequency and voltage scaling for a multiple-clock-domain
microprocessor, IEEE Micro 23 (6) (2003) 62–68.

[23] G. Manimaran, C.S.R. Murthy, A fault-tolerant dynamic scheduling algorithm
for multiprocessor real-time systems and its analysis, IEEE Trans. Parallel
Distrib. Syst. 9 (11) (1998) 1137–1152.

[24] M. Marinoni, G. Buttazzo, Adaptive DVS management through elastic
scheduling, in: Proc. 10th IEEE Int’l Conf. Emerging Technologies and Factory
Automation, ETFA 2005, September 2005, pp. 19–22.

[25] J. Markoff, S. Lohr, Intel’s huge bet turns iffy, N. Y. Times Tech. Sec. Sec. 3 (2002)
1.

[26] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, TOP 500 supercomputing site.
http://www.top500.org/, November 2009.

[27] M. Naedele, Fault-tolerant real-time scheduling under execution time
constraints, in: Proc. 6th Int’l Conf. Real-Time Computing Systems and
Applications, RTCSA 1999, December 1999, pp. 392–395.

[28] V. Nélis, J. Goossens, R. Devillers, D.Milojevic, N. Navet, Power-aware real-time
scheduling upon identical multiprocessor platforms, in: Proc. 2008 IEEE Int’l
Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2008,
June 2008, pp. 209–216.

[29] X. Qin, H. Jiang, A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems, J. Parallel Comput. 32
(5) (2006) 331–356.

[30] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, Z. Lu, Power-aware QoS
management inweb servers, in: Proc. 24th IEEE Int’l Real-Time Systems Symp.,
RTSS 2003, pp. 63–72, December 2003.

[31] H.J. Siegel, H.G. Dietz, J.K. Antonio, Software support for heterogeneous
computing, in: The Computer Science and Engineering Handbook, CRC Press,
USA, 1997.

[32] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (3)
(1975) 384–393.

[33] J. Wilkins, H.F. Sheikh, I. Ahmad, S.F. Khan, S. Rajput, Optimizing performance
and energy in computational grids using non-cooperative game theory,
in: Workshop in Work in Progress (WIPGC) in Conjunction with the 1st Int’l
Conf. Green Computing, IGCC 2010, August 2010, pp. 343–355.

[34] T. Xie, X. Qin, Scheduling security-critical real-time applications on clusters,
IEEE Trans. Comput. 55 (7) (2006) 864–879.

http://www.transmeta.com
http://www.arm.com
http://www.dostor.com
http://www.top500.org/


X. Zhu et al. / J. Parallel Distrib. Comput. 72 (2012) 751–763 763
[35] T. Xie, X. Qin, M. Nijim, Solving energy-latency dilemma: task allocation for
parallel applications in heterogeneous embedded systems, in: Proc. 2006 Int’l
Conf. Parallel Processing, ICPP 2006, August 2006, pp. 12–22.

[36] M. Youssef, M. Younis, K. Arisha, A constrained shortest-path energy-aware
routing algorithm for wireless sensor networks, in: Proc. IEEE Wireless
Communication and Networks Conf., WCNC 2002, March 2002, pp. 129–136.

[37] Y. Yu, V.K. Prasanna, Power-aware resource allocation for independent tasks
in heterogeneous real-time systems, in: Proc. 9th Int’l Conf. Parallel and
Distributed Systems, ICPADS 2002, December 2002, pp. 341–348.

[38] K. Zheng, J. Wang, L. Huang, G. Decarreau, Open wireless software radio on
common PC, in: Proc. 17th Ann. IEEE Int’l Symp. Personal, Indoor and Mobile
Radio Communication, PIMRC 2006, September 2006, pp. 1–5.

[39] X. Zhu, P. Lu, A two-phase scheduling strategy for real-time applications with
security requirements on heterogeneous clusters, J. Comput. Electr. Eng. 35
(2009) 980–993.

[40] X. Zhu, P. Lu, Multi-dimensional scheduling for real-time tasks on heteroge-
neous clusters, J. Comput. Sci. Tech. 24 (3) (2009) 434–446.

[41] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation inmulti-processor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[42] X. Zhu, X. Qin, M. Qiu, QoS-aware fault-tolerant scheduling for real-time tasks
on heterogeneous clusters, IEEE Trans. Comput. 60 (5) (2011) 800–812.

[43] X. Zhu, J. Zhu, M. Ma, D. Qiu, SAQA: a self-adaptive QoS-aware scheduling
algorithm for real-time tasks on heterogeneous clusters, in: Proc. 10th
IEEE/ACM Int’l Conf. Cluster, Cloud and Grid Computing, CCGrid 2010, May
2010, pp. 224–232.

[44] Z. Zong, X. Qin, X. Ruan, K. Bellam, Energy-efficient scheduling for parallel
applications running on heterogeneous clusters, in: Proc. 36th Int’l Conf.
Parallel Processing, ICPP 2007, September 2007, pp. 19–26.

Xiaomin Zhu received the B.S. and M.S. degrees in com-
puter science from Liaoning Technical University, Liaon-
ing, China, in 2001 and 2004, respectively, and Ph.D.
degree in computer science from FudanUniversity, Shang-
hai, China, in 2009. He is currently an assistant professor in
the School of Information System andManagement at Na-
tional University of Defense Technology, Changsha, China.
His research interests are green computing, cluster com-
puting, fault-tolerant computing, and performance evalu-
ation. He is amember of the IEEE, the IEEE Communication
Society, and the ACM.
Chuan He received the B. S. and M. S. degrees in military
operations research from Air Defense Forces Command
Academy, Zhengzhou, China, in 2007 and 2010, respec-
tively. He is currently a Ph. D. candidate in the School of
Information System and Management at National Univer-
sity of Defense Technology, Changsha, China. His research
interests include parallel and distributed computing, real-
time systems and scheduling design.

Kenli Li received the Ph.D. degree in computer science
from Huazhong University of Science and Technology,
China, in 2003, and the M.S. degree in mathematics from
Central South University, China, in 2000. He has been
a visiting scholar at University of Illinois at Champaign
and Urbana from 2004 to 2005. He is now a professor of
Computer science and Technology at HunanUniversity. He
is a senior member of CCF. His major research includes
parallel computing, Grid and Cloud computing, and DNA
computers.

Xiao Qin received the B.S. and M.S. degrees in computer
science fromHuazhongUniversity of Science and Technol-
ogy, Wuhan, China, in 1996 and 1999, respectively, and
the Ph.D. degree in computer science from the Univer-
sity of Nebraska-Lincoln in 2004. He is currently an asso-
ciate professor in theDepartment of Computer Science and
Software Engineering at Auburn University. Prior to join-
ing Auburn University in 2007, he had been an assistant
professor with New Mexico Institute of Mining and Tech-
nology (NewMexico Tech) for three years. His research in-
terests include parallel and distributed systems, real-time

computing, storage systems, fault tolerance, and performance evaluation. He had
served as a subject area editor of IEEE Distributed System Online (2000–2001). He
has been on the program committees of various international conferences, includ-
ing IEEE Cluster, IEEE IPCCC, and ICPP. He is a member of the IEEE and the IEEE
Computer Society.


	Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters
	Introduction
	Related work
	System model
	Energy-efficient real-time scheduling architecture
	Task model
	Energy consumption model

	The scheduling AEES strategy
	The EEGS algorithm
	The LVA algorithm

	Performance evaluation
	Simulation method and parameters
	Scalability
	Workload conditions
	Deadlines
	Task size
	Heterogeneity levels

	Conclusions and future work
	Acknowledgments
	References


