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Abstract— Molecular dynamics (MD) was widely used in
chemistry and bio molecules. Numerous attempts have been
made to accelerate MD simulations. CUDA enabled NVIDIA
Graphics processing units (GPUs) use as a general purpose
parallel computer chips as CPU. But it is not easy to port a
program to GPU. We present a highly extensible framework
for molecular dynamics simulation. And we discuss how
to accelerate the process of port to GPU. We introduce
how to find the performance battle and how to port the
time costly procedure to GPU. We discuss about how to
decrease the memory usage in GPU and how to improve the
maintenance of molecular dynamics simulation. At last, we
present the performance of linear and parallel simulation
with different number of molecules. Source codes can be
found at https://github.com/orlandoacevedo/MCGPU.
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1. Introduction

Graphics processing units(GPU) originated as specialized
hardware to accelerate graphical operations. GPUs typically
handle computation for graphics, such as 3D rendering
and ray tracing. General-purpose computing on graphics
processing units (GPGPU) is to perform computation in
applications traditionally handled by the central processing
unit (CPU). OpenCL is currently the dominant open general-
purpose GPU computing language. The dominant propri-
etary framework is Nvidia’s CUDA.

The CUDA architecture is built around a scalable array of
multi-threaded Streaming Multiprocessors (SMs). It gener-
ates multiple threads on multiple processors. It uses Single
Instruction Multiple Thread (SIMT) architecture. In contrast
with SIMD vector machines, SIMT enables programmers
to write thread-level parallel codes for independent, scalar
threads, as well as data-parallel codes for coordinated
threads.[1]

Molecular dynamic(MD) is widely used in chemistry and
biomolecules. It is a compute intensive application. This kind
of application can be accelerated by GPUs. There are several
different algorithms used in MD. Several previous studies
have implemented special algorithms on GPUs. Stone et
al. introduce GPU-accelerated applications of electrostatics,
molecular dynamics, and quantum chemistry[2]. ACEMD

is a commercially licensed biomolecular dynamics software
package; it is designed for execution on a single workstation
with multiple GPUs. It appears to be most effective for
system sizes of 10K to 100K atoms[3]. Folding@home is an
early project developed on GPUs for molecular dynamics.
They worked with ATI since 2005, and they have ported
and optimized with CUDA for NVIDIA hardware. These
kernels are also deployed in OPENMM software library. [4].
NAMD is a parallel molecular dynamics code designed for
high-performance simulation of large biomolecular systems.
It scales to hundreds of processors on high-end parallel
platforms[5]. HOOMD is a freely available software de-
signed for GPU execution [6]. It speeds up of over a factor
of 30 compared to LAMMPS[7]. Elsen et al., implemented a
simple implicit solvent model (distance dependent dielectric)
[8]. Stone et al. have examined a GPU implementation
for molecular modeling[9]. Anderson et al. have imple-
mented several algorithms, including integrators, neighbor
lists, Lennard-Jones, and bond forces[10].

The BOSS program is a general purpose molecular model-
ing system that performs molecular mechanics (MM) calcu-
lations, Metropolis Monte Carlo (MC) statistical mechanics
simulations. The MC simulations can be carried out for pure
liquids, solutions, clusters, or gas-phase systems; typical
applications include computing properties of a pure liquid,
free energies of solvation, effects of solvation on relative
energies of conformers, changes in free energies of solvation
along reaction paths, and structures and relative free energies

of binding for host-guest complexes.'.

2. Challenges of Porting to GPU

GPUs offer high performance parallel computing capac-
ities. There are several difficulties in applying GPU on big
scale MD simulations.[11]. Some of the challenges are still
present after four years.

2.1 Integration with Original System

There are many MD simulation systems running on
CPU. MD simulation systems are compute-intensive sys-
tems. GPUs have a huge advantage for these kinds of
systems. Many simulation systems have migrated to run

Thttp://zarbi.chem.yale.edu/software html#boss



on GPU. There are several methods to migrate current
systems on GPUs (e.g, plugin, rewrite). Porting a current
system allows a legacy code to take advantage of acceler-
ators without rewriting the entire thing. In some cases, the
effect of GPU performance improvements will be decreased
by too many data transmission between CPU and GPUs.
AMBER 11 begins to use NVIDIA GPU to massively ac-
celerate PMEMD for both explicit solvent PME and implicit
solvent GB simulations’>. NAMD is a parallel molecular
dynamics code designed for high-performance simulation
of large biomolecular systems based on Charm++ parallel
objects[12]. GROMACS uses OpenMM acceleration library
and plugins to run simulations on GPU[13]. LAMMPS use
Geryon library to support GPU. It also allows portability
to AMD accelerators, CPUs, and any future chips with
OPENCL support[2].

2.2 Scale

Algorithms used for MD are traditionally evaluated based
on how they scale with the number of atoms being simulated.
GPUs have enough compute units to handle small or medium
sized proteins.

One problem is how to increase the number of atoms
that a GPU can simulate. It needs lots of memory to
store atom states before computing. In order to compute
in GPU, it needs another copy of data. These halve the
maximum computable number of atoms in theory. In a big
simulation process, the target can be divided into smaller
areas and simulate by serial. But status of all atoms should
be generated and stored at the beginning. Virtual memory
can help avoid the shortage of memory; it stores big arrays
in disk instead of physical memory. But it delays the transfer
between memories to CPU.

Another problem is how to make several GPUs work
together in one simulation process. GPU could not commu-
nicate with other GPUs directly before 2010. For example,
If GPU in node A(GPU-A) need to communicate with GPU
in node B(GPU-B). GPU-A needed to pass the data to a
CPU in the same node(CPU-A). The CPU-A send the data
to a CPU in another node(CPU-B). Then the CPU-B would
transfer the data to GPU-B in node B. Most popular method
divides the computing to several tasks run on different CPU.
Communication between GPU and CPU should be kept to a
minimum. NVIDIA provide GPUDirect; it adds support for
peer-to-peer communication between GPUs through Infini-
Band cards. Using GPUDirect, 3rd party network adapters,
solid-state drives (SSDs), and other devices can directly
read and write CUDA host and device memory, eliminating
unnecessary system memory copies and CPU overhead.

MGPU is a C++ programming library targeted at single-
node multi-GPU systems[14]. Such systems combine dispro-
portionate floating point performance with high data locality

Zhttp://ambermd.org/gpus/
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and are thus well suited to implement real-time algorithms.
They have a speed-up of about 1.7 using 2 GPUs and reach
a final speed-up of 2.1 with 4 GPUs.

3. Design

The simulator is used to find a stable state of molecules
in solvation box. The core theory of the simulation about
solvation is that the energy will keep decreasing until a
stable state during the movement of molecules. The process
is shown below:

1) Initialization of simulator: This step places a given
number of molecules in a box. The position and angle
of molecules are generated at random.

2) Calculate energy of all molecules: This step calculates
the energy of all molecules.

3) Random movement of molecule: This step chooses one
molecule at random. Then it moves and rotates the
selected molecule.

4) Calculate new energy after movement: This step cal-
culates the energy of new state.

5) Judgment of movement: If the new energy is less than
the old energy, then the movement is acceptable, use
the new state to continue. If the new energy is larger
than old energy, then it has a little possibility to accept
1t.

6) If the simulation step is less than given step number,
go to step 2.

The first step is to find which part is most time costly.
GNU gprof is a profiler tool on Linux. It can find where the
program spent its time and called times of each functions.
It inserts code at the beginning and end of each function to
collect timing information. After the program is complied
with special option (-pg), the program will generate infor-
mation needed for gprof. Simply run the program as usual;
it will generate the performance data and write it into a file
called gmon.out’. gprof can interpret the data and output
a table listing the function name, call times and time used.
From these, we can find that the calculation of energy is a
compute intensive task.

3.1 Object Oriented

With compiler nvce provided by NVIDIA, we can compile
source codes including the host code and device code. For
the host code, nvcc supports full features of object oriented
designs. But for the source code that runs on device, nvce



supports features of data aggregation class and derived class.
It does not support run time type information (RTTI) and the
C++ standard library. Seiller et al. present an object oriented
framework for GPGPU-based image processing[15]. They
created an interface for classes used in GPU and imple-
mented different classes on CUDA and GLSL. MinGPU
proposed a general purpose computation library based on
object oriented framework[16]. But they do not support
object oriented.

To compare simulation results and performance improve-
ment, we implement serial and parallel methods to simulate
the random movement of molecules. These two methods
share most source codes runs on CPU, and the parallel
simulation runs on GPU to calculate the energy of molecules.
We want to apply the object oriented design during de-
velopment. We implement GPU acceleration in C++ and
CUDA. We have more experience in C++ than CUDA. So we
implement a C++ version simulator without parallel. Then
we add CUDA code to implement parallel compute on GPU.
To make it easy to maintain and develop, we wanted to

1) minimize the amount of coding required

2) simplify the methods to port different algorithm to
parallel

3) use same input files and get same results with two
versions.

As shown in Figure 2, we use class BoxState to store all
states of atoms including atom position, angles, and bonds.
Class Calculator computes the free energy of a given state.
Class generator moves molecules in the box and decides
if the movement is acceptable. Simulator initiate the state
of BoxState and calls Generator repeatedly by the given
steps. All of these classes work together to simulate molecule
solution in the box on CPU. We reuse class BoxState and
Generator in the GPU version. Class used in GPU cannot
be derived from class used in CPU. So class GPUBoxState
is not the subclass of BoxState; it depends on BoxState.
The class allocates memory in GPU and stores states in
it. It creates a BoxState object to save states in CPU and
synchronizes the data to GPU. The class GPUBoxState is
just a wrapper of BoxState; all states of atoms are saved
in BoxState. Many functions are reused just like the linear
method, such as save/load atom state from disks and move
molecules.

3.2 Memory model

There are 6.02*%10%% molecules in 1 mol of water. The
maximum system size that can be treated with the GPU
is limited by the memory size. The CUDA programming
model assumes that both the host and the device maintain
their own separate memory spaces in DRAM. In particular,
Langevin temperature regulation and the use of larger cotoffs
for the effective Born radii calculations increase the memory
requirements. By using AMBER, Tesla C2070 with 6.0 GB
GPU memory can treat 54,000 atoms[17].
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Fig. 2: Class structure of the Simulator

Calculator

Name Description size
molecule | state of molecule, pointers to atoms and other struc- | 72
ture
atoms position and type of atoms in molecules 56
bonds bond between 2 atoms 24
angles angle of 2 adjacent atoms 24
dihedrals | the angle created by two planes 24
hops atom pairs and their node distance(hops) away from | 12
each other

Table 1: Data Structure size

In our simulation, we need store molecule state, including
atoms, bonds, angles, dihedral, and hops. We list the size of
each structure in Table 1. As for a water molecule, it needs
5 atoms (2 are dummy), 4 bonds, 3 angels, 2 dihedrals, and
2 hops. The memory usage can be calculated by Formula 1.

Memumotecule = Z(Sizeitems * NUMtems) + S12€molecule
=5%b6+4%x244+3%x24+2%x24+2x12
+ 72
=592

Memsimulatm’ = Memmolecule X NUMmolecules
(1
To simulate 10,000 molecules (50,000 atoms), it needs
5,920,000 bytes. In our simulation, the atom is the most im-
portant element during computing. It stored the 3-dimension
position, sigma and epsilon used in LJ calculations. The an-
gles and hops between atoms may change in the real world,
but in a simplified model, we can assume the molecules
move as a whole, which means bond, angle, dihedral, and
hop are equal within all molecules of the same kind. By
merging all of these items into one block and having all
molecules point to it, we can get a simplified memory usage
formula 2. To simulate 10,000 molecules (50,000 atoms),
it needs 3,520,000 bytes, about 3.36GB. It decreases 40%
of the memory usage. This optimization does not affect the
compute efficiency. Because the relative position of atoms
in one molecule is same, we can also save position informa-
tion in the molecule instead of atoms. To simulate 10,000
molecules (50,000 atoms), it needs 2,560,000 bytes, about
2.44GB. This optimization has bad influence on compute
speed, because it needs to calculate the position of each
atom before use them.
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Memmolecule = § (Sizeatom * numatom) + Sizemolecule

=5*56+ 72 = 352

Memsimulator = Memmolecule X NUMmolecules T S12€items

2

The CPU and GPU memories are in different address
spaces. This means data must be synchronized between dif-
ferent address spaces. CUDA provides APIs to copy memory
between CPU and GPU, but it is a big performance penalty
for these synchronizations. Applications should strive to
minimize data transfer between the host and the device.
To avoid performance penalty, we identified the changed
data during the computation in GPU, and synchronized the
changed part. In each procedure of the energy computation,
only one atom changed, so what we need is to copy single
atom information to GPU, and copy energy results back
to CPU memory. Because of the overhead associated with
each transfer, many small transmissions are combined into
a single large transfer.

In the inner calculating of MD, it uses a molecule i and
loops over all molecules j to calculate the minimum image
separations. If molecules are separated by distances greater
than the potential cutoff, the program skips to the end of
the loop. One method is to create a neighbor list for each
atom. The list is quite large, and it consists of dimensions
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Fig. 4: Neighbor searching in Rubik’s Cube structure

roughly 47r 3pN/6. Meanwhile it spends lots of time on
computing the distance of each pair. We use a cube structure
to store the neighbor relations between different atoms. We
divided the box into small cubes according to the cutoff size.
We can judge which cube hte atoms are in simply by their
positions. As shown in Figure 4, if an atom in the central
cube(red), we only need to check the atoms in the adjacent
ones(yellow) and catercorner ones(blue and green). Assume
the molecules distribute equably in the box, the number of
atoms in each cube is roughly equal. We can use a list to
store the atoms in each cube and map the 3-D cube into a
linear data structure. The cube structure can be set up and
used rapidly. The search operation allows the programmer
to find neighboring atoms within 26 other cubes. The GPU
is not used to speed up the search for an individual atom,
but instead it is used to run multiple searches in parallel.

3.3 Improvement of Maintainability

The MD simulation tries to find the most probable dis-
tribution of molecules. This means an outcome will occur
in a proportion of the time it occurs over the long run
- this is the relative frequency with which that outcome
occurs. Successful simulation using the same model will get
similar results after long run. But it is difficult to verify the
modification of the algorithm by a long run. It takes too
much time to run a whole simulation. On the other hand,
it’s difficult to say which result is better especially since the
difference is so small.

We try to find a way to make the simulation process re-
peatable. There are two steps using random process. During
the initialization of the simulation environment, we use ran-
dom numbers to place the molecules well-distributed among
the volent box. Then we use random numbers to choose
which molecule should move and how it will move (position
and rotation). We must generate the same random sequence
to get the same simulation result. For the initialization of
molecule position, we can write the state of each molecule
into a state file which is used to initialize the state of other
simulation. This makes all the simulations begin with same
states. A random seed is a long integer used to initialize a
pseudo random number generator. Random seeds are often
generated from the state of the computer system (such as the
time). If we initialize a pseudo random number generator
by a constant seed, the random generator will generate
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the same random sequence. For the random number used
in movement, we can use the same random seed used in
the previous simulation. And in linear version and parallel
version simulators, we use the same generator class to make
sure it uses the random sequence in the same method. We
output random seeds on screen and the log file. If we want
to repeat the simulation process, then we write the state file
and random seed in the configuration file, which will get the
exact same result as the previous simulation.

4. Performance

We use dense memory cluster (DMC) in Alabama super-
computer center[18]. The DMC has 1800 CPU cores and 10
terabytes of distributed memory. The DMC has sixteen GPU
(Graphic Processing Unit) chips. These are a combination of
two Tesla S1070 units (external GPUs connected in pairs to
four DMC nodes) and four DMC nodes configured with a
pair of Tesla M2070 cards each. These multi-core GPU chips
are similar to those in video cards, but there are installed as
math coprocessors. This can give significant performance
advantages for software that has been adapted to use these
processors. Thus the processing capacity of the DMC cluster
is: single precision GPU capacity is 18.6 TFLOPS and
double precision GPU capacity is 4.8TFLOPS. The job that
runs on GPU can use a max of 120GB memory in large
serial mode.

4.1 Memory usage

We moved all memory allocation and free memory into
BoxState class and GPUBoxState to manage all memory
used in GPU. Before the modification, the memory increases
with atom number and simulation steps. After the modifica-
tion, the memory only depends on the number of atoms as
shown in Figure 6.

4.2 Development productivity

Unfortunately, it is hard to find a metric to measure
the Eventual Efficiency of the design. One metric is how
many codes one developer can produce per hour. But for
this project, most source codes can be reused. Function
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Fig. 6: Memory usage under different conditions

oriented designs may create more source codes than object-
oriented. It saves succeeding developer work hours because
the solution is easy to comprehend and reuse. With the
improvement of maintainability, the correctness of extension
and modification can be verified in a few minutes with
previous input and output files. It saved many times in the
test.

4.3 Performance Improvement

After modifying the search method for neighbor, the
time complexity of search algorithm was optimized from
exponential growth to linear growth. It is 90% faster after
modification as shown in Figure 7.

5. Conclusion

In the paper, we present a framework to accelerate the
developing process of porting MC simulation to graphical
processing units. The implementation runs on single NVIDA
GPU using CUDA program model. In this contribution,
we described how to distinguish which part is time-costly.
And we discussed how to port these codes to GPU with
less program work. We also improved the memory model
to make it capable of simulating large systems. Another
contribution is that we found a way to make the simulation
process repeatable. This modification makes it easy to verify
future extension and enhancement.
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Limited by the memory size, it can only simulate 54,000
atoms in one GPU. By using MPI, it can simulate large
systems by running on different GPUs. There are some limits
in our simulation; we did not change the related distance and
angle of atoms in one molecule.
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