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Abstract—Energy and cooling cost is becoming the main
cost of data centers. Many studies focused on how to schedule
job and migrate Virtual Machine between servers to save
energy. An accurate energy consumption model is the basic
of energy management. Most past studies show that energy
consumption has linear relation with resource utilization. We
found that different servers have different energy consumption
characters even with same CPU and similar workloads. Most
past models were only validated on several servers. These
models did not reflect the characters of different kinds of
servers in a heterogeneous data center. In this paper, we verified
the accuracy of the linear model on 392 servers. The data
come from the results of SPECPower ssj2008 benchmark. The
benchmark was released in 2007. There are 392 servers from
26 vendors were tested in the past six years. These servers
represent most common used servers in heterogeneous data
centers. We use several methods to validate the accuracy of
the linear model. The results show the model does not work
well for all kinds of servers. We also analyze the trend of energy
consumption of last six years.

Keywords-Energy consumption model; Heterogeneous data
center; Resource Utilization

I. INTRODUCTION

Energy and cooling cost is becoming the main cost of

data centers. To reduce the energy cost in large-scale data

centers, researchers developed a wide range of energy-

saving and thermal management techniques (e.g., workload

consolidation, live migration, CPU throttling solutions).

Workload consolidation is one of the most effective ways

of conserving power by turning off spare servers. In many

cases, the workload consolidation technique is incorporated

with virtual machines, which can be migrated from many

physical machines into a smaller number of physical ma-

chines. This approach can save energy by reducing the

number of active servers. Migration policies depend on

both performance requirements and power consumption of

different workloads. Power consumption models fall into

two categories. Models in the first one can predict the

power consumption of each physical machine; models in the

second group aim to determine the impact of each virtual

machine’s load on energy consumption. Previous studies

show a strong correlation between performance events and

the power consumption. Existing models rely on various

performance events (e.g., CPU, IO, memory, and cache)

to estimate energy consumption of of sub-components of

a computing system; sub-components can be classified as

either CPU-bound (e.g., CPU and cache) or IO-Bound (e.g.,

DRAM, HDD).
The existing power consumption models are practical for

specific machines under certain conditions. These models

are reasonably accurate for data centers equipped by homo-

geneous computing platforms. However, the heterogeneous

and dynamic characteristics of modern data centers make

these models less accurate and trustworthy. To apply the

traditional models in a heterogeneous data center, system

administrators must verify the models on different types

of servers. When it comes to data centers containing a

large number of heterogeneous computing components, it

is unproductive and time consuming to adopt and validate

a single model to predict energy consumption of a wide

variety of servers.
Early energy consumption model use CPU utilization as

only parameter[1]. Some studies try to monitor several per-

formance counters related with CPU to estimate the power

consumption[2]. Past studies use multiple performance coun-

ters to calculate the energy consumption including CPU,

memory, disks and network[3], [4]. They extended the

model with more parameters to get more accurate power

consumptions. All of these models use linear model. Most

of these models were only validated on several servers. Fan

et al. validate the linear model in Google data center with

thousands of servers, but they did not mention how many

kinds of servers in their data center.
To address the aforementioned problem, we validate

the accuracy of the linear model by comparing mod-

eling results against available data obtained from the

SPECPower ssj2008 benchmark (or SPECPower for short),

which is a widely adopted benchmark used to evaluate

the power and performance characteristics of servers. Until

Oct.2012, 392 servers have been evaluated by SPECPower.

These servers came from 26 different vendors through past

six years; these servers can represent the heterogeneous

servers in the market. To our knowledge, this is the first

power usage study of so many kinds of different servers.

Some of our key findings and contributions are:

• A wide validation of heterogeneous servers. We vali-
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dated the linear energy model by 392 published results

tested by different kinds of servers. We analyzed the

accuracy though R-squared, RMSE and Average Error

for different kinds of servers.

• We found that not all servers fit the linear model

well. 6.5%(25 kinds of servers) of R-squared values

are less than 0.95, which means CPU utilization is not

significantly correlation with power consumption.

• Although the average RMSE of all servers is 14.86,

there are 118 kinds of servers’ RMSE values bigger

than 10 and 49 kinds are bigger than 20. Which means

for these servers, even though R-squared value shows

the linear model fit well, there is still big difference

between modeled and real power consumption.

• We also illustrate the different power consumptions of

servers with same CPU. We find that different servers

have different power consumption characters even with

same CPU and similar workloads.

The rest of this paper is organized as follows. Section

II introduces the existing energy consumption models and

the SPECPower benchmark. Section III presents how to

construct a energy consumption model and integrate it

with other components. Section IV shows the analysis of

SPECPower results, including accuracy of the linear model

and the energy consumption trends in the past 6 years. The

last section discusses the future work of this study.

II. RELATED WORKS

A. Energy Consumption Character and Model

Power management is becoming an important issue to

be addressed in data centers. Managers have to reduce

energy costs of servers and cooling systems in order to offer

competitive services. It is straightforward to measure the

energy consumption of an entire data center[5]. To schedule

jobs or workload consolidation in an energy-efficient way,

one has to estimate the energy consumed by each computer

node in a data center.

Power meters retrieve system power usage accurately in

real-time manner. This method cannot adapt to dynamic

computing environments like computing clouds, because

there are excessive number of computers node to be mea-

sured in real-time. The second approach is to estimate

the power usage based on functional units, which sum up

nominal power of each component. Values measured by

this approach are constant under certain configurations, and

these measured values are always larger than actual energy

usage. Ludashi applied this method to estimate the energy

cost of personal computers[6]. Ludashi’s approach checks

all components of a PC, including main board, CPU, hard

disk, and memory. The measurement results are not accurate

under normal usage conditions. For example, the estimated

value of a laptop (i.e., ASUS U35JC) is 107 Watts, but the

accurate energy consumption is 47 Watt. CPUs cost most

of the energy of computers; the power consumed by CPUs

can be measured by thermal design power (TDP), which

is measured under normal load[7]. Energy consumption

varies sharply when workload and configuration significantly

changes, thereby making a large discrepancy between esti-

mated energy consumption and actual energy usage.

The third method is to model power usage based on per-

formance counters. Which can be divided into two classes:

chip-level performance counter queried from chips and

system-level counter got from OS. Bricher et al. designed a

system power model using hardware performance counters

for vital system subcomponents. Their model relies on

microprocessor performance counters to measure an entire

system power consumption[8]. They used two different sets

of performance counter on a quad-socket Intel CPU and

AMD dual-core CPU. They selected nine events to model

power consumption of Intel Quad-socket CPU and use

thirteen different events to model power of AMD CPU[9].

Singh et al. built some model for AMD Phenom[10].

The above existing hardware performance counter so-

lutions have the following drawbacks. First, Most of the

models were tailored for special processors or computer

architectures. Different CPUs have different performance

counters[9], which make it impractical to apply these models

to heterogeneous computing environments. Intel Pentium 4

processor has 18 performance counters that can be pro-

grammed to monitor up to 59 event classes, but there are

only 15 events available for Intel XScale processors[11].

Second, there are new emerging technologies (e.g., dynamic

voltage scaling or replace a SCSI disk to a SSD disk)

to save energy consumption in computers. The existing

static estimation methods are unable to address the dynamic

features of computing environments.

Some models estimate power usage based on resource

utilization. Fan et al. implemented models based on CPU

utilization, and estimate energy consumption of each Rack,

PDU and cluster. They focus on critical power and power

usage of entire clusters with several thousand servers[5].

Heath et al. extended the models by using OS-reported CPU,

memory and disk utilization[4].

Some other studies try to find energy consumption of each

process or each Virtual Machine. Snowdon et al. discussed

approaches to monitoring power for applications[12]. This

method involves collecting information in real time about

resources consumed by each application. Snowdon’s work

assumes that the energy usage of an application is directly

related to the amount of CPU time. The downside of

this approach is that it does not take into account loads

handled by I/O devices and multi-core processing. Bohra

et al. proposed a model called ”VMeter”, which predicts

instantaneous power consumption of an individual virtual

machine hosted on a physical node[13]. To predict energy

consumption of virtual machines in cloud computing, Karan

et al. proposed Joulemeter that uses only power models
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to accurately infer the power consumption of a Virtual

Machine[10].

Models based on resource utilization can be adapted to

heterogeneous cluster systems. Real-life servers are charac-

terized by different configuration, performance and work-

loads. Most of previous models were only validated on

several different kinds of server. Fan’s models were validated

on several thousand servers in Google, but they did not

mention how many different kinds of servers in their data

center. Heath et al. tested their models on 4 blade servers

and 4 PCs[4].

There is a trend to include power/energy sensors in the

processors. Intel presented RAPL(Running Average Power

Limit) technology to estimate energy by using various hard-

ware performance counters in recent Intel CPUs[14]. The

values are also exposed to users through PAPI(Performance

API). Recent NVIDIA GPUs can report power usage via

the NVIDIA Management Library(NVML). The nvmlDe-

viceGetPowerUsage() function retrieves the power usage

reading for the device, in milli-watts. This is the power draw

for the entire board, including GPU, memory, etc. The read-

ing is accurate to within a range of +/- 5 watts[15]. These

technologies have been validated to closely follow actual

energy consumption[16]. But these models are limited to

special sub components like CPU and GPU. And developers

have to use different interface to get energy consumption of

different sub components.

B. The SPECPower Benchmark

SPECpower is the first industry-standard SPEC bench-

mark that evaluates the power and performance char-

acteristics of volume server class and multi-node class

computers[17]. The benchmark was created to compare

energy efficiency among different servers. Currently, many

vendors provide energy efficiency evaluations, but the ven-

dor’s evaluation results are not comparable due to differ-

ent workloads, configurations, and test environments. The

benchmark helps to measure the power of computing sys-

tems under various workloads.

The newest version of the SPECpower benchmark was

released on July 26, 2012. The current version exercises

CPUs, caches, memory hierarchy and the scalability of

shared memory processors (a.k.a., SMP) as well as the

implementations of the Java Virtual Machine or JVM, the

Just-In-Time compiler or JIT, garbage collections, threads

and some aspects of operating systems.

The benchmark runs on a system under test (SUT) and

a controller machine, which controls workloads of SUT

and collects power data from a power meter connected

to SUT. Figure II-B shows our testbed that makes use of

the SPECPower benchmark to evaluate energy efficiency of

computing systems1.

1http://www.spec.org/power ssj2008/

Figure 1. Typical Test Environment of SPECPower ssj2008

The SPECpower benchmark is comprised of processes,

where CPU utilization varies from 100% to idle with an

increment of 10%. SPECpower uses very little network

I/O; neither does SPECpower write measured data to disks

during each test. Nevertheless, SPECpower issues reads to

tested disks. Previous studies show that disk subsystems

have nearly a constant power consumption during the entire

range of workloads[8]. CPU activities are recorded when

SPECpower is running a testbed, which keeps track of CPU

usage, operation per second, and power consumption.

III. HIGH LEVEL ENERGY CONSUMPTION MODEL

We start this section by offering an overview of the energy

consumption model. Then, we describe how to build the

model using the measurement results of SPECPower. We

also will demonstrate how to apply the proposed model in

heterogeneous data centers.

A. Overview

The first step forward to modeling energy consumption

is to break down an entire computing system into several

components. Recent studies show that workload has a linear

correlation with energy consumption with respect to each

component[8], [18], [19]. Figure 2 illustrates the process of

constructing, verifying, and deploying the model. In the ini-

tial phase, we build energy consumption model by analyzing

the power consumption results of running the SPECpower

benchmark. During the analysis of the measurements, we

gather the workloads of SPECpower and map the test results

into traditional workload metric, from which the energy

consumption model is established. We verify the model by

running the benchmark and other real-world applications on

various servers. After completing the analysis and verifica-

tion phases, we configure model parameters for each tested

server. Next, we can integrate the model with performance

monitor tools, including ganglia and performance co-pilot.

Since the model is able to estimate energy consumption of all

the tested servers, we can integrate the model into schedule

management tools, which use energy consumption data as

an input of schedule policies for heterogeneous data center.
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Figure 2. Energy Consumption Model Overview

Figure 3. Energy Consumption Model Construction

B. Model Construction

Early energy consumption model use CPU utilization as

only parameter[1]. Some studies try to monitor several per-

formance counters related with CPU to estimate the power

consumption[2]. Past studies use multiple performance coun-

ters to calculate the energy consumption including CPU,

memory, disks and network[3], [4]. They extended the

model with more parameters to get more accurate power

consumptions.

The energy consumption of each component can be cal-

culated as P = C + R × P , where C is a constant power

consumption when the component is idle. R is the usage

ratio of the component and P is the increment of energy

consumption when the usage ratio goes up. Hence, the total

power consumption Ptotal can be expressed as Equation 1:

Ptotal = Rate× Power

= |1, Rcpu, Rmem, Rdisk, Rnet| ×

Pmisc

Pcpu

Pmem

Pdisk

Pnet

(1)

Where Pmisc is a constant power consumption when

the system is sitting idle. Pmisc incorporates the power

dissipation in all the components, including chassis, power

supply, and peripheral devices. Pcpu, Pmem, Pdisk, Pnet

are power consumption of CPU, memory, disk, and network

interconnect, respectively. Rcpu, Rmem, Rdisk, Rnet are the

utilization or usage ratio of the four types of resources.

Linux provides a lavish method to assess usage ratios at

different levels. For example, hardware performance coun-

ters can be collected by the perfctl and perfmon driver

programs[20]; and virtualized (per-process) counters also

can be monitored in our testbed. The Linux servers offer

utility programs (e.g., top, free and iostat) to measure usage

ratios of memory, disks, network I/Os. SAR is applied to

monitor the load of CPU load, disk, and memory at given

intervals[21]. The challenge is that there are an excessive

number of performance events; users have to pick a small set

of representative events from the 40 detectable performance

events provided by Pentium IV. Bircher and John studied

the events of processor and selected representative events

according to the examined architectures[8]. Their selections

are determined by average error rates and a qualitative com-

parison of measurement and modeling results. Economou et
al. collected data from SAR and perfctl, in their approach a

single counter for each subsystem is used. The results show

that most of average error of linear prediction models is less

than 5%[18].

Data centers in Google also use CPU utilization to esti-

mate the power usage[5]. There are several advantages to

take CPU utilization as the only parameter. Firstly, Proces-

sors and memory are two major contributors to the power

consumption of computing systems. Several past studies

show that disk and network resources have almost constant

power consumption[3], [4]. Our findings also confirm that

the energy consumption of the I/O devices and network do

not noticeably change. Second, it will cause performance

slowdown to capture and handle multiple performance

events, especially sampling at a small interval. So we use the

most popular linear mode to predict the energy consumption

of each servers (Eq.2).

Ptotal = Rcpu × Power + Pidle (2)

To verify the accuracy of the linear model, we use the

model to fit the 392 results of SPECpower benchmark.

C. Model Verification and Analysis

We validate the accuracy of the linear energy model

using R-squared, RMSE and Mean Error, which calculates

the mean error for each combination of modeled power

consumption and measured consumption. The Mean Error

is used in many past studies[3], [9].

The R-squared value is used to describe how well a

prediction model fits a set of data (Eq.3). An R-squared

near 1 indicates that the model fits the data well, while R-

squared close to 0 indicates the model does not fit the data

very well. Usually a value greater than 0.95 means the model

is acceptable. A data set has values yi, each of which has an

associated modeled value fi, R-squared value is the value

of total sum of residuals to total sum of squares .
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ȳ =
1

n

n∑
i=1

yi (3a)

SStot =
n∑

i=1

(yi − ȳ)2 (3b)

SSerr =
n∑

i=1

(yi − fi)
2 (3c)

R2 = 1− SSerr/SStot (3d)

RMSE(Root Mean Square Error) is a frequently used

measure of the differences between values predicted by a

model(Eq.4). The RMSE serves to aggregate the magnitudes

of the errors in predictions for various times into a single

measure of predictive power.

RMSE =

√√√√
n∑

i=1

(yi − fi)2

n
(4)

The Mean Error is used in many past studies[3], [9]. It

reflects the average error from different points(Eq.5).

MeanError =

n∑
i=1

|fi−yi|
yi

× 100%

n
(5)

The SPECpower benchmark tests the energy consumption

of the servers under various workloads. Each result is

comprised of eleven points, each of which is a set of energy

consumption, CPU load, and operations per second. We

verify all the 392 published results of different servers. Our

results show that the linear model does not fit all condition

well.

D. Applying the Model

Energy consumption model can be used independently to

estimate the energy consumption of whole cluster. We use

a set of parameters for servers on each ”group” of same

model and same enclosures. For each server in the group,

we estimate the energy consumption by their utilization

(different utilization get different power consumption). We

can gather real-time energy consumption from each server

or just collect the utilization of each server and calculate the

energy consumption on another machine.

Energy consumption model can be readily integrated with

any performance monitor and scheduler (see Figure 4).

Ganglia is a scalable distributed monitoring system for high-

performance computing systems like clusters and Grids.

Ganglia - with a hierarchical design targeting at federations

of clusters - can collect basic metrics (e.g., system load and

CPU utilization). Ganglia also can keep track of user-defined

metrics through plugins (e.g., C/Python modules)[22]. To

implement our model in a heterogeneous cluster, we enable

the modeling module to retrieve workloads from ganglia.

Then, the model can output energy consumption of each

computing node in the cluster. Estimated power consumption

data may be used by job schedulers and workload consoli-

dation modules in the cluster.

Figure 4. Energy Consumption Model Application

IV. ANALYSIS OF BENCHMARK RESULTS

A. Comparison Results of Same CPU

Previous studies show that CPU load is a major con-

tributor to energy consumption. Since a CPU comes with

matched North Bridge chips, we assume servers with the

same CPU have a similar energy consumption. We choose

seven different servers equipped with the same type of CPU

(i.e., Intel Xeon E5-2670 2.60 GHz 2 chips 32 threads);

All of the tested servers were single node. Table I lists

the configuration of the seven servers and their power

consumption. Our preliminary results show that not all the

power consumption results follow the trend of a linear

model. We observe that energy consumptions of the servers

are very similar when the CPU load is below 50%. However,

when the CPU load is increasing, the energy consumption

rates of the seven tested servers are very different from each

other. This trend is especially true when the CPU load is

approaching 100%(see Figure 5).

Table I
POWER CONSUMPTION OF DIFFERENT SERVERS WITH SAME CPU

Hardware System Enclosure Mem Power Information
Vendor (GB) idle max avg.

Dell PowerEdge R620 24 54.1 243 139.5
Dell PowerEdge R720 24 51.0 231 133.3
Dell PowerEdge T620 24 50.2 227 131.2
Hitachi HA8000/RS210-hHM 32 99.3 337 194.3
Hitachi HA8000/RS220-hHM 32 104.0 325 190.9
Huawei RH2288 V2 32G 32 55.6 282 146.1
Huawei RH2288 V2 16G 16 54.8 279 142.9

B. Accuracy of Linear Model

We validate the energy consumption of the servers run-

ning the SPECpower benchmarks. Each SPECpower result

contains 11 pairs of workload and measured power con-

sumption. We calculate the coefficients of a polynomial

P(workloads) of linear mode that fits the data measured

power best in a least-squares sense.
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Figure 5. Power Consumption of Different Servers with same CPU

We use CDF(cumulative distribution function) Fx(X) =
P (X ≤ x) to show the distribution of the linear model in

Figure 6(d). We find that the R-squared values of 25 kinds

of servers are less than 0.95(Figure 6(a)). The minimum

value is 0.8418, which comes from the server Colfax Inter-

national CX2266-N21. Energy of CX2266 can be modeled

by Ptotal = 193.7466 + 0.9385× Rcpu. The mean error of

this server is 3.52% and RMSE is 12.95.

RMSE(Root Mean Square Error) is a frequently used

measure of the differences between values predicted by a

model. In this case, a value greater than 20 means each

estimate value has a rough error of 20 watts. One server will

use about one more killowatt-hour every two days in these

conditions. From Figure 6(b), we can find that 12.5%(49

servers) RMSE values are greater than 20, and several

results get very large RMSE value. The average all RMSE

is 14.86. The maximum value of RMSE is 330.7, which

comes from a high performance server (Fujitsu PRIMERGY

BX920 S3)2, which has a power consumption range from

1014 to 4965 watts. The R-squared of the linear mode

is 0.9217, which is less than 0.95. It does not fit linear

model. Power consumption of the server can be calculated

by Ptotal = 762.1 + 35.92 × Rcpu. The mean error of the

server is 330.7.

Figure 6(c) shows that most of the mean errors of the

linear model are below 8%. The average mean error is

2.74%. Interestingly, the model is more accurate before

No.300 than after. A majority of mean errors are under

4%. The first result of 2012 is No. 292, meaning that the

model offers good power-consumption estimates for servers

shipped before 2012. We use CDF function to show the

distribution of the linear model in Figure 6(f).

1http://www.spec.org/power ssj2008/results/res2007q4/power ssj2008-
20071129-00018.html

2http://www.spec.org/power ssj2008/results/res2012q2/power ssj2008-
20120511-00459.html

Table II
AVERAGE POWER CONSUMPTION OF DIFFERENT YEARS

Year results Power Consumption(watts) Perf/
numbers Idle Max Avg. power

2007 4 173.75 236.88 277.25 627.50
2008 38 146.71 200.49 248.24 753.05
2009 37 104.42 169.05 226.00 1441.59
2010 39 71.16 167.26 235.51 2570.13
2011 24 83.82 169.17 247.71 2679.54
2012 64 64.79 149.56 257.55 4350.19

C. Energy consumption trends

The first version of SPECpower was released six years

ago. Until Oct. 2012, there have been 392 available test re-

sults. We analyze the energy consumption trends during the

past six years. For example, we consider servers with eight-

core processors, and compare the energy consumption of the

servers that have been tested in different years. We choose

88 SPECpower results out of the available benchmarking

results before 2010. Since 2010, most servers have been

deployed with more than 12 cores. Only four results obtained

in 2011 and 2012 are collected from servers equipped with

eight-core processors. Therefore, we conduct benchmarking

experiments for 12-core and 16-core processors available

after 2010. In total, we choose to use 209 benchmarking

results.

We listed all the idle power consumption in Figure 7(a),

max power in Figure 7(b) and average power in Figure 7(c).

We can find that the idle power consumption deceased over

time, but the max power consumption were kept in same

level. Which means although servers may use less power at

different utilization ratio, the power design for data center

did not change too much. Because construction must take the

max power consumption into consider. Another interesting

results is the trend of performance/power metric. We can

find that it grows up over time form the Figure 7(d). This

shows that the Efficiency of power usage improved quickly.

The above results show that three HP ProLiant DL580

servers in 2011 consume more than 400 watts even in the

idle mode. These HP servers are equipped two the Intel

Xeon Processor 7020, which has a typical thermal power

of 135w[7]. The Intel Xeon processor consumes more than

270 watts under normal load. Because these three results are

outliers (i.e., much higher than others), we do not include

the results in Table II, which illustrates the average power

consumption of servers in different years. Perf/Power is used

to compare power-performance metric across all servers,

measured by overall transactions divided by the sum of the

average power consumption.

V. CONCLUSION

In this paper, we verified the accuracy and effectiveness

of the linear model in predicting energy consumption. This

work was motivated by the fact that the existing models are
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(a) R-squared of Different Servers (b) RMSE of Different Servers (c) Mean Error of Different Servers

(d) CDF of R-squared values (e) CDF of RMSE values (f) CDF of Mean Error

Figure 6. Validation of Different Servers

inadequate for future data centers equipped with heteroge-

neous servers. Most of past studies only validate their model

in several machines. We use published SPECPower bench-

mark results to validate the linear model. The benchmark

is a widely adopted benchmark used to evaluate the power

and performance characteristics of servers. We found that

not all servers fit the linear model well. 6.5%(25 kinds of

servers) of R-squared values are less than 0.95. There are

12.5%(49 kinds of servers) of RMSE vales are greater than

20. Our finding shows that the linear model cannot used to

estimate the power consumption of these servers. Energy

consumption model can be integrated with performance

monitoring tools deployed in data centers, thereby making

job scheduling mechanisms more energy efficient.
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