
Evaluation of Spatial Keyword Queries with Partial
Result Support on Spatial Networks

Ji Zhang1, Wei-Shinn Ku1, Xunfei Jiang1, Xiao Qin1, Yu-Ling Hsueh2

1Dept. of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
2Dept. of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan

Email: {jizhang, weishinn, xunfei, xqin}@auburn.edu, hsueh@cs.ccu.edu.tw

Abstract—Numerous geographic information system applica-
tions need to retrieve spatial objects which bear user specified
keywords close to a given location. In this research, we present
efficient approaches to answer spatial keyword queries on spatial
networks. In particular, we formally introduce definitions of
Spatial Keyword k Nearest Neighbor (SKkNN) and Spatial
Keyword Range (SKR) queries. Then, we present a framework
of a spatial keyword query evaluation system which is comprised
of Keyword Constraint Filter (KCF), Keyword and Spatial
Refinement (KSR), and the spatial keyword ranker. KCF employs
an inverted index to calculate keyword relevancy of spatial
objects, and KSR refines intermediate results by considering both
spatial and keyword constraints with the spatial keyword ranker.
In addition, we design novel algorithms for evaluating SKkNN
and SKR queries. These algorithms employ the inverted index
technique, shortest path search algorithms, and network Voronoi
diagrams. Our extensive simulations show that the proposed
SKkNN and SKR algorithms can answer spatial keyword queries
effectively and efficiently.

I. INTRODUCTION

A Spatial Keyword (SK) query is an approach for search-
ing qualified spatial objects by considering both the query
requester’s location and user specified keywords. Taking both
spatial and keyword requirements into account, the goal of a
spatial keyword query is to efficiently find results that satisfy
all the conditions of a search. However, most existing solutions
for SK queries are designed based on Euclidean distance [2],
[4], [13], [11], which is not realistic since most users move
on spatial networks. Moreover, most current approaches for
SK queries are limited to finding objects that fully match the
given keywords. Nevertheless, the objects with fully matched
keywords could be far away from the query point. In this
research, we design novel SK query techniques based on
spatial networks. In addition, we take both fully and partially
matched query results into account in the process of keyword
searching. This new SK query mechanism enables users to
not only retrieve qualified results on spatial networks, but also
obtain partially matched objects when there are not enough
fully matched results in the vicinity of the requester.

Figure 1 illustrates an example: a tourist who flies to
Atlanta may want to search for two hotels which provide both
“Internet” and “Breakfast” amenities and have the shortest
driving distance to the Atlanta airport. In addition, the tourist
may also search for all the hotels which are within 10 miles of
the airport and provide the two amenities in order to compare
the hotels’ reviews and prices. For retrieving the qualified

4 miles

5 miles

6 miles

4 miles

5 miles
3 miles

5 miles

Internet
Breakfast

5

Pool
Fitness

3

1

Internet
Breakfast

6

Parking
Fitness
Breakfast

4

Internet
Parking

2

Internet
Fitness
Breakfast

3 miles

Fig. 1. A sample spatial network of hotels close to an airport.

hotels, the tourist will launch a Spatial Keyword k Nearest
Neighbor (SKkNN) query with ranking parameters for the
first search; the query results are hotels 1 and 3. A Spatial
Keyword Range (SKR) query will be executed for the second
inquiry, and the answers are hotels 1, 3, and 6. In this paper, we
focus on solving the two aforementioned spatial query types
by devising three novel solutions which employ the inverted
index technique, shortest path search algorithms, and network
Voronoi diagrams. Particularly, the inverted index is used to
maintain the relationships between spatial objects and their
attached keywords for quickly retrieving spatial objects whose
features match the given keywords. In addition, we propose
a network expansion-based approach and a Voronoi diagram-
based approach to efficiently answer SKkNN queries on spatial
networks. The contributions of this study are as follows:

1) We provide formal definitions of spatial keyword kNN
and range queries on spatial networks.

2) We develop two novel approaches for efficiently pro-
cessing SKkNN query and one approach for SKR query
on spatial networks.

3) Our SKkNN solution can return partially matched query
results based on the output of the spatial keyword ranker.

4) We evaluate the performance of the proposed SKkNN
and SKR algorithms through extensive experiments with
both real-world and synthetic data sets.

The rest of this paper is organized as follows. The proposed
query types are formally defined in Section II. In Section III,
we introduce the spatial keyword query evaluation algorithms.
Due to the space limitation, the experimental results can
be found in [12]. Section IV concludes the paper with a
discussion of future work.

2013 IEEE 14th International Conference on Mobile Data Management

978-0-7695-4973-6/13 $26.00 © 2013 IEEE

DOI 10.1109/MDM.2013.41

279

II. QUERY TYPE DEFINITION AND BACKGROUND

A. Foundation

In this subsection, we introduce the foundation of spatial
keyword queries. In an SK query, a spatial object p is defined
as a pair <l, t>, where l is a location in the search space and t
is a text description (e.g., amenities and features of a hotel) of
the corresponding object. Table I summarizes notations used
in this paper.

1) Distance on Spatial Networks: Spatial networks are
composed of undirected weighted graphs G = (V,E), where
V is a set of vertices and E is a set of edges. In general,
the weight of each edge is determined by a metric measured
in physical distance or time cost for traveling the road seg-
ment [6], [7]. The distance between two objects Dn(., .) on
spatial networks is the summation of all segment weights on
the shortest path connecting the two objects.

2) Matched Keywords: Matched-keywords is a set of key-
words which are in both sets of p.t and K, where p.t is the
text description of a given spatial object, and K is a set of
keywords specified by a user.

MK(p,K) = { ki ∈ K | ki ∈ p.t } (1)

3) Fully Matched Keyword Search: With a given data set,
the purpose of Fully Matched Keyword Search (FMKS) is
to find objects whose descriptions completely match with a
set of keywords K specified by a requester. As shown in
Equation (2), the descriptions of search results of FMKS may
be either identical to K or a superset of K.

FMKS(P,K) = { pi ∈ P |K ⊆ pi.t } (2)

4) Partially Matched Keyword Search: With a given data
set, the purpose of Partially Matched Keyword Search (PMKS)
is to retrieve objects which match at least one keyword in the
user defined keyword set as shown in Equation (3).

PMKS(P,K) = { pi ∈ P | ∃kj ∈ pi.t and kj ∈ K } (3)

5) Weighted Keyword Relevancy: We use a weight function
TR to calculate keyword relevancy of a specific spatial object
p [10]. We assume that each keyword ki in a keyword set K is
assigned with a weight w(ki), which indicates its importance

TABLE I Symbolic notations.
Symbol Meaning

P A set of spatial objects
Q A spatial keyword query
K A set of search keywords
q The location of a requester
k The requested number of objects in the result of

a SKkNN query
r The search range of a SKR query
s The ranking score of an object
|S| The number of elements in set S

d(., .) The Euclidean distance between two points
Dn(., .) The shortest network distance between two points

R The result set of a query
E The explored region of a VDkNN query

in queries. Consequently, given an object p and a keyword set
K, we have the following equation:

TR(p,K) =
∑

ki∈MK(p,K)

w(ki) (4)

For special cases where all keywords share identical weight,
Equation (5) can be derived from Equation (4) where w(ki) =
1 and |MK(p,K)| is the number of keywords in MK(p,K).

TR(p,K) =
∑

ki∈MK(p,K)

1 = |MK(p,K)| (5)

B. Spatial Keyword Ranker

A spatial keyword ranker is designed to determine the
ranking of a given spatial object in a SKkNN query by
employing both metrics, spatial network distance and keyword
relevancy. We utilize a ranking function RK to compute how
well an object matches an SKkNN query. Given a query Q <l,
K> and an object p <l, t>, the ranking function is defined
as follows:

RK(Q, p) = θ1 · TR(p.t,Q.K)− θ2 ·Dn(p.l, Q.l) (6)
In Equation (6), θ1 and θ2 are parameters of each part of the

function [4], and their values depend on user preferences. For
example, if a user is more concerned about keyword match,
θ1 can be set to a larger value than θ2 in order to make
keyword relevancy dominant in the RK function. Moreover,
intuitively, an object with either a shorter distance or a higher
keyword relevancy would have a higher ranking in query
results. Therefore, TR has a positive influence on the RK
function while Dn has a negative one.

C. Spatial Keyword kNN Queries

Based on the spatial keyword ranker, the purpose of a spatial
keyword kNN query is to retrieve k objects which have top k
ranking values.

Definition Given an SKkNN query Q and an object set P ,
we define SKkNN(P , Q, k) as follows:

RK(pi) ≥ RK(pj) where pi ∈ SKkNN(P,Q, k) ∧
pj ∈ P\{SKkNN(P,Q, k)} ∧ |SKkNN(P,Q, k)| = k

(7)
D. Spatial Keyword Range Queries

An SK Range query finds all the objects that fully match
the given keywords within a user specified distance.

Definition Let P be a set of objects. Given a query location
q, a search range r, and a set of keywords K, an SK range
query is defined as follows:

SKR(P, q, r,K) = {pi ∈ P |K ⊆ pi.t ∧Dn(pi, q) ≤ r}
(8)

III. SYSTEM DESIGN

In this section, we design a spatial keyword query evaluation
system which is comprised of Keyword Constraint Filter
(KCF), Keyword and Spatial Refinement (KSR), and the
spatial keyword ranker.

280

A. Framework of Query Evaluation

Before presenting the details of our spatial keyword query
algorithms, we briefly introduce the framework of our system.
As illustrated in Figure 2, the spatial keyword query evaluation
system comprises three main components. The system receives
both spatial data sets and spatial keyword constraints as inputs
and produces results after a two-step computation.

A filter-and-refine strategy is employed to answer SK
queries. The two key steps are KCF and KSR. KCF receives
spatial data sets and keyword constraints and filters out objects
that do not match any user specified keyword. Because spatial
network distance computation is expensive, we do not take
spatial constraints into account in this step. The main purpose
of KCF is to reduce the number of candidate objects in order
to decrease computation costs in the next step. In the second
step, KSR receives inputs from KCF and refines the interme-
diate results based on both keyword and spatial constraints.
Afterward, KSR returns the qualified objects sorted by their
ranking scores provided by the ranker.

B. Keyword Constraint Filter

1) Inverted Indexing Structure: Inverted indexes are pri-
marily designed to support keyword searches from a set of
text files [8]. In our system, we utilize inverted indexes to
search for objects related to specific keywords from spatial
databases. An index of terms is maintained in our system
where each term is a unique keyword, and each postings list
contains a number of object identifiers. Each postings list is
in sorted order (based on object identifiers) to facilitate the
efficient search of objects related to a specific keyword. If
an object has multiple keywords, its identifier will appear in
each corresponding postings list. In addition, inverted indexes
are independent of other dedicated index structures, such as
R-trees or grids, in spatial databases.

2) Keyword Match Algorithm: Based on the proposed prob-
lem, we utilize a keyword match algorithm by employing
the inverted index-based merge technique [8] to calculate the
keyword relevancy of spatial objects. With the keyword match
algorithm, we measure the keyword relevancy of a spatial
object by counting the number of matched-keywords. The
more matched-keywords an object has, the higher its keyword
relevancy is. This algorithm receives an inverted index and
a set of keywords as input parameters and then returns the
keyword relevancy of objects that match with at least one
keyword.

SKQ Evaluation System

Keyword
Constraint Filter

Keyword and
Spatial Refine

Ranker

Results

Data Sets

Spatial
Constraints

Keyword
Constraints

SK Query

Fig. 2. Framework of the proposed system.

C. Network Expansion-Based SKkNN Query Algorithm

In this section, we explain our algorithm for processing
spatial keyword k nearest neighbor queries based on network
expansion techniques [1], [9]. The algorithm receives an
inverted index, a query point q, the value of k, and a set of
keywords K as input parameters and returns the top k objects
by considering both keyword and spatial constraints.

For searching the shortest path between objects on spatial
networks, Dijkstra’s algorithm-based approaches [1], [3] have
been widely utilized in various applications. Given a source
point and a group of destinations, the algorithm recursively
expands the unvisited paths and records distances of interme-
diate nodes. During the search, a distance record of a node
will be updated if there is a shorter path than the present one.
Such a process is continued until all the destinations have
arrived and the distances of all other possible paths are longer
than their current distances. In addition, a solution named
Incremental Network Expansion (INE) is presented in [9] by
extending Dijkstra’s algorithm to compute k nearest neighbors
in a network space. Specifically, INE first locates the network
segment ei, which covers the query point q, and retrieves all
objects on ei. If any object pi is found on ei, pi will be inserted
into the result set. Furthermore, the endpoint of ei, which is
closer to q, will be expanded while the second endpoint of ei

will be placed in a priority queue Qp. INE repeats the process
by iteratively expanding the first node in Qp and inserting
newly discovered nodes into Qp until k objects are retrieved.

We develop a Network Expansion-based SKkNN (NEkNN)
solution by leveraging INE. There are two main steps in
the NEkNN algorithm. The first step is to filter out objects
which do not match any user specified keywords by employing
methods discussed in Section III-B. Then, we mark all the
remaining objects in the spatial network as candidates (e.g.,
set a bit of these points of interest). The next step is to
expand the network from q with INE and the ranking function
(Section II-B). When an object pi is discovered, NEkNN
verifies that pi is a candidate object. If pi is a candidate
object, NEkNN calculates its ranking score s by executing
the ranking function (otherwise the algorithm ignores pi).
Meanwhile, NEkNN keeps a result set R which is sorted in
descending order based on the ranking score. If R has fewer
than k objects and pi is a candidate object, pi is inserted into
R. Otherwise, NEkNN compares the ranking score of pi with
the last object pj in R. pj will be replaced by pi if pi.s > pj .s.

In addition, when |R| ≥ k, NEkNN calculates ranking
scores for network nodes as well by assuming that they match
all the search keywords to restrict the search space. In other
words, any spatial object pi, which is further away from q
than a network node ni, must have a lower ranking score than
ni even if pi matches all the search keywords. Consequently,
NEkNN iterates the search process until R contains k objects
and the next network node to be expanded in Qp has an equal
or lower ranking score than the last object in R.

281

D. Voronoi Diagram-Based SKkNN Query Algorithm

Although NEkNN is able to restrict the search space and
retrieve the top k objects based on their ranking scores, the
main limitation of NEkNN is that it has to explore a large
portion of the network when candidate objects are not densely
distributed in the network. Therefore, we propose a Voronoi
diagram-based SKkNN (VDkNN) solution by leveraging the
network Voronoi diagram (NVD) [5] to improve performance.
In order to be independent of the density and distribution of
candidate objects, we first partition the spatial network into
small regions by generating a network Voronoi diagram over
all the spatial objects (points of interest). Each cell of the NVD
is centered on one spatial object and contains the nodes that
are closest to the object based on network distance. Afterward,
for each NVD cell, we pre-compute the distances between all
the edges of the cell to its center as well as the distances
across the border points of the adjacent cells. Consequently,
for a new cell, we can quickly extend the region to the border
points without expanding the internal network segments.

With the NVD of the search space, for an SKkNN query,
VDkNN first filters out unqualified objects with methods
discussed in III-B and marks all the remaining objects in the
NVD as candidates. Then, VDkNN finds the network Voronoi
polygon NVP(pi) that contains q where pi is the generator
of the polygon. This step can be accomplished by employing
a spatial index (e.g., the R-tree), which is generated based
on the NVD cells. Next, we verify that pi is a candidate
object. If pi is a candidate object, VDkNN calculates its
ranking score by running the ranking function (Section II-B).
In addition, VDkNN maintains a result set R which is sorted
in descending order according to the ranking score. When
R contains fewer than k objects, newly discovered candidate
objects are inserted into R. However, if R already includes
k objects, VDkNN replaces the kth object pk of R when a
newly retrieved candidate object has a higher score than pk.
Also, VDkNN keeps a queue Qn which stores the neighbors
(adjacent cells) of pi and a set E which consists of all the
searched cells (i.e., E covers the current explored region).

Subsequently, VDkNN searches the adjacent cells of E (i.e.,
NVP(pi)) stored in Qn for the next candidate object. Every
time after a cell NVP(pj) been explored, the neighboring
generators of pj are unioned with Qn, NVP(pj) is unioned
with E, and R is updated according to the aforementioned
rules if pj is a candidate object. Moreover, when |R| ≥ k,
VDkNN calculates the ranking score of all the border points
of the current explored region by assuming that they match
all the search keywords to restrict the search space. VDkNN
iterates the search process until R contains k objects and the
ranking scores of all the border points of E are equal or worse
than the ranking score of the kth object in R (i.e., there will
not be any changes in R even if we search further).

E. Spatial Keyword Range Query Algorithm

As defined in Section II-D, given a query point q, a search
range r and a set of keywords K, SKR query retrieves all
the objects which fully match all the keywords within r. SKR

query first calculates the keyword relevancy of objects. Then, it
retrieves objects which fully match all the given keywords and
stores the qualified objects in R. Afterward, it calls Dijkstra’s
algorithm for calculating distances from q to all the candidate
objects. Finally, SKR query removes objects which are out of
the search range from R.

F. Experimental Validation

The worst-case running time of our NEkNN and SKR
approaches on a spatial network with a set of nodes N is
O(|K| ∗ |P |+ |N |2) by considering both the keyword match
and spatial network search subroutines. We evaluate the per-
formance of our solutions with both real-world and synthetic
data sets. Due to the space limitation, all experimental results
can be found in [12].

IV. CONCLUSION

Geographic information systems are becoming increasingly
sophisticated, and spatial keyword search represents an im-
portant class of queries. Most existing solutions for evaluating
spatial keyword queries are based on Euclidean distance and
cannot provide partially matched results. In this research, we
introduce efficient techniques to answer spatial keyword k
nearest neighbor and spatial keyword range queries on spatial
networks. We demonstrate the excellent performance of the
proposed algorithms through extensive simulations. For future
work, we plan to extend our spatial keyword query evaluation
framework to support other common spatial query types such
as spatial join, reverse nearest neighbor, spatial skyline, etc.

REFERENCES

[1] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[2] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword Search on Spatial
Databases. In ICDE, pages 656–665, 2008.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615,
1987.

[4] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing Spatial-
Keyword (SK) Queries in Geographic Information Retrieval (GIR)
Systems. In SSDBM, page 16, 2007.

[5] M. R. Kolahdouzan and C. Shahabi. Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases. In VLDB, pages 840–851, 2004.

[6] W.-S. Ku, R. Zimmermann, H. Wang, and T. Nguyen. Annatto: Adaptive
nearest neighbor queries in travel time networks. In MDM, page 50,
2006.

[7] W.-S. Ku, R. Zimmermann, H. Wang, and C.-N. Wan. Adaptive nearest
neighbor queries in travel time networks. In GIS, pages 210–219, 2005.

[8] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

[9] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in
Spatial Network Databases. In VLDB, pages 802–813, 2003.

[10] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient Continuously
Moving Top-K Spatial Keyword Query Processing. In ICDE, 2011.

[11] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.
Keyword Search in Spatial Databases: Towards Searching by Document.
In ICDE, pages 688–699, 2009.

[12] J. Zhang, W.-S. Ku, and X. Qin. Spatial Keyword Queries with Partial
Support on Spatial Networks. Technical Report CSSE13-01, February,
2013. http://www.eng.auburn.edu/files/acad depts/csse/csse technical
reports/csse13-01.pdf.

[13] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid Index
Structures for Location-based Web Search. In CIKM, pages 155–162,
2005.

282

