
 Procedia Computer Science 18 (2013) 2458 – 2467

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.422

Adaptive Preshuffling in Hadoop clusters

Jiong Xie, Yun Tian, Shu Yin, Ji Zhang, Xiaojun Ruan,
and Xiao Qin

Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849-5347

Email: {jzx0009, tianyun, szy0004, Jzz0014, xzr0001}@eng.auburn.edu,

xqin@auburn.edu http://www.eng.auburn.edu/∼xqin

Abstract—MapReduce has become an important distributed

processing model for large-scale data-intensive applications like

data mining and web indexing. Hadoop–an open-source imple-

mentation of MapReduce is widely used for short jobs requiring

low response time. In this paper, We proposed a new preshuffling

strategy in Hadoop to reduce high network loads imposed by

shuffle-intensive applications. Designing new shuffling strategies

is very appealing for Hadoop clusters where network intercon-

nects are performance bottleneck when the clusters are shared

among a large number of applications. The network interconnects

are likely to become scarce resource when many shuffle-intensive

applications are sharing a Hadoop cluster. We implemented the

push model along with the preshuffling scheme in the Hadoop

system, where the 2-stage pipeline was incorporated with the

preshuffling scheme. We implemented the push model and a

pipeline along with the preshuffling scheme in the Hadoop system.

Using two Hadoop benchmarks running on the 10-node cluster,

we conducted experiments to show that preshuffling-enabled

Hadoop clusters are faster than native Hadoop clusters. For

example, the push model and the preshuffling scheme powered

by the 2-stage pipeline can shorten the execution times of the

WordCount and Sort Hadoop applications by an average of 10%

and 14%, respectively.

I. INTRODUCTION

In the past decade, the MapReduce framework has been

employed to develop a wide variety of data-intensive appli-

cations in large-scale systems. In this paper, we focus on a

new reshuffling scheme to further improve Hadoop’s system

performance.

II. MOTIVATIONS

A. Shuffle-Intensive Hadoop Applications

Recall that a Hadoop application has two important phases

- map and reduce. The execution model of Hadoop can be

divided into two separate steps. In the first step, a map task

loads input data and generates some ¡key,value¿ pairs. In this

step, multiple map tasks can be executed in parallel on multiple

nodes in a cluster. In step two, all the pairs for a particular

key are pulled to a single reduce task after the reduce task

communicates and checks all the map tasks in the cluster.

Reduce tasks depend on map tasks; map tasks are followed

by reduce tasks. This particular sequence prevents reduce

tasks from sharing the computing resources of a cluster with

map tasks, because there is no parallelism between a pair of

map and reduce tasks. During an individually communication

between a set of map tasks and a reduce task, an amount

of intermediate data (i.e., result generated by the map tasks)

is transferred from the map tasks to the reduce task through

the network interconnect of a cluster. This communication

between the map and reduce tasks is also known as the shuffle

phase of a Hadoop application.

In an early stage of this study, we observe that a Hadoop ap-

plication’s execution time is greatly affected by the amount of

data transferred during the shuffle phase. Hadoop applications

generally fall into two camps, namely, non-shuffle-intensive

Available online at www.sciencedirect.com

2459 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

and shuffle-intensive applications. Non-shuffle-intensive ap-

plications transfer a small amount of data during the shuffle

phase. For instance, compared with I/O-intensive applications,

computation-intensive applications may generate a less amount

of data in shuffle phases. On the other hand, shuffle-intensive

applications move a large amount of data in shuffle phases,

imposing high network and disk I/O loads. Typical shuffle-

intensive applications include the inverted-index tool used in

search engines and the k-means tool applied in the machine

learning field. These two applications transfer more than 30%

data through network during shuffle phases.

B. Alleviate Network Load in the Shuffle Phase

In this paper, we propose a new shuffling strategy in Hadoop

to reduce heavy network loads caused by shuffle-intensive

applications. The new shuffling strategy is important, because

network interconnects in a Hadoop cluster is likely to become

a performance bottleneck when the cluster is shared among a

large number of applications running on virtual machines. In

particular, the network interconnects become scarce resource

when many shuffle-intensive applications are running on a

Hadoop cluster in parallel.

We propose the following three potential ways of reducing

network loads incurred by shuffle-intensive applications on

Hadoop clusters.

1) First, decreasing the amount of data transferred during

the shuffle phase can effectively reduce the network bur-

den caused by the shuffle-intensive applications. To re-

duce the amount of transferred data in the shuffle phase,

combiner functions can be applied to local outputs by

map tasks prior to storing and transferring intermediate

data. This strategy can minimize the amount of data that

needs to be transferred to the reducers and speeds up the

execution time of the job.

2) Second, there is no need for reduce tasks to wait for

map tasks to generate an entire intermediate data set

before the data can be transferred to the reduce tasks.

Rather, a small portion of the intermediate data set can

be immediately delivered to the reduce tasks as soon as

the portion becomes available.

3) Third, heavy network loads can be hidden by over-

lapping data communications with the computations of

map tasks. To improve the throughput of the com-

munication channel among nodes, intermediate results

are transferred from map tasks to reduce tasks in a

pipelining manner. Our preliminary findings show that

shuffle time is always much longer than map tasks’

computation time; this phenomenon is especially true

when network interconnects in a Hadoop cluster are

saturated. A pipeline in the shuffle phase can help in

improving throughput of Hadoop clusters.

4) Finally, map and reduce tasks allocated within a single

computing node can be coordinated in a way to have

their executions overlapped. Overlapping these opera-

tions inside a node can efficiently shorten the execution

times of shuffle-intensive applications. A reduce task

checks all available data from map nodes in a Hadoop

cluster. If reduce and map tasks can be grouped with

particular key-value pairs, network loads incurred in the

shuffle phase can be alleviated.

C. Benefits and Challenges of the Preshuffling Scheme

There are three benefits of our preshuffling scheme:

• Data movement activities during shuffle phases is mini-

mized.

• Long data transfer times are hidden by a pipelining

mechanism.

• Grouping map and reduce pairs to reduce network load.

2460 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

Before obtaining the above benefits from the preshuffling

scheme, we face a few design challenges. First, we have to

design a mechanism allowing a small portion of intermediate

data to be periodically transferred from map to reduce tasks

without waiting an entire intermediate data set to be ready.

Second, we must design a grouping policy that arranges map

and reduce tasks within a node to shorten the shuffle time

period by overlapping the computations of the map and reduce

tasks.

D. Organization

The rest of the paper is organized as follows. Section III

describes the design of our preshuffling algorithm after pre-

senting the system architecture. Section IV presents the im-

plementation details of the preshuffling mechanism in the

Hadoop system. In Section V, we evaluate the performance

of our preshuffling scheme. Section VI reviews related work

and Section VII concludes the paper with future research

directions.

III. DESIGN ISSUES

In this section, we first present the design goals of our

preshuffling algorithm. Then, we describe how to incorporate

the preshuffling scheme into the Hadoop system. We also show

a way of reducing the shuffling times of a Hadoop application

by overlapping map and reduce operations inside a node.

A. Push Model of the Shuffle Phase

A typical reduce task consists of three phases, namely, the

shuffle phase, the sort phase, and the reduce phase. After map

tasks generate intermediate (key, value) pairs, reduce tasks

fetch in the shuffle phase the (key, value) pairs. In the shuffle

phase, each reduce task handles a portion of the key range

divided among all the reduce tasks. In the sort phase, records

sharing the same key are groups together; in the reduce phase,

a user-defined reduce function is executed to process each

assigned key and its list of values.

To fetch intermediate data from map tasks in the shuffle

phase, HTTP requests are issued by a reduce task to five (this

default value can be configured) number of TaskTrackers. The

locations of these TaskTrackers are managed by the JobTracker

located in the Master node of a Hadoop cluster. When a map or

reduce TaskTracker finishes, the TaskTracker sends a heartbeat

to the JobTracker in the master node, which assigns a new

task to the TaskTracker. The master node is in charge of

determining time when reduce tasks start running and data

to be processed. Map task and reduce tasks are stored in two

different queues.

Reduce tasks pull intermediate data (i.e., (key, value) pairs)

from each TaskTracker that is storing the intermediate data.

In this design, application developers can simply implement

separate map tasks and reduce tasks without dealing with the

coordination between the map and reduce tasks. In the shuffle

phase the above pull model is not efficient, because reduce

tasks are unable to start their execution until the intermediate

data are retrieved. To improve the performance of the shuffle

phase, we change the pull model into a push model. In the push

model, map tasks automatically push intermediate data in the

shuffle phase to reduce tasks. Map tasks start pushing (key,

value) pairs to reduce tasks as soon as the pairs are produced.

We refer to the above new push model in the shuffle phase

as the preshuffling technique. In what follows, we describe the

design issues of our preshuffling scheme that applies the push

model in the shuffle phase.

B. A Pipeline in Preshuffling

When a new job submitted to a Hadoop cluster, the Job-

Tracker assigns map and reduce tasks to available TaskTrack-

ers in the cluster. Unlike the pulling model, the pushing model

2461 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

of preshuffling push intermediate data produced by map tasks

to reduce tasks. The preshuffling scheme allows the map tasks

to determine a partition records to be transferred a reduce

task. Upon the arrival of the partition records, the reduce task

sorts and stores these records into the node hosting the reduce

task. Once the reduce task is informed that all the map tasks

have been completed, the reduce task performs a user-defined

function to process each assigned key and its list of values.

The map tasks continue generating intermediate records to be

delivered the reduce tasks.

Let us consider a simple case where a cluster has enough

free slots allowing all the tasks of a job to run after the

job is submitted to the cluster. In this case, we establish

communication channels between a reduce task and all the

map tasks pushing intermediate data to the reduce task. Since

each map task decides reduce tasks to which the intermediate

data should be pushed, the map task transfers the intermediate

data to the corresponding reduce tasks immediately after the

data are produced by the map task.

In some cases, there might not be enough free slots available

to schedule every task in a new Hadoop job. If a reduce task

can not be executed due to limited number of free slots, map

tasks can store intermediate results in memory buffers or local

disks. After a free slot is assigned to the reduce task, the

intermediate results buffered in the map tasks can be sent to

the reduce task.

Shuffle phase time in many cases is much longer than map

phase time (i.e., tasks’ computation time); this problem is

more pronounced true when network interconnects are scarce

resource in a Hadoop cluster. To improve the performance

of the preshuffling scheme, we build a pipeline in the shuffle

phase to proactively transfer intermediate data from map tasks

to reduce tasks. The pipeline aims at increasing the throughput

of preshuffling by overlapping data communications with the

computations of map tasks.

We design a mechanism to create two separate threads in

a map task. The first thread processes input data, generates

intermediate records, and completes the sort phase. The sec-

ond thread manages the aforementioned pipeline that sends

intermediate data from map tasks to reduce tasks immediately

when the intermediate outputs are produced. The two threads

can work in parallel in a pipelining manner. In other words,

the first thread implements the first stage of the pipeline; the

second thread performs the second stage of the pipeline. In this

pipeline, the first stage is focusing on producing intermediate

results to be stored in the memory buffers, whereas the second

stage periodically retrieves the intermediate results from the

buffers and transfers the results to the connected reduce tasks.

C. In-memory Buffer

The push model does not require reduce tasks to wait a

long time period before map tasks complete the entire map

phase. Nevertheless, pushing intermediate data from map to

reduce tasks in the preshuffling phase is still a time-consuming

process. The combiner process in a map task is an aggregate

function (a reduce-like function) that groups multiple distinct

values together as input to form a single value. If we plan

to implement the preshuffling mechanism to directly send

intermediate outputs from map to reduce tasks, we will have

to ignore the combiner process in map tasks. In the native

Hadoop system, the combiner can help map tasks to illuminate

relevant data, thereby reducing data transfer costs. Sending all

the data generated from map tasks to reduce tasks increases

response time and downgrades the performance of Hadoop

applications. Without the pre-sorting and filtering process in

the combiner stage, reduce tasks should spend much time in

sorting for merging values.

Instead of sending an entire buffered content to reduce tasks

2462 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

directly, we design a buffer mechanism to temporary collect

intermediate data. The buffer mechanism immediately sends a

small portion of the intermediate data to reduce tasks as soon

as the portion is produced. A configurable threshold is used to

control the size of the portion. Thus, once the size of buffered

intermediate results reaches the threshold, the map task sorts

the intermediate data based on reduce keys. Next, the map

task writes the buffer to its local disk. Then, the second stage

of the pipeline is invoked to check whether reduce tasks have

enough free slots. If nodes hosting reduce tasks are ready, a

communication channel between the map and reduce tasks are

established. The combined data produced in the first stage of

the pipeline can be passed to reduce tasks in the second stage

of the pipeline.

In cases where nodes hosting reduce tasks are not ready, the

second stage of the pipeline will have to wait until the reduce

tasks are available to receive the pushed data. This pipeline

mechanism aims to improve the throughput of the shuffling

stage, because the pipeline makes it possible for map tasks

to send intermediate data as soon as a portion of the data is

produced by map functions.

In the design of our preshuffling scheme, it is flexible to

dynamically control the amount of data pushed from map

to reduce tasks by adjusting the buffer’s threshold. A high

threshold value means that each portion to be pushed from

map tasks in the second stage of the pipeline is large; a

small threshold value indicates that each portion shipped to

reduce tasks is large. If network interconnects are not overly

loaded, map tasks may become a performance bottleneck. This

bottleneck problem can be addressed by increasing the buffer’s

threshold so that each data portion pushed to reduce tasks is

large. A large threshold is recommended for Hadoop clusters

with fast network interconnects; a small threshold is practical

for Hadoop clusters where networks are a performance bottle-

neck.

IV. IMPLEMENTATION

In Hadoop, reduce tasks will not start their executions until

entire intermediate output of all map tasks have been produced,

although some map tasks may generate some intermediate

results earlier than the other map tasks. In our preshuffling

scheme, map tasks do not need to be synchronized in the way

to produce a group of intermediate data to be sent to reduce

tasks at the same time. Thus, a reduce task can immediately

receive corresponding intermediate data generated by map

tasks. However, the reduce task is unable to apply the reduce

function on the intermediate data until all the date produced by

every map task become available. Like reduce tasks, a Hadoop

job must wait for all map tasks to finish before producing a

final result.

As described in Section III, a map task consists of two

phases: map and map-transfer. The map phase processes an

entire input file, sorts intermediate results, and then sends

them to an output buffer. The sort phase in the map task

groups records sharing the same key together; this group

procedure otherwise should be performed in the reduce phase.

In the map-transfer phase, intermediate data is transferred from

buffer in map tasks to reduce tasks.

A reduce task consists two main phases - shuffle and reduce.

In the shuffle phase, the reduce task not only receives its

portion of intermediate output from each map task, but also

performs a merge sort on the intermediate output from map

tasks. In reduce tasks, the shuffle phase time accounts for a

majority of the total reduce tasks’ execution time. For example,

70% of a reduce task’s time is spent in the shuffle phase. The

shuffle phase is time consuming, because a large amount of

intermediate output from map tasks must be merged and sorted

in this phase. To improve the performance of the shuffle phase,

2463 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

we implement a preshuffling scheme where intermediate data

are immediately merged and sorted when the data are produced

by map tasks. After receiving required intermediate data

from all map tasks, the reduce task performs a final merge

sort function based on intermediate output produced by the

preshuffling scheme. When the reduce task completes its final

merge sort, the task reaches the reduce phase.

In a Hadoop cluster, a master node monitors the progress of

each task’s execution. When a map task starts its execution,

the master node assigns a progress score anywhere in the

range between 0 and 1. The value of a progress score is

assigned based on how much of the input data the map task

has processed [3]. Similarly, we introduce a progress score,

allowing the preshuffling scheme to monitor the progress of

reduce tasks. Progress scores of reduce tasks are assigned

based on how much intermediate data of each portion has

been consumed by the reduce tasks. The progress score is

incorporated with the data structure of intermediate data. Thus,

when a partition of intermediate file is transferred to a reduce

task, the progress score of this partition is also received by

the reduce task. The average progress score of all relevant

partitions in each intermediate data file can be considered as

the progress of a reduce task.

Each node hosting reduce tasks individually runs the tasks.

In heterogeneous Hadoop clusters, nodes may run tasks at dif-

ferent speed. Once a reduce task has made sufficient progress,

the task reports its progress score written to a temporary file

on HDFS. For example, we can set several granularity; the

user can set the default value as 20%, 40%, 60%, 80%, and

100%. When reduce progress reaches this value, the progress

score will be automatically written down to HDFS.

By aggressively pushing data from map tasks to reduce

tasks, the push model can increase the throughput of the

Hadoop system by partially overlapping communication and

transfer times among the map and reduce tasks. The preshuf-

fling scheme, when used in combination with the push model,

can boost the performance of Hadoop clusters. The perfor-

mance improvement offered by preshuffling and the push

model becomes more pronounced when network interconnec-

tion is a performance bottleneck of the clusters.

V. EVALUATION PERFORMANCE

A. Experimental Environment

To evaluate the performance of the proposed preshuffling

scheme incorporated in the push model with a pipelining

technique, we run Hadoop benchmarks on a 10-node cluster.

Table I summarizes the configuration of the cluster used as a

testbed for the performance evaluation. Each computing node

in the cluster is equipped with two dual-core 2.4 GHz Intel

processors, 2GB main memory, 146 SATA hard disk, and a

Gigabit Ethernet network interface card.

TABLE I: Test Bed

CPU Intel Xeon 2.4GHz

Memory 2GB Memory

Disk SEGATE 146GB

Operation System Ubuntu 10.4

Hadoop version 0.20.2

In our experiments, we vary the block size in HDFS to

evaluate the impacts of block size system performance. In this

study, we focus on impact of preshuffling and the push model

on Hadoop and; therefore, we disable the data replica feature

of HDFS. Nevertheless, using the preshuffling mechanism in

combination with the data replica mechanism can significantly

improve performance of Hadoop clusters.

We test the following two Hadoop benchmarks running on

the cluster, in which the preshuffling scheme is integrated with

the push model to improve the performance of the shuffle

phase in Hadoop applications.

2464 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

1) WordCount (WC): This Hadoop application counts the

frequency of occurrence for each word in a text file. Map

tasks process different sections of input files and return

intermediate data that consists of several pairs word and

frequency. Then, reduce tasks add up the values for each

identity word. The Word-Count is a memory-intensive

application.

2) Sort: This Hadoop application puts elements of a list

in a certain order. The most-used orders are numerical

order and lexicographical order. The output list of this

application is in a non-decreasing order.

B. In Cluster

We compare the overall performance between the native

Hadoop and the preshuffling-enabled Hadoop on a 10-node

cluster. We measure the execution times of the two tested

Hadoop benchmarks running on the Hadoop cluster, where

the default block size is 64 MB.

Figure ?? illustrates the progress trend of WordCount pro-

cessing 1GB data on the native Hadoop. The progress trend

shown in Figure ?? indicates how the map and reduce tasks are

coordinating. For example, Figure 1(a) shows that in the native

Hadoop system, the reduce task does not start its execution

until the all the map tasks complete their executions at time

50. Figure 1(b) proves that in the preshuffling-enabled Hadoop,

our push model makes it possible for the reduce task in

WordCount to begins its execution almost immediately after

the map task gets started.

Our solution shortens the execution time of WordCount by

approximately 15.6%, because the reduce task under the push

model receives intermediate output produced by the map tasks

as soon as the output become available.

Figures 1(a) and 1(b) show that it takes 50 seconds to

finish the map task in the native Hadoop and its takes about

Fig. 2: Impact of block size on the preshuffling-enabled

cluster running WordCount.

16MB 32MB 64MB 128MB 256MB
0

2

4

6

8

10

12

14

16

Block Size

Im
pr

ov
em

en
t(

10
0%

)
Fig. 3: Impact of block size on the preshuffling-enabled

Hadoop cluster running Sort.

16MB 32MB 64MB 128MB 256MB
0

2

4

6

8

10

12

14

16

Block Size

Im
pr

ov
em

en
t(

10
0%

)

60 seconds to complete the map in the preshuffling-enabled

Hadoop. The preshuffling-enabled Hadoop system has a longer

map task than the native Hadoop, because in our push model

part of the shuffle phase is handled by the map task rather

than the reduce task in the native Hadoop. Forcing the map

task to process the preshuffling phase is an efficient way of

reducing heavy load imposed on reduce tasks. As a result,

the preshuffling-enabled Hadoop cluster can complete the

execution of WordCount faster than the native Hadoop cluster.

2465 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100
P

ro
gr

es
s

(1
00

%
)

Time (seconds)

map
reduce

(a) The execution time of WordCount processing 1GB data on the native
Hadoop system is 450 seconds.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

P
ro

gr
es

s
(1

00
%

)

Time (seconds)

map
reduce

(b) The execution time of WordCount processing 1GB on the preshuffling-
enabled Hadoop system is 380 seconds.

Fig. 1: The progress trend of WordCount processing 1GB data on the 10-node Hadoop cluster.

C. Large Blocks vs. Small Blocks

Now we evaluate the impact of block size on the perfor-

mance of preshuffling-enabled Hadoop clusters. The goal of

this set of experiments is to quantify the sensitivity of our

preshuffling scheme on the block size using the two Hadoop

benchmarks. We run the WordCount and Sort benchmarks on

both the native Hadoop and the preshuffling-enabled Hadoop

clusters when the block size is set to 16MB, 32MB, 64MB,

128MB, and 256MB, respectively.

Figures 2 and 3 shows the performance improvement of the

preshuffling-enabled Hadoop cluster over the native Hadoop

cluster as a function of the block size. Figure 2 demonstrates

that the improvement offered by preshuffling in case the of

WordCount increases when the block size goes up from 16 MB

to 128 MB. However, increasing the block size from 128 MB

to 256 MB does not provide a higher improvement percentage.

Rather, the improvement slightly drops from 12.5% to 12.2%

when the block size is changed from 128 MB to 256 MB.

The experimental results plotted in Figure 2 suggest that

a large block size allows the preshuffling scheme to offer

good performance improvement. The improvement in terms

of percentage is saturated when the block size is larger than

128 MB.

Figure 3 shows the performance improvement of preshuf-

fling on the 10-node cluster running the Sort application. The

results plotted in Figure 3 are consistent with those shown in

Figure 2. For the two Hadoop benchmarks, the performance

improvement offered by preshuffling is sensitive to block size

when the block size is smaller than 128 MB.

VI. RELATED WORK

Implementations of MapReduce. MapReduce framework

is inspired by the map and reduce functions commonly used

in functional programming [4]. MapReduce is useful in a

wide range of applications including: distributed grep, dis-

tributed sort, web link-graph reversal, term-vector per host,

web access log stats, inverted index construction, document

clustering, machine learning [2], and statistical machine trans-

lation. Moreover, the MapReduce model has been adapted to

several computing environments like multi-core and many-

core systems [1][11], desktop grids, volunteer computing

environments [9], and dynamic cloud environments [10].

Shuffling. Duxbury et al. built a theoretical model to ana-

2466 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

lyze the impacts of MapReduce on network interconnects [12].

There are two new findings in their study. First, during

the shuffle phase, each reduce task communicates with all

map tasks in a cluster to retrieve required intermediate data.

Network load is increased during the shuffle phase due to

intermediate data transfers. Second, at the end reduce phase,

final results of the Hadoop job is written to HDFS. Their study

shows evidence that the shuffle phase can cause high network

loads. Our experimental results confirm that 70% of a reduce

task’s time is spent in the shuffle phase. In this paper, we

propose a preshuffling scheme combined with a push model

to release the network burden imposed by the shuffle phase.

Pipeline. Dryad [8] and DryadLINQ [13] offer a data-

parallel computing framework that is more general than

MapReduce. This new framework enables efficient database

joins and automatic optimizations within and across MapRe-

ductions using techniques similar to query execution planning.

In the Dryad-based MapReduce implementation, outputs pro-

duced by multiple map tasks are combined at the node level

to reduce the amount of data transferred during the shuffle

phase. Compared with this combining technique, partial hiding

latencies of reduce tasks is more important and effective for

shuffle-intensive applications. Such a latency-hiding technique

may be extended to other MapReduce implementations.

Recently, researchers extended the MapReduce program-

ming model to support database management systems in order

to process structured files [7]. For example, Olston et. al

developed the Pig system [6], which is a high-level parallel

data processing platform integrated with Hadoop. The Pig

infrastructure contains a compiler that produces sequences of

Hadoop programs. Pig Latin - a textual language - is the

programming language used in Pig. The Pig Latin language

not only makes it easy for programmers to implement em-

barrassingly parallel data analysis applications, but also offer

performance optimization opportunities.

VII. CONCLUSION

A Hadoop application’s execution time is greatly affected

by the shuffling phase, where an amount of data is transferred

from map tasks to reduce tasks. Moreover, improving per-

formance of the shuffling phase is very critical for shuffle-

intensive applications, where a large amount of intermediate

data is delivered in shuffle phases. Making a high-efficient

shuffling scheme is an important issue, because shuffle-

intensive applications impose heavy network and disk I/O

loads during the shuffle phase. In this paper, we proposed a

new push model, a new preshuffling module, and a pipelining

mechanism to efficiently boost the performance of Hadoop

clusters running shuffle-intensive applications.

In the push model, map tasks automatically send intermedi-

ate data in the shuffle phase to reduce tasks. Unlike map tasks

in the traditional pull model, map tasks in the push model

proactively start sending intermediate data to reduce tasks as

soon as the data are produced. The push model allows reduce

tasks to start their executions earlier rather than waiting until

an entire intermediate data set becomes available. The push

model improves the efficiency of the shuffle phase, because

reduce tasks do not need to be strictly synchronized with their

map tasks waiting for the entire intermediate data set.

Our preshuffling scheme aims to release the load of reduce

tasks by moving the pre-sorting and filtering process from

reduce tasks to map tasks. As a result, reduce tasks with the

support of the preshuffling scheme spend less time in sorting

to merge values.

In the light of the push model and the preshuffling scheme,

we built a 2-stage pipeline to efficiently move intermediate

data from map tasks to reduce tasks. In stage one, local buffers

in a node hosting map tasks temporarily store combined inter-

2467 Jiong Xie et al. / Procedia Computer Science 18 (2013) 2458 – 2467

mediate data. In stage two, a small portion of the intermediate

data stored in the buffers is sent to reduce tasks as soon as

the portion is produced. In the second stage of the pipeline,

the availability of free slots in nodes hosting reduce tasks

are checked. If there are free slots, a communication channel

between the map and reduce tasks are established. In the 2-

stage pipeline, the combined data produced in the first stage

of the pipeline can be passed to reduce tasks in the second

stage of the pipeline.

We implemented the push model along with the preshuffling

scheme in the Hadoop system, where the 2-stage pipeline

was incorporated with the preshuffling scheme. Our experi-

mental results based on two Hadoop benchmarks shows that

preshuffling-enabled Hadoop clusters are significantly faster

than native Hadoop clusters with the same hardware config-

urations. For example, the push model and the preshuffling

scheme powered by the 2-stage pipeline can shorten the exe-

cution times of the two Hadoop applications (i.e., WordCount

and Sort) by an average of 10% and 14%, respectively.

ACKNOWLEDGMENTS

This research was supported by the U.S. National Sci-

ence Foundation under Grants CCF-0845257 (CAREER),

CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187

(CPA), CNS-0831502 (CyberTrust), CNS-0855251 (CRI),

OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-

0830831 (SFS), as well as Auburn University under a startup

grant, and a gift (No. 2005-04-070) from the Intel Corpora-

tion.

REFERENCES

[1] B.He, W.Fang, Q.Luo, N.Govindaraju, and T.Wang. Mars: a MapReduce

framework on graphics processors. ACM, 2008.

[2] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R.

Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine

learning on multicore. In NIPS, pages 281–288, 2006.

[3] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,

Khaled Elmeleegy, and Russell Sears. Mapreduce online. In Proceedings

of the 7th USENIX conference on Networked systems design and

implementation, NSDI’10, pages 21–21, Berkeley, CA, USA, 2010.

USENIX Association.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. OSDI ’04, pages 137–150, 2008.

[5] Adam Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikainen,

and Ville H. Tuulos. Misco: a mapreduce framework for mobile systems.

In Proceedings of the 3rd International Conference on PErvasive Tech-

nologies Related to Assistive Environments, PETRA ’10, pages 32:1–

32:8, 2010.

[6] Apache Software Foundation. The pig project.

http://hadoop.apache.org/pig.

[7] Eric Friedman, Peter Pawlowski, and John Cieslewicz. Sql/mapreduce:

a practical approach to self-describing, polymorphic, and parallelizable

user-defined functions. Proc. VLDB Endow., 2:1402–1413, August 2009.

[8] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: distributed data-parallel programs from sequential

building blocks. SIGOPS Oper. Syst. Rev., 41:59–72, March 2007.

[9] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-chun Feng, Mark

Gardner, and Zhe Zhang. Moon: Mapreduce on opportunistic environ-

ments. In Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing, HPDC ’10, pages 95–106,

New York, NY, USA, 2010. ACM.

[10] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A peer-to-peer

framework for supporting mapreduce applications in dynamic cloud

environments. In Nick Antonopoulos and Lee Gillam, editors, Cloud

Computing, volume 0 of Computer Communications and Networks,

pages 113–125. Springer London, 2010.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.

Evaluating mapreduce for multi-core and multiprocessor systems. High-

Performance Computer Architecture, International Symposium on, 0:13–

24, 2007.

[12] Raplesf. Analyzing network load in map/reduce.

http://blog.rapleaf.com/dev/2010/08/24/analyzing-network-lo

[13] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. Dryadlinq: a system for general-

purpose distributed data-parallel computing using a high-level language.

In Proceedings of the 8th USENIX conference on Operating systems

design and implementation, OSDI’08, pages 1–14, Berkeley, CA, USA,

2008. USENIX Association.

