
Security-Aware Resource Allocation for
Real-Time Parallel Jobs on Homogeneous

and Heterogeneous Clusters
Tao Xie, Member, IEEE, and Xiao Qin, Member, IEEE

Abstract—Security is increasingly becoming an important issue in the design of real-time parallel applications, which are widely used

in the industry and academic organizations. However, existing resource allocation schemes for real-time parallel jobs on clusters

generally do not factor in security requirements when making allocation and scheduling decisions. In this paper, we develop two

resource allocation schemes, called Task Allocation for Parallel Applications with Deadline and Security constraints (TAPADS) and

Security-Aware and Heterogeneity-Aware Resource allocation for Parallel jobs (SHARP), by taking into account applications’ timing

and security requirements in addition to precedence constraints. We consider two types of computing platforms: homogeneous

clusters and heterogeneous clusters. To facilitate the presentation of the new schemes, we build mathematical models to describe a

system framework, security overhead, and parallel applications with deadline and security constraints. The proposed schemes are

applied to heuristically find resource allocations that maximize the quality of security and the probability of meeting deadlines for

parallel applications running on clusters. Extensive experiments using real-world applications and traces, as well as synthetic

benchmarks, demonstrate the effectiveness and practicality of the proposed schemes.

Index Terms—Security constraints, real-time scheduling, security overhead model, parallel jobs, clusters.

Ç

1 INTRODUCTION

OVER the last decade, clusters have become as increas-
ingly popular as powerful and cost-effective platforms

for executing real-time parallel applications [27], [28]. To
improve their utilization and share their resources to
outside users, more clusters are switching from traditional
proprietary computing environments to open systems that
are frequently exposed to public networks [23]. Conse-
quently, they are subject to a variety of external attacks such
as computation-cycle stealing [23], internode communica-
tion snooping [17], and cluster service disruption [14].
Therefore, security mechanisms in the form of security
services like authentication, integrity check, and confidenti-
ality have been deployed on clusters to thwart the attacks
[17], [23]. These security services not only protect cluster
computing platforms from being compromised by hackers
[24] but also meet security requirements imposed by
applications running on clusters [6], [8].

Real-time parallel applications with security require-
ments running on clusters are emerging in many domains,
including online transaction processing systems [2], med-
ical electronics [9], aircraft control [1], and scientific parallel
computing [6]. These applications propose various security
requirements like data privacy [6], data integrity check [8],

and software execution protection [24] and thus are
fundamentally distinguished by runtime uncertainties that
are caused by security needs. For example, in parallel
computing, the protection of computationally expensive or
irreplaceable data, as well as valuable application software,
is critical [13]. In particular, in the business world and the
government, where the data is considered sensitive, the
potential data losses due to a security incident could be
catastrophic [13]. As a result, employing the security
services provided by clusters is essential for security-critical
real-time parallel applications.

Using security services to satisfy the applications’ security
needs, however, incurs security overhead in terms of
computation time, which might violate the applications’
deadlines. The conflicting requirements of good real-time
performance and high quality of security protection imposed
by security-critical real-time applications introduce a new
challenge for resource allocation schemes, that is, how the
real-time and security dilemma can be solved. Moreover,
security heterogeneity (see Section 5.1) existing in hetero-
geneous clusters makes solving this dilemma more difficult,
as the security overhead is node dependent, which means
that for the same level of security service, different computa-
tion nodes incur distinct security overhead. Unfortunately,
existing resource allocation schemes for real-time parallel
applications on clusters [27], [28] normally do not factor in
applications’ security requirements when making resource
allocation decisions and thus are inadequate for security-
critical real-time parallel applications. Hence, security-aware
resource allocation schemes must be developed to bridge the
gap between the incapability of existing schemes and the
need of high quality of security demanded by security-critical
real-time applications. Motivated by this discrepancy, in this
paper, we design and evaluate two security-aware resource
allocation schemes called Task Allocation for Parallel

682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

. T. Xie is with the Department of Computer Science, San Diego State
University, 5500 Campanile Drive, GMCS 544, San Diego, CA 92182.
E-mail: xie@cs.sdsu.edu.

. X. Qin is with the Department of Computer Science and Software
Engineering, Auburn University, Dunstan Hall, Auburn, AL 36849.
E-mail: xqin@auburn.edu.

Manuscript received 28 Dec. 2006; revised 1 July 2007; accepted 6 Sept. 2007;
published online 12 Sept. 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0423-1206.
Digital Object Identifier no. 10.1109/TPDS.2007.70776.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Applications with Deadline and Security constraints (TA-
PADS) and Security-Aware and Heterogeneity-Aware Re-
source allocation for Parallel jobs (SHARP) for real-time
parallel applications running on homogeneous and hetero-
geneous clusters, respectively. TAPADS is developed for
parallel applications represented by directed acyclic graphs
(DAGs), where precedence constraints and communications
among tasks in an application exist, whereas SHARP is
dedicated to embarrassingly parallel applications with no
such precedence constraints and communications [37]. To the
best of our knowledge, TAPADS and SHARP are the first two
security-aware resource allocation strategies for real-time
parallel applications running on clusters. The fundamental
contributions of this paper include the following aspects:

. the design and evaluation of two resource allocation
schemes for real-time parallel jobs, with security
constraints running on homogeneous and hetero-
geneous clusters (extensive experiments using syn-
thetic workloads, traces, and real-world applications
validate the effectiveness of the two security-aware
resource allocation strategies),

. the proposition of a security overhead model that
can be used to quantitatively measure the security
overhead in terms of the computation time intro-
duced by security services, and

. the investigation of the impacts of heterogeneities on
real-time performance and the quality of security.

The rest of this paper is organized as follows: We
summarize related work and our new approach in the next
section. Section 3 describes the system architecture and
security overhead model. In Section 4, we propose the
security-aware allocation scheme for homogeneous clusters.
Section 5 presents the resource allocation scheme for
security-sensitive and real-time applications on heteroge-
neous clusters. Section 6 concludes this paper with summary
and future directions.

2 RELATED WORK AND OUR NEW APPROACH

In this section, first, we discuss related work on parallel job
scheduling, cluster security techniques, and trade-offs be-
tween real-time performance and security. Next, we intro-
duce our new approach for solving the security and real-time
dilemma for security-critical real-time parallel applications.

2.1 Related Work

Since allocation and scheduling parallel jobs onto a set of
processors generally fall into the class of NP-complete
problems [11], the scheduling problem modeled in this
paper is NP-complete as well, because it is essentially a
general problem of scheduling parallel jobs onto a set of
processors plus one more constraint in satisfying security
requirements of parallel jobs. Thus, heuristic scheduling
algorithms become practical solutions to the problem.

The issue of allocating and scheduling real-time applica-
tions using heuristic approaches has been thoroughly
studied [1], [19], [26]. Normally, the goal of these heuristic
algorithms is to improve the real-time performance by
decreasing the number of jobs whose deadlines are missed.
Hou and Shin proposed a resource allocation scheme for
periodic tasks with precedence constraints in distributed

real-time systems [12]. He et al. studied the problem of
dynamic scheduling of parallel real-time jobs executing on
heterogeneous clusters [10]. These schemes provide high
schedulability for real-time systems. However, they are not
suitable for security-sensitive real-time parallel applications
due to their oversight and ignorance of security require-
ments imposed by the applications.

Security concerns on clusters have attracted attention
from researchers in recent years. A vast variety of security
techniques have been developed for clusters [3], [6], [17],
[23]. Connelly and Chien addressed the issue of protecting
tightly coupled, high-performance component communica-
tion [6]. Apvrille and Pourzandi proposed a new security
policy language named distributed security policy (DSP) for
clusters [3]. Although the above security techniques are not
developed to solve the issue of scheduling real-time
applications, the security services that they provide can be
exploited by security-critical real-time parallel applications
to satisfy their security needs.

Since the utilization of security services causes extra
overhead in terms of the computation time, a security
overhead model that quantitatively measures the security
overhead for commonly used security services is essential
for a security-aware resource allocation scheme. Unfortu-
nately, the only previous work on measuring the security
cost was a preliminary method for defining the costs
associated with the network security services proposed by
Irvine and Levin [16]. Even so, they only illustrated three
simple security cost examples, without offering a feasible
security overhead measurement model.

The closest work to this research reported in the
literature has been accomplished by Song et al. very
recently [25]. They developed three risk-resilient strategies
and a genetic-algorithm-based scheme, that is, the Space-
Time Genetic Algorithm (STGA), to provide security
assurance in grid job scheduling. However, their algorithms
cannot be applied on clusters for real-time parallel applica-
tions with security requirements. First, their algorithms are
unable to support real-time applications, as grid jobs can
hardly have real-time constraints. Next, their algorithms
only consider batch scheduling, where jobs are independent
of each other, and thus cannot schedule parallel jobs, where
precedence constraints and communications among tasks
within one job exist.

2.2 Our New Approach

Our work is built upon the related work on cluster security,
security overhead measurement, and real-time parallel job
scheduling. Since snooping, alteration, and spoofing are
three common attacks in cluster environments [23], we
considered three security services, that is, authentication
service, integrity service, and confidentiality service, to
guard clusters. For example, snooping, which is the
unauthorized interception of information, can be countered
by confidentiality services, which encrypt data by using
cryptographic algorithms so that a hacker cannot correctly
interpret the data [4]. We assume that the three security
services are available to security-critical real-time parallel
jobs submitted to a cluster where a security-aware resource
allocation scheme is applied. How the three security
services are provided to parallel jobs can be found in our

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 683

previous work [35], [36]. Security services usually consume
multiple computing resources like computation time,
memory, bandwidth, and storage capacities. However, in
real-time job scheduling, the computation time is the most
important security overhead, because it delays jobs’
completion times, which, in turn, could violate their
deadlines. Hence, we only consider security overhead in
terms of the computation time in this work and leave the
investigation of the impacts of the rest types of security
overhead on security-aware resource management in our
future work. Thereafter, security overhead means the
computation time caused by security services.

Two formats of security requirement specification, a
single security level for each required security service and a
security range for each required security service, are used in
this work. Security level is the strength or safety degree of a
particular security service. Normally, the security level of a
security service corresponds to a particular security
mechanism, because different security mechanisms provide
distinct security strengths. Basically, the security level is a
normalized value when setting the strongest security
mechanism as 1. Security range is the scope that contains
multiple distinct security levels for a particular security
service. The lowest value in a security range indicates the
minimal security strength mandated by the user, whereas
the highest value implies the maximal security strength
necessary for the user, and all the values above should not
be considered. The single-security-level format is suitable
for situations where each job only demands a baseline
(minimal) security level for each security service required,
whereas the security range format is adequate for scenarios
where a security level higher than the maximal value in the
security range is not necessary for a job due to the job’s
relatively low importance or the user’s tight budget.

Parallel applications generally fall into two camps:
nonembarrassingly parallel applications represented by
DAGs and embarrassingly parallel applications. We con-
sidered both in this work, with TAPADS for DAGs and
SHARP for embarrassingly parallel applications. Each
parallel application consists of multiple tasks that share a
common deadline, which is the deadline of the entire
application. Each task in an application demands an array
of security services with different levels. For security
requirements in a security-range format, TAPADS verifies
whether the application’s deadline can be met with all its
tasks’ minimal security levels for all the required security
services satisfied. If so, TAPADS further optimizes the
tasks’ security levels within the security range under the
condition that the security-level enhancements will not
result in the application’s deadline to be violated. Other-
wise, the job will be dropped, because its execution is
unsafe. For each task, SHARP discovers all computation
nodes that can meet its deadline. If no such node can be
found for a task, the entire application will be aborted. If
each task has one or multiple nodes that can meet the
application’s deadline, SHARP assigns the task onto a node
that can minimize the degree of security deficiency (DSD).

3 PRELIMINARIES

We describe in this section mathematical models, which
were built to represent a resource allocation framework and
security overhead. For future reference, we summarize the
notations used in this study in Table 1.

3.1 Resource Allocation Architecture

As depicted in Fig. 1, a cluster comprises m nodes connected
via a high-performance network to process parallel applica-
tions submitted by users. Note that throughout this paper,

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

TABLE 1
Definitions of Notations

the terms application and job are used interchangeably. Let
Y ¼ fy1; y2; . . . ; ymg denote the set of m nodes in a cluster.
Each node communicates with other nodes through message
passing, and the communication time between two tasks
assigned to the same node is assumed to be negligible. Note
that the communication subsystem, which is an underlying
communication infrastructure of a cluster, supports messages
with time constraints, meaning that the worst case link delay
is predictable and bounded. Examples of such real-time
communication subsystems can be found in the literature
[38]. Additionally, the communication subsystem considered
in our study provides full connectivity in a way that any
two nodes are connected through either a physical link or
a virtual link. This assumption is arguably reasonable
for modern interconnection networks (for example Myrinet
[29]) that are widely used in high-performance clusters.

The resource allocation architecture consists of a security-
aware task allocator, an admission controller, and a real-
time scheduler. The security-aware task allocator is intended
to generate resource allocation decisions for each task of a
parallel application, satisfying both security and real-time
requirements. The admission controller is deployed to
perform feasibility checks by determining if arriving parallel
applications can be completed by a cluster before their
specified deadlines. An application will be admitted into
the system if its deadline can be met. The scheduler
satisfies the timing requirements of parallel applications
by assigning high priorities to jobs with early deadlines.

3.2 Security Overhead Model

For each security service, we assume that there are several
alternative security methods or algorithms, which can be
used to accomplish the service. More precisely, we assume
that three authentication methods, HMAC-MD5, HMAC-
SHA-1, and CBC-MAC-AES, are available for users to select
to fulfill the authentication service. Similarly, we assume that
seven hash functions (MD4, MD5, RIPEMD, RIPEMD-128,
SHA-1, RIPEMD-160, and Tiger) and eight encryption
algorithms (SEAL, RC4, Blowfish, Knufu/Khafre, RC5,
Rijndael, DES, and IDEA) are provided for users to realize
the integrity service and the confidentiality service, respec-
tively. In what follows, we first give a general expression of
our security overhead model. Next, we use the integrity
service as an example to show how we assign security levels

to different security mechanisms and how we calculate the

security overhead for each security service. Last, we justify

the feasibility of our security overhead model.
We assume that task ti requires all of the three security

services provided in a sequential order. Letting sji and

cjiðs
j
iÞ be the security level and the overhead of the

jth ðj 2 fa; e; ggÞ security service, the security overhead ci
experienced by ti can be computed as follows:

ci ¼
X

j2fa;e;gg
cji sji

� �
; sji 2 S

j
i ; ð1Þ

cei ðsei Þ, cgi ðs
g
i Þ, and cai ðsai Þ are overheads caused by the

confidentiality, integrity, and authentication services [33].

Sji denotes task ti’s required security-level range of the

jth service.
The performance of the seven hash functions is listed in

Table 2. For example, 23.90 Kbytes/ms means for that every

millisecond, the hash function MD4 can process 23.90-Kbyte

data. Based on its performance, each function is assigned a

security level in the range from 0.18 to 1.0. We assign

security level 1 to the strongest yet slowest hash function

Tiger, and the security levels for the other hash functions

can be calculated as follows, where �gi is the performance of

the ith ð1 � i � 7Þ hash function:

sgi ¼ 4:36
�
�gi ; 1 � i � 7: ð2Þ

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 685

Fig. 1. Security-aware resource allocation architecture.

TABLE 2
Hash Functions for Integrity

For example, the security level of hash function RIPEMD is

0.36, because 4.36/12 is about 0.36. Let sgi be the integrity

security level of task ti. The overhead of the integrity service

can be calculated as follows, where li is the amount of data

whose integrity must be achieved, and �gðsgi Þ is a function

used to map a security level to its corresponding hash

function’s performance:

cgi s
g
i

� �
¼ li

�
�g sgi
� �

: ð3Þ

For instance, the output of the function �gðsgi Þ is

4.36 Kbytes/ms when the input sgi is 1. Similarly, let sei be

the confidentiality security level of task ti. The computation

overhead of a selected confidentiality service can be

calculated as follows, where li is the amount of data whose

confidentiality must be guaranteed, and �eðsei Þ is a function

used to map a security level to its corresponding encryption

method’s performance (the function �eðsei Þ was defined in

[33, Table 1], where the performance and the security levels

of the eight encryption algorithms were summarized):

cei s
e
i

� �
¼ li

�
�e sei
� �

: ð4Þ

Since the security overhead of a particular authentication

method is a constant value, the security overhead of

authentication service cai ðsai Þ is equal to its performance

�aðsai Þ. The function �aðsai Þ can be derived from [33, Table 3].
In fact, how we can quantitatively measure security is

still an open question [5], [16], [18], [22] and is out of the

scope of this paper. The security model used in this paper is

only a step toward finding a way to quantitatively

approximate the relative strength of some commonly used

security mechanisms. We believe that our model is reason-

able in this research due to three reasons. First, the

fundamental assumption of our security overhead model

is valid. Our assumption is that people only accept a slower

security mechanism if and only if it can provide a higher

level of security compared with its faster peers. Although

the strength of some cryptographic schemes could be

orthogonal to their processing overhead, this assumption

is generally safe, because many security mechanisms can

achieve a higher amount of security by doing more

computations [5]. For example, the strength of encryption

schemes depends on the size of the key and the number

of encryption rounds [21]. Larger key sizes or a number of

rounds result in higher levels of security at the cost of

additional computation time [5]. Therefore, the way that we

assign different security mechanisms with distinct security

levels based on their performance is reasonable. Second,

although the measurements of security requirements and

security levels are not completely objective, the improve-

ments of our TAPADS and SHARP algorithms compared

with the existing approaches in terms of security are still

valid, because all algorithms were evaluated using the same

set of security calculation criteria under the same circum-

stance. Third, quantitatively modeling security require-

ments and security levels makes it possible for us to

compare the security performance of different algorithms

and perceive the differences among them.

4 SECURITY-AWARE RESOURCE ALLOCATION

SCHEME FOR HOMOGENEOUS CLUSTERS

4.1 Task Model

4.1.1 Deadline and Precedence Constraints

Applications with dependent real-time tasks can be modeled
by DAGs [15]. Throughout this paper, a parallel application
is defined as a vector J ¼ ðT;E; pÞ, where T ¼ ft1; t2; . . . ; tng
represents a set of nonpreemptable real-time tasks, E is a set
of weighted and directed edges used to represent commu-
nication among tasks (for example, ðti; tjÞ 2 E is a message
transmitted from task ti to tj), and p is the period, that is, a
constant time interval between two successive job instances
of the parallel application J . The precedence constraints of
the parallel application is represented by all the edges in E.
The communication time for sending a message ðti; tjÞ 2 E
from task ti on node mk to task tj on node ma is determined
by eij=bka, where eij is the volume of data, and bka is the
bandwidth between mk and ma. A task is characterized by
three parameters, for example, ti ¼ ðei; li; SiÞ, where ei is the
execution time, li denotes the amount of data (measured
in kilobytes) to be protected, and Si is a vector of
security requirements (see Section 4.1.2.). Note that ei can
be estimated by code profiling techniques and does not
include security overhead.

This study is focused on the issue of allocating periodic
jobs on clusters. A parallel application generates a sequence
of job instances J0

i ; J
1
i ; J

2
i . . . , where Jji must be finished

before Jjþ1
i can start executing. Note that there is a constant

interval between two consecutive job instances. The deadline
of Jji is the arrival time of the next task instance. Although
the arrival time of a task instance is not explicitly specified in
the model, the arrival time can be determined when the task
instance is released dynamically during the system execu-
tion. It has been proved that there exists a feasible schedule
for a set of periodic tasks if and only if there is a feasible
schedule for the planning cycle of the tasks [12]. Note that
the planning cycle is the least common multiple of all the
tasks’ periods. Thus, the behavior of the set of periodic tasks
can be effectively analyzed within the planning cycle.

4.1.2 Security Constraints

A collection of security services required by task ti is
specified as Si ¼ ðS1

i ; S
2
i ; . . . ; Sqi Þ, where Sji represents the

required security level range of the jth security service. Our
allocation schemes aim at determining the most appropriate
point si in space Si, for example, si ¼ ðs1

i ; s
2
i ; . . . ; sqi Þ, where

sji 2 S
j
i , 1 � j � q. A real-world example of real-time

applications with various levels of security requirements
was illustrated in [32].

In an effort to maximize the quality of security, the
resource allocation schemes have to measure the security
benefits gained by a parallel application. We model the
security benefit of the ith task in T as a security-level
function denoted by SL : Si ! <, where < is the summation
of a set of positive real numbers:

SLðsiÞ ¼
Xq
j¼1

wjis
j
i ; ð5Þ

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

where si ¼ s1
i ; s

2
i ; . . . ; sqi

� �
, 0 � wji � 1, and

Pq
j¼1 w

j
i ¼ 1.

Note that wji is the weight of the jth security service for
the task. Users specify in their requests the weights to
reflect relative priorities given to the required security
services. The security benefit of a task set is computed as the
summation of the security levels of all the tasks. Thus, we
have

SLðT Þ ¼
Xn
i¼1

SLðsiÞ; where si ¼ s1
i ; s

2
i ; . . . ; sqi

� �
: ð6Þ

We can obtain the following nonlinear optimization
problem formulation for a task set T :

maximize SLðT Þ ¼
Xn
i¼1

Xq
j¼1

wjis
j
i ;

subject to min Sji

� �
sji � max Sji

� �
;

ð7Þ

where minðSji Þ and maxðSji Þ are the minimum and max-
imum security requirements of task ti.

An array of security services required by message

ðti; tjÞ 2 E is specified as Ŝij ¼ ðŜ1
ij; Ŝ

2
ij; . . . ; ŜpijÞ, where Ŝkij

denotes the required security-level range of the kth security

service. The most appropriate point ŝij in space Ŝij has to be

calculated, for example, ŝij ¼ ðŝ1
ij; ŝ

2
ij; . . . ; ŝpijÞ, where

ŝkij 2 Ŝkij, 1 � j � q. We model the security benefit of the

message as the following function:

SLðŝijÞ ¼
Xp
k¼1

ŵkijŝ
k
ij; ð8Þ

where ŝij ¼ ðŝ1
ij; ŝ

2
ij; . . . ; ŝpijÞ, 0 � ŵkij � 1, and

Pp
j¼1

ŵkij ¼ 1.

Note that weight ŵkij reflects the relative priorities of the
kth required security service. The security benefit of a
message set is calculated as the summation of the security
levels of all the messages:

SLðEÞ ¼
X
ðti;tjÞ2E

SLðŝijÞ; where ŝij ¼ ŝ1
ij; ŝ

2
ij; . . . ; ŝpij

� �
: ð9Þ

The optimal security benefit of the message set can be
computed as follows:

maximize SLðEÞ ¼
X
ðti;tjÞ2E

Xp
k¼1

ŵkijŝ
k
ij;

subject to min ŝkij

� �
ŝkij � max ŝkij

� �
;

ð10Þ

where minðŜkijÞ and maxðŜkijÞ are the minimum and
maximum security requirements of the message.

Now, we can define an optimization problem formula-
tion to compute an optimal security benefit of a parallel
application, which is subject to certain timing and security
constraints:

maximize SV ðT;EÞ ¼ SLðT Þ þ SLðEÞ: ð11Þ

Substituting (7) and (10) into (11) yields the following
security value objective function:

SV ðT;EÞ ¼
Xn
i¼1

Xq
k¼1

wki s
k
i þ

X
ðti;tjÞ2E

Xp
k¼1

ŵkijŝ
k
ij: ð12Þ

4.2 The Task Allocation for Parallel Applications
with Deadline and Security Constraints
Algorithm

This section presents a resource allocation algorithm
TAPADS for homogeneous clusters. Let X be an m by
n binary matrix corresponding to an allocation, in which
n tasks are assigned to m nodes in the cluster. Element xij is
equal to 1 if and only if ti has been allocated to node mj;
otherwise, xij ¼ 0.

The algorithm outlined in Fig. 2 aims at achieving high
security under two conditions: 1) increasing security levels
will not result in missing deadlines and 2) precedence
constraints are satisfied. To meet deadline and precedence
constraints, TAPADS assigns tasks to nodes in a way to
maximize the security measured by PSCðXÞ, which is the
probability that all tasks are executed without any risk of
being attacked and all messages are risk free during the
course of transmissions. Furthermore, TAPADS can main-
tain a high schedulability measured by PSDðXÞ, which is the
probability that all tasks are timely completed. Note that
PSCðXÞ and PSDðXÞ will be derived in Section 4.3.

Before optimizing the security level of each task and
message of a job, TAPADS makes the best effort to satisfy the
deadline and precedence constraints. This can be accom-
plished by calculating the earliest start time and the minimal
security overhead of each task and message in steps 4 and 5. If
the deadline can be guaranteed, provided that the minimal
security requirements are met, the slack time of the initial
allocation can be obtained by step 6.

To efficiently improve the quality of security of the job, in
step 7, TAPADS chooses the most appropriate task or
message in which the security level will be increased.
Specifically, it is desirable to give higher priorities to
security services with higher weights and lower security
overhead. Hence, we define the following benefit-cost ratio
functions, for example, �ji and �̂kij, which measure the
increase in security level by the unit’s security overhead:

�ji ¼w
j
i�s

j
i

.
cji sji þ�sji

� �
� cji sji

� �� �
;

for the jth service of ti;
ð13Þ

�̂kij ¼ ŵkij�ŝkij
.

ĉkij ŝkij þ�ŝkij

� �
� ĉkij ŝkij

� �� �
;

for the kth service of ðti; tjÞ;
ð14Þ

where the numerators represent the weighted increase in
the security level, whereas the denominators indicate the
corresponding increase in security overhead.

After performing steps 7.1 and 7.2, TAPADS identifies
the best candidate in T [E that has the highest benefit-cost
ratio. Formally, the best candidate is chosen based on the
following:

�j
0
i0 ¼ max

1�i�n;1�j�q
�jif g; if max

1�i�n;1�j�q
�jif g max

ðti ;tjÞ2E;1�k�p
�̂kijf g;

�k
0
i0j0 ¼max max

ðti ;tjÞ2E;1�k�p
ð�̂kijÞ

� �
; otherwise:

8><
>: ð15Þ

To yield a maximized security level of the job, steps 7.3
and 7.4 are responsible for increasing the security levels of
more important services at a minimal cost. Thus, the slack
time is distributed on a task or message with the highest

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 687

benefit-cost ratio. Step 7.5 updates the task allocation in
accordance with the increased security level, because the
start times of other tasks and messages are dependent on
how the slack time is distributed. Finally, step 7.6 updates
the slack time.

Theorem 1. The time complexity of TAPADS is
OðkðqjT j þ pjEjÞÞ, where k is the number of times that
step 7 is repeated, q is the number of security services for
computation, p is the number of security service for
communication. jT j is the number of nodes (tasks) in a
DAG, and jEj is the number of directed edges in a DAG.

Proof. The time complexity of allocating and scheduling
tasks subject to precedence and minimal security con-
straints is OðjT j þ jEjÞ (steps 1-6). To effectively boost the
security levels of tasks and messages under the con-
straints (steps 7.3 and 7.4), it takes time OðjT j þ jEjÞ to
select the most appropriate task or message as a
candidate whose quality of security will be improved.
The time complexity of step 7 becomes OðkðqjT j þ pjEjÞÞ.
Thus, the time complexity of TAPADS is

OðjT j þ jEjÞ þOðkðqjT j þ pjEjÞÞ ¼ OðkðqjT j þ pjEjÞÞ:
ut

k cannot be a very big number in practice, because k, in
many cases, is much smaller than jT j þ jEj. Therefore, the
time complexity of TAPADS is reasonably low based on the
expression above.

4.3 Evaluation of Timeliness and Security Risks

In this section, we first explain a way in which tasks are
allocated to nodes subject to precedence constraints. Then, we
derive the probability PSDðXÞ that all tasks meet their
deadline constraints. Finally, we calculate the probability
PSCðXÞ that all tasks and messages are risk free during the
execution of the job. It is to be noted that PSDðXÞ and PSCðXÞ
help in evaluating the performance of our algorithm in
Section 4.4.

4.3.1 Task and Message Scheduling

The proposed allocation scheme relies on the way of
scheduling tasks and messages, which, in turn, depend on
the values of two important parameters: 1) estðtÞ, which is the
earliest start time for task t, and 2) eatðtÞ, which is the earliest
available time for t. Although both estðtÞ and eatðtÞ indicate a
time when task t’s precedence constraints have been met (that
is, all messages from t’s predecessors have arrived), estðtÞ
additionally signifies that node mðtÞ (to which t is allocated)
is now available for t to start execution. Thus, est ðtÞ � eatðtÞ,
and at time eatðtÞ, node mðtÞ may not be ready for t to
execute. In what follows, we derive the expressions of eatðtÞ
and estðtÞ needed for scheduling tasks and messages.

If task ti had only one predecessor task tj, then the
earliest available time eatkðtj; tiÞ on the kth node is given by
the following expression, where fðtjÞ is the finish time of tj,
mstuvðtj; tiÞ is the earliest start time of message ðtj; tiÞ, dji is
the data volume, Buv is the network bandwidth, and dji=Buv

is the transmission time for the message (note that tj and ti
are allocated to the uth and vth nodes):

eatkðtj; tiÞ¼
fðtjÞ; if mðtiÞ¼mðtjÞ;
mstuvðtj; tiÞ þ dji=Buv; otherwise:

�
ð16Þ

mstuvðtj; tiÞ depends on how the message is scheduled
on the links. A message is allocated to a link if the link has
an idle time slot that is later than the sender’s finish time
and is large enough to accommodate the message. Task ti
must wait until the last message from all its predecessors
has arrived. Hence, the earliest available time of ti is the
maximum of eatkðtj; tiÞ over all its predecessors:

eatkðtiÞ ¼ max
ðtj;tiÞ2E

featkðtj; tiÞg: ð17Þ

With (17) in place, we can obtain the earliest start time
estjðtiÞ on the jth node by checking if the node has an idle
time slot that starts later than task’s eatjðtiÞ and is large

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 2. The TAPADS algorithm.

enough to accommodate the task. estjðtiÞ is a parameter used
to derive estðtiÞ, which is the earliest start time for the task on
any node. The expression for estðtiÞ is given as follows:

estðtiÞ ¼ min
Mj2M

festjðtiÞg: ð18Þ

4.3.2 Calculation of PSDðXÞ
We now calculate the probability that all tasks meet the
deadline constraints under allocation X. It is worth noting
that the initial allocation of X must satisfy the following
timing constraint property:

81 � i � n : estðtiÞ þ ei þ cmini � d; ð19Þ

where estðtiÞ is the time obtained from (18), d is the
deadline, ei is the computation time, and cmini is the security
overhead when the minimal security requirements are met.
cmini can be calculated by the following:

cmini ¼
Xq
j¼1

cji min Sji

n o� �
: ð20Þ

Based on an initial task allocation, the scheme judiciously
raises security levels of tasks and messages, provided that
the following property is satisfied:

81 � i � n : estðtiÞ þ ei þ
Xq
j¼1

cjiðs
j
iÞ � d: ð21Þ

The allocation X is feasible if all tasks can be completed
before the deadline. Therefore, the probability PSD (tasks
are timely completed under X with �s) is expressed as
follows:

’iðsiÞ ¼ 1; for estðtiÞ þ ei þ
Xq
j¼1

cjiðs
j
iÞ � d;

’iðsiÞ ¼ 0; otherwise; where �s ¼ ðs1; s2; . . . ; snÞ;
P ðtasks are timely completed under X with �sÞ

¼
Yn
i¼1

’iðsiÞ:

ð22Þ

Under allocation X, the probability that all tasks are
timely completed can be computed as

PSDðXÞ ¼
X
all �sk

pkP ðtasks are timely completed

under X with �skÞ

¼
X
all �sk

pk
Yn
i¼1

’iðskiÞ;

ð23Þ

where the security level vector is represented as
�sk ¼ ðsk1; sk2; . . . ; sknÞ, and pk is the probability that the
security level vector is �sk.

4.3.3 Calculation of PSCðXÞ
The quality of security of a task ti with respect to the
jth security service is calculated as exp ð��jieiÞ, where �ji is
a risk rate (see (24)), and ei is the execution time:

�ji ¼ 1� exp ��ð1� sjiÞ
� �

: ð24Þ

Note that this risk rate model assumes that a risk rate is a
function of security levels, and the distribution of risk count

for any fixed time interval is approximated using a Poisson
probability distribution. The risk rate model is for illustra-
tion purposes only, and the model can be replaced by any
risk rate model with a reasonable parameter � (� is set to
0.002 in our experiments).

The quality of security of ti can be obtained as follows by
considering all security services: Thus,

Yq
j¼1

exp ��ji eiþ
Xq
l¼1

cliðsliÞ
 ! !

¼exp � eiþ
Xq
l¼1

cliðsliÞ
 !Xq

j¼1

�ji

 !
:

ð25Þ

Given an allocation X, the probability that all tasks are
free from being attacked during the execution of the tasks is
computed based on (25). Consequently, we have

PCðXÞ ¼
Yn
i¼1

exp � ei þ
Xq
l¼1

cliðsliÞ
 !Xq

j¼1

�ji

 !
: ð26Þ

Likewise, for the kth security service available for a link

betweenMi andMj, the quality of security of the link during

the time interval t is exp ð��̂kijtÞ, where �̂kij denotes the risk

rate. Without loss of generality, the risk rate is expressed as

the following function of the corresponding security level:

�̂kij ¼ 1� exp ��ð1� skijÞ
� �

: ð27Þ

The quality of security of a message ðta; tbÞ 2 E is
calculated by taking all the security services provided to
the message into account. Thus,

Yp
k¼1

exp ð��̂kij
dab
Bij
Þ ¼ exp � dab

Bij

Xp
k¼1

�̂kij

 !
; ð28Þ

where xai ¼ 1, xbj ¼ 1.
Given an allocation X, the probability that all messages

allocated to the link between Mi and Mj are risk free is
computed as the product of the quality of security of all the
messages. Then, we have

PijðXÞ ¼
Yn
a¼1

Yn
b¼1;b 6¼a

exp xaixbj �
dab
Bij

Xp
k¼1

�̂kij

 !" #
: ð29Þ

Let PLðXÞ be the quality of security of all links under
allocation X. PLðXÞ can be written as

PLðXÞ ¼
Ym
i¼1

Ym
j¼1;j6¼i

PijðXÞ: ð30Þ

Finally, the probability PSCðXÞ can be calculated as
follows, where PCðXÞ and PLðXÞ are obtained from (26)
and (30):

PSCðXÞ ¼ PCðXÞPLðXÞ: ð31Þ

4.4 Performance Evaluation

To demonstrate the strength of TAPADS, we compare it
with the LIST algorithm, which is a well-known scheduler
for parallel applications. To make the comparisons fair, we
slightly modified LIST into three variants—LISTMIN,
LISTMAX, and LISTRND—in a way that these schemes
can meet parallel applications’ security requirements in a

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 689

heuristic manner. However, these three algorithms make no
effort to optimize the quality of security. We believe that
comparing TAPADS with the three non-security-aware
scheduling policies is meaningful, because this way, the
security improvements brought by a security-aware sche-
duler can be clearly noticed. The three baseline algorithms
are given as follows:

1. LISTMIN. The scheduler intentionally selects the
lowest security level of each security services
required by each task of a parallel job.

2. LISTMAX. The scheduler chooses the highest secur-
ity level for each security requirement posed by each
task within a parallel job.

3. LISTRND. Unlike the above two baseline algorithms,
LISTRND randomly picks a value within the security
level range of each service required by a task.

4.4.1 Simulator and Simulation Parameters

Some preliminary results of this part of the study have been
presented in [34]. A simulator was designed and imple-
mented based on the model and the algorithm described in
the previous sections. Table 3 summarizes the key config-
uration parameters of the simulated clusters. The para-
meters of nodes are chosen to resemble real-world
workstations like Sun SPARC-20 and Sun Ultra 10.

Since there is no widely accepted benchmark graph for the
scheduling of parallel jobs represented by DAGs [15], we use
random graphs with diverse parameters to test the perfor-
mance of the TAPADS algorithm. The synthetic parallel job
used for Section 4.4.2 was created by TGFF [7], which is a
randomized task graph generator. We believe that random
graphs with different parameters can approximate various
types of real-world parallel applications. Section 4.4.3 vali-
dates the experimental results from synthetic task graphs by

using a real-world application, that is, digital signal proces-
sing (DSP) system [31]. In a random task graph, the
computational time (the security overhead is not included)
of each node (task) was randomly selected from a triangular
distribution. Similarly, the size of security-required data
generated by a task was arbitrarily chosen from a triangular
distribution. Based on our observations on practical parallel
jobs, the majority of tasks in a parallel job have a very similar
execution time, whereas only a few tasks have either a very
short execution time or a quite-long execution time. The
maximal number of outdegrees in a task graph was set to 25.
The number of in degrees is randomly selected from a
uniform distribution in the range [1, 10].

The performance metrics by which we evaluate the
system performance include the following:

1. Security value. See (12).
2. QSA. This is the quality of security for applications

(see (31)).
3. Guarantee factor. This is zero if a job’s deadline

cannot be met. Otherwise, it is one.
4. Job completion time. This is the earliest time that a job

can finish its execution.

4.4.2 Scalability

This experiment is intended to investigate the scalability of
our algorithm. We scale the number of nodes or Processing
Elements (PEs) in the cluster from 32 to 256. Note that PE
and node are interchangeable throughout this paper. We
used a task graph with 520 tasks, and the deadline is set to
400 seconds Fig. 3 plots the performances as functions of the
number of nodes in the cluster.

The results show that TAPADS exhibits good scalability.
It is observed in Fig. 3a that the amount of improvement
over LISTMIN becomes more prominent with the increas-
ing value of node number. This result can be explained by
the conservative nature of LISTMIN, which merely meets
the minimal security requirements for jobs. Conversely,
LISTMAX can only achieve the same performance as
TAPADS when there are 256 nodes. This is because
LISTMAX only guarantees the maximal security require-
ments of jobs when more nodes are available. We observe in
Fig. 3c that all four algorithms can finish the job in a shorter
time period when more nodes are available.

4.4.3 Evaluation in Real Applications

To validate the results from the synthetic task graphs, we
evaluated the TAPADS scheme by using a real system,
that is, the DSP system [31]. Fig. 4 shows the impact of

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

TABLE 3
Characteristics of System Parameters

Fig. 3. Performance impact of the number of nodes.

deadlines on these schemes, and Fig. 5 reveals the
scalability of the four algorithms. Figs. 4 and 5 demon-
strate that TAPADS can gain performance improvements
in a real system. The strength of TAPADS can be fully
exhibited when the application has a relatively tight
deadline. When the deadline is loose, TAPADS reduces to
LISTMAX. It is suggested that TAPADS can significantly
improve the security value and QSA without increasing
the hardware cost when applications have tight deadline
requirements.

5 SECURITY-AWARE RESOURCE ALLOCATION FOR

HETEROGENEOUS CLUSTERS

TAPADS, as presented in the previous section, can signifi-
cantly improve the performance of homogeneous clusters in
terms of security and schedulability. However, the TAPADS
scheme has no inherent capability of supporting heteroge-
neous clusters, because it assumes that all nodes in a cluster
are identical in terms of computation capacity. This assump-
tion is not always valid in reality. Nonetheless, there are many
heterogeneous clusters [10], [20] on which parallel jobs with
real-time and security requirements are running. In a
heterogeneous cluster, the computation capacities of compu-
tation nodes are diverse. As a result, the execution time of a
task ti in a heterogeneous cluster is a vector of values rather
than one fixed value. Similarly, the security overhead of
task ti is also decided by which computation node it is
assigned. These two new challenges in the forms of
computational heterogeneity and security heterogeneity
prevent TAPADS from being applied in heterogeneous
clusters. In this regard, we are motivated to introduce the
concept of security heterogeneity and to propose a hetero-
geneity-aware resource allocation algorithm to improve the
security of real-time parallel applications running on hetero-
geneous clusters.

5.1 Modeling Computational Heterogeneity and
Security Heterogeneity

We consider a class of embarrassingly parallel applications
(see [30] for some examples), each of which can be
envisioned as a set of tasks without any interaction between
one another. An application is modeled as a tuple
ðT; a; f; d; lÞ, where T ¼ ft1; t2; . . . ; tng represents a set of
n tasks, a and f are the arrival and finish times, d is the
specified deadline, and l denotes the amount of data
(measured in megabytes) to be protected. Each task ti 2 T is
labeled with a pair, for example, ti ¼ ðEi; SiÞ, where Ei and
Si are the vectors of execution times and security require-
ments for task ti. The execution time vector, denoted by
Ei ¼ ðe1

i ; e
2
i ; . . . ; emi Þ, represents the execution time of ti on

each node in the cluster. Each task of a parallel application
requires a set of security services providing various security
levels, which are normalized in the range from 0.1 to 1.0.
Supposing that ti 2 T requires q security services,
Si ¼ ðs1

i ; s
2
i ; . . . ; sqi Þ, which is a vector of security levels,

characterizes the security requirements of the task. The
impacts of these two heterogeneities on system perfor-
mance and security will be investigated in Section 5.4.3.

Let wji denote the computational weight of task ti on
node mj. w

j
i is computed as the ratio between its execution

time on mj and that on the fastest node in the cluster. The
computational heterogeneity level of ti, referred to as HC

i , is
quantitatively measured by the standard deviation of the
computational weights. That is, HC

i is expressed as

HC
i ¼

ffi
1

n

Xn
j¼1

wavgi � w
j
i

� �2

vuut ; ð32Þ

where wji ¼ e
j
i

.
min
n

k¼1
eki
� �

, and wavgi ¼
Pn
j¼1

wji

 !

n.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 691

Fig. 4. Performance impact of deadline for DSP.

Fig. 5. Performance impact of the number of nodes for DSP.

The computational heterogeneity of a parallel applica-
tion with task set T is calculated as

HC ¼ 1

jT j
X
Ti2T

HC
i : ð33Þ

Aside from computation heterogeneity, a cluster may
exhibit security heterogeneity. Each node provides an array
of security services measured by security levels normalized
in the range from 0.1 to 1.0. The security services provided
by node mj is characterized as a vector of security levels
Pj ¼ ðp1

j ; p
2
j ; . . . ; pqjÞ, where pkj ð1 � k � qÞ is the security

level of the kth security service provided by mj.
Given a task ti and its security requirement

Si ¼ ðs1
i ; s

2
i ; . . . ; sqi Þ, the heterogeneity of security require-

ment for ti is represented by the standard deviation of the
security levels in the vector. Thus

HS
i ¼

ffi
1

q

Xq
j¼1

savgi � s
j
i

� �2

vuut ; ð34Þ

where savgi ¼
Pq
j¼1

sji

 !

n.

The security requirement heterogeneity of a parallel
application with task set T is computed by

HS ¼ 1

jT j
X
Ti2T

HS
i : ð35Þ

The heterogeneity of the kth security service in a
heterogeneous cluster is expressed as

HV
k ¼

ffi
1

n

Xn
i¼1

pkavg � pki
� �2

s
; ð36Þ

where pkavg ¼
Pn
i¼1

pki

� �

n.

Similarly, the heterogeneity of security services in
node mj is expressed as

HM
j ¼

ffi
1

q

Xq
k¼1

pavgj � pkj
� �2

s
; ð37Þ

where pavgj ¼
Pq
k¼1

pkj

� �

q.

Using (36), the heterogeneity in the security services of
the cluster can be computed as

HV ¼ 1

jqj
Xq
k¼1

HV
k : ð38Þ

Now, we consider the heterogeneity in security over-
head. As before, the following model accounts for
three security services, including confidentiality, integrity,
and authentication [33]. Let ski and ckijðski Þ be the security
level and overhead of the kth security service. The security
overhead cij experienced by ti on node mj can be computed
using the following:

cij ¼
Xq
k¼1

ckijðski Þ; where ski 2 Si; ð39Þ

cij ¼
X

k2fa;e;gg
ckijðski Þ; where ski 2 Si; ð40Þ

where ceijðsei Þ, c
g
ijðs

g
i Þ, and caijðsai Þ are the overheads caused by

the authentication, confidentiality, and integrity services.
Finally, the security overhead of a task set T is calculated by

c ¼
X
ti2T

Xn
j¼1

xijcij ¼
X
ti2T

Xn
j¼1

xij
X

k2fa;e;gg
ckijðski Þ

0
@

1
A; ð41Þ

where xij ¼ 1 if ti is allocated to node mj,
Pn
j¼1

xij ¼ 1, and

ski 2 Si.

5.2 The Security-Aware and Heterogeneity-Aware
Resource Allocation for Parallel Jobs Algorithm

5.2.1 Problem Formulation

We introduce a closed-form expression for the security
benefit of task ti. Thus, the security benefit of ti is measured
by Security Deficiency (SD), which is quantified as the
discrepancy between requested security levels and offered
security levels. The SD value of the kth service is defined as

gðski ; pkj Þ ¼
0; if ski � pkj ;
ski � pkj ; otherwise;

(
ð42Þ

where ti is allocated to mj.
For the kth security service, a small SD value indicates a

high degree of service satisfaction. A zero SD value implies
that ti’s requirement placed on the kth security service can
be perfectly met. The SD value of ti on mj can be derived
from (43). Thus, the SD value of ti is computed as a
weighted sum of the SD values of q required security
services. Formally, we have

SDðsi; PjÞ ¼
Xq
k¼1

wki g ski ; p
k
j

� �h i
; ð43Þ

where wki is the weight of the kth security service,

0 � wki � 1, and
Pq
k¼1

wki ¼ 1.

Likewise, the security benefit of a parallel application
with task set T is measured by the DSD, which is defined as
the sum of the SD values of all the tasks in the task set.
Consequently, the DSD value of task set T under allocation
X can be written as

DSDðT;XÞ ¼
X
ti2T

Xn
j¼1

xijSD si; Pj
� �
 �

¼
X
ti2T

Xn
j¼1

xij
Xq
k¼1

wki g ski ; p
k
j

� �h i()
;

ð44Þ

where xij ¼ 1 if ti is allocated to node mj,
Pn

j¼1 xij ¼ 1, and
ski 2 Si.

Let X be the schedule for all the tasks in task set T . The
following objective function needs to be minimized, mean-
ing that the DSD of T is optimized:

minimize DSDðT;XÞ ¼
X
ti2T

Xn
j¼1

xij
Xq
k¼1

wki g ski ; p
k
j

� �h i()
; ð45Þ

692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

which is subject to fi � d and 8xij 2 X,
Pn

j¼1 xij ¼ 1 : xij ¼ 1

if ti is allocated to node mj, where fi is the finish time of the

ith task in the task set.
Given a heterogeneous cluster and a sequence of

submitted parallel applications, the SHARP algorithm is
intended to minimize the cluster’s overall DSD value
defined as the sum of the DSD of all the submitted
applications. Finally, we can obtain the following nonlinear
optimization problem formulation for the heterogeneous
cluster, which is subject to the timing constraints:

minimize
X

for all T

DSDðT;XÞ: ð46Þ

Thus, SHARP is designed to minimize the average DSD

(ADSD):

DSD ¼
X

for all T

PsdðT Þ
X
ti2T

Xn
j¼1

xij
Xq
k¼1

wki g ski ; p
k
j

� �h i" #()
, X

for all T

PsdðT Þ;
ð47Þ

where PsdðT Þ is a step function, and

PsdðT Þ ¼
1; if task set T can be timely completed;
0; otherwise:

�

The earliest start time �ji can be computed as

�ji ¼ 	 þ
X

tl2m:dl�d
ejl þ

Xq
k¼1

ckl ð�skl Þ
 !

; ð48Þ

where 	 is the current time, and
P

tl2m:dl�d
ejl þ

Pq
k¼1

ckl ð�skl Þ
� �

is

the overall execution time (the security overhead is factored
in) of all tasks with earlier deadlines than d. If task ti is
running on node mj, the start time �ji is the earliest available
time of ti on mj.

5.2.2 Algorithm Description

The SHARP algorithm is outlined in Fig. 6. The goal of the
algorithm is to deliver high quality of security under
two conditions: 1) deadlines of submitted parallel applica-
tions are met and 2) the DSD (see (44)) of each admitted
parallel application is minimized.

Before reducing the SD value of each task of a parallel
application, SHARP makes an effort to meet the timing
constraint of the application. This can be accomplished by
calculating the earliest start time and the security overhead
of each task (see (39)) in steps 5 and 6, followed by checking
if all the tasks of the application can be completed before
its deadline d (see step 7). If the deadline of a task in
the application cannot be met, the application is rejected by
step 16.

The SD value of each task in the application is minimized

as follows: Step 7 is intended to identify a set of candidate

nodes satisfying the timing constraint. Steps 9-11 are used

to choose a node with the minimal SD among the candidate

nodes. Thus, SHARP eventually allocates each task to a

node that can reduce the SD while meeting the real-time

requirement of parallel applications.

Theorem 2. The time complexity of SHARP is OðmnqÞ, where m

is the number of nodes in a cluster, n is the number of tasks in a

parallel application, and q is the number of security services.

Proof. Selecting a parallel application with the earliest

deadline takes constant time Oð1Þ. The time complexity

of finding the security overhead of each task on a node is

OðqÞ (step 6), since SHARP considers q security services.

The time complexity of feasibility checking is a constant

Oð1Þ (step 7). Since there exist m nodes and n tasks,

steps 5-13 are executed for mn times. Therefore, the time

complexity of steps 2-17 is bounded by OðmnqÞ.
Steps 18-22 take OðnÞ time to allocate n task to m nodes

in the cluster. Thus, the time complexity of SHARP is

Oð1þ nmq þ nÞ ¼ OðnmqÞ. tu

5.3 Evaluation of Security Risks

Now, we derive the probability Prfðti;mjÞ that ti remains

risk free during the course of its execution on node mj. It is

to be noted that the risk-free probability can be used as a

complementary means of quantifying the quality of

security. The risk-free probability of task ti with respect to

the kth service is

Pk
rfðti;mjÞ ¼ exp ��ki eji þ

Xq
l¼1

clijðsliÞ
 ! !

; ð49Þ

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 693

Fig. 6. The SHARP algorithm.

where �ki is the risk rate (see (24)), and clijðsliÞ is the security
overhead.

The risk-free probability of task ti on node mj can be
written as follows: where all the security services provided
to the task are considered. Thus, we have

Prf ti;mj

� �
¼
Yq
k¼1

Pk
rf ti;mj

� �

¼
Yq
k¼1

exp ��ki eji þ
Xq
l¼1

clijðsliÞ
 ! !

¼ exp � eji þ
Xq
l¼1

clijðsliÞ
 !Xq

k¼1

�ki

 !
:

ð50Þ

Using (50), we can write the overall risk-free probability
of task ti in the cluster as

Prf tið Þ ¼
Xn
j¼1

P xij ¼ 1

 �

�Prfðti;mjÞ
� �

¼
Xn
j¼1

pij � exp � ejiþ
Xq
l¼1

clijðsliÞ
 !Xq

k¼1

�ki

 !()
;

ð51Þ

where pij is the probability that ti is allocated to nodemj, and

pij ¼
1; if ti is assigned onto node mj

0; otherwise:

�

Given a parallel application with task set T , the probability
that all tasks are free from being attacked during their
executions is computed based on (51). Consequently, the risk-

free probability of the task set can be computed as follows:

PrfðT Þ ¼
Y
ti2T

Prf tið Þ

¼
Y
Ti2T

Pn

j¼1
pij�exp � ejiþ

Pq
l¼1

clijðsliÞ

� �Pq
k¼1

�ki

� �� �� �
:

ð52Þ

Finally, we can calculate the average risk-free probability

(ARFP) of all schedulable parallel applications on a
heterogeneous cluster as follows:

Prf ¼
X

for all T

PsdðT Þ � PrfðT Þ
 !,X

for all T

PsdðT Þ

¼
X

for all T

PsdðT Þ
Y
Ti2T

Prf Tið Þ
" #(),X

for all T

PsdðT Þ;
ð53Þ

where PsdðT Þ is a step function, and

PsdðT Þ ¼
1; if T can be timely completed;
0; otherwise:

�

It is worth noting that the SHARP approach is conducive to
maximizing the risk-free probabilities of heterogeneous
clusters. As we have explained in Section 5.2.2, for each

task ti, steps 9-11 of SHARP (see Fig. 9) choose a node with
the minimal SD among the candidate nodes. Therefore,

a node who can best meet ti’s security level requirements
will be selected by SHARP as the destination node for ti
(see (42)). Consequently, ti will be executed with its
required security levels or with higher security levels close

to its requirements. In other words, the obtained security

levels of ti will be maximized. Based on (24), a higher

security level for the jth security service implies a lower

risk rate �ji . A lower risk rate indicates a higher risk-free

probability (see (49), (50), and (51)), which, in turn, results

in a higher risk-free probability of a heterogeneous cluster

(see 53). Thus, SHARP maximizes Prf .
The risk-free probability computed by (53) is used in

concert with the DSD (see (47)) to measure the quality of
security provided by a heterogeneous cluster. In the
subsequent section, we quantitatively evaluate the risk-free
probability and DSD for heterogeneous clusters under a
wide range of workload conditions.

5.4 Performance Results and Comparisons

In purpose of revealing the strength of SHARP, we

compared it with two well-known algorithms, namely,

Earliest Deadline First (EDF) and Least Laxity First (LLF).

These algorithms, which are briefly described as follows, are

representative dynamic scheduling algorithms for clusters:

1. EDF: an algorithm that schedules a ready job with
the earliest deadline.

2. LLF: a heuristic that assigns priority based on
the laxity of jobs. A job with minimum laxity is
assigned the highest priority. Laxity ¼ Deadline�
Worst case computation time.

Table 4 summarizes the key configuration parameters of

the simulated heterogeneous cluster.

5.4.1 Simulation Parameters

The parameters of nodes in the simulated cluster are chosen

to resemble real-world workstations like IBM SP2 nodes. We

made use of a real-world trace (for example, the San Diego

Supercomputer Center SP2 log sampled on a 128-node

cluster) to conduct simulations. We modified the trace by

adding a block of security-sensitive data for each task. The

“job number,” “submit time,” “execution time,” and “num-

ber of requested processors” of jobs submitted to the system

are taken directly from the trace. The “deadlines,” “security

requirements of jobs,” and “security-sensitive data size” are

synthetically generated, since these parameters are not

available in the trace. The performance metrics that we used

include the ARFP (see (53)), ADSD (see (47)), and Guarantee

ratio (GR), which is measured as a fraction of the total

submitted parallel applications that are found to be schedul-

able. Although ADSD gives users a quantitative way of

comparing different scheduling algorithms in terms of their

security service satisfaction abilities, ARFP provides us a

means of measuring the probabilities of risk-free task

executions supplied by distinct scheduling schemes.

Although both ADSD and ARFP are security-related perfor-

mance metrics, they complement each other by offering

two different angles to evaluate the quality of security

delivered by scheduling algorithms. GR is a traditional

performance metric for evaluating scheduling algorithms. A

high-performance scheduling algorithm can result in a high

value of GR, which means that the majority of submitted jobs

can be scheduled so that their deadlines are met.

694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

5.4.2 Impact of the Size of Security-Sensitive Data

In this set of experiments, we evaluated the performance
impact of a security-sensitive data size. We tested
six configurations of the size of data to be secured
(see Table 4).

The experimental results are shown in Fig. 7. When the
security-sensitive data size increases, the DSD of SHARP
slightly increases. This observation can be explained as
follows: When SHARP is deployed in the cluster, the
security overhead becomes moderately dominant with the
growing data size, and therefore, the tasks of a parallel
application are more likely to be allocated to nodes
providing lower security levels. The nodes with small
total execution time have low security overhead, meaning
that the security levels offered by these nodes are lower.
Thus, the DSD for SHARP enlarges with the increasing
data size. Unlike SHARP, the DSDs of EDF and LLF
marginally reduce with the increasing value of data size.
This result is reasonable, because EDF and LLF only admit
applications with low security demands when the secur-
ity-sensitive data size is large, thereby being able to meet
the security constraints of most admitted applications.

5.4.3 Heterogeneities in Security and Computation

In this experiment, we investigate the performance impacts
of heterogeneities in security and computation. The
five heterogeneity configurations are detailed in Table 4.

Fig. 8 shows that SHARP fully exhibits its strength when
the heterogeneities increase. For example, SHARP substan-
tially performs better than the alternatives. Additionally,
the risk-free probabilities and DSDs of EDF and LLF
marginally change when the security and computational

heterogeneities increase. When deadlines are tight, SHARP
is significantly superior to EDF and LLF in terms of GR. The
implication behind this result is that SHARP is the most
appropriate algorithm for scenarios where parallel applica-
tions on heterogeneous clusters have tight deadlines.

5.4.4 Scalability

This group of experiments is intended to investigate the
scalability of SHARP. We scale the number of nodes in a
heterogeneous cluster from 32 up to 256. It is observed in
Fig. 9 that SHARP makes more prominent improvements in
the DSD and risk-free probability when the heterogeneous
cluster size scales up. More importantly, SHARP can
achieve high performance, provided that there exist a large
number of nodes in the cluster, because there is a strong
likelihood that SHARP can meet applications’ security
demands while minimizing the execution times.

5.4.5 Central Processing Unit Capacity

In this set of experiments, we examine the security and
performance sensitivities of the three algorithms to CPU
capacities. We varied the CPU capacity (measured as the
speedup over the baseline computation node) from 2 to 10.
The CPU speed of the IBM SP2 66-MHz nodes is
normalized to 1. We normalized the CPU capacity of
the nodes to the values from 2 to 10. The laxity is set to
10,000 seconds, and the number of nodes is fixed to 32.

As before, Fig. 10 reveals that SHARP is superior to the
other two competitors in all the three performance metrics.
In addition, the improvements of SHARP in the DSD and
risk-free probability become more prominent when the
CPU capacity increases. These results and those presented
in Section 5.4.4 indicate that SHARP exhibits good scal-
ability and can improve both the security and performance
of large-scale heterogeneous clusters with powerful CPUs.

6 CONCLUSIONS

This paper aims at presenting security-aware resource
allocation schemes for real-time parallel applications run-
ning on clusters. The schemes consider two parallel
application models, where timeliness and security require-
ments are factored in. For the first part of this study, we
propose TAPADS, an allocation scheme that makes use of
critical-path analysis and security-level refinement to
maximize security and schedulability. In the second part
of the study, we develop SHARP, which is a security-aware
resource allocation algorithm for real-time jobs on hetero-
geneous clusters. SHARP is applied to maximize the

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 695

TABLE 4
System Parameters

Fig. 7. Performance impact of the size of data to be secured.

probability that parallel applications are timely executed

without any risk of being attacked.
Future studies can be performed in the following

directions. First, we will extend the heuristic schemes to

accommodate data transmissions among disk I/O nodes.

Second, we will propose a security-aware resource allocation

scheme where multidimensional computing resources are

considered. For now, we only consider CPU time, which

is one of the computing resources consumed by security

services. Nonetheless, security services require other re-

sources like memory, network bandwidth, and storage

capacities. They might compete with submitted parallel jobs

for these resources. As a result, the resource competition

could noticeably affect the computation time of both

submitted jobs and their required security services. We will

investigate the impact of resource competition on computa-

tion time in our future work. Finally, we intend to incorporate

more security services (for example, authorization and

auditing services) into our resource allocation schemes.

ACKNOWLEDGMENTS

The work reported in this paper was supported by the

US National Science Foundation under Grant CCF-0742187,

San Diego State University under a start-up fund, Auburn

University under a start-up grant, the Intel Corp. under

Grant 2005-04-070, and the Altera Corp. under an Equip-

ment Grant. The authors wish to thank the anonymous

reviewers for their helpful comments.

REFERENCES

[1] T.F. Abdelzaher, E.M. Atkins, and K.G. Shin, “QoS Negotia-
tion in Real-Time Systems and Its Application to Automated
Flight Control,” IEEE Trans. Computers, vol. 49, pp. 1170-1183,
2000.

[2] Q. Ahmed and S. Vrbsky, “Maintaining Security in Firm Real-
Time Database Systems,” Proc. 14th Ann. Computer Security
Application Conf. (ACSAC ’98), pp. 83-90, 1998.

[3] A. Apvrille and M. Pourzandi, “XML Distributed Security Policy
for Clusters,” Elsevier Computers and Security J., vol. 23, no. 8,
pp. 649-658, 2004.

[4] M. Bishop, Computer Security. Addison-Wesley, 2003.
[5] R. Chandramouli, S. Bapatla, K.P. Subbalakshmi, and R.N. Uma,

“Battery Power-Aware Encryption,” ACM Trans. Information and
System Security, vol. 9, no. 2, pp. 162-180, 2006.

[6] K. Connelly and A.A. Chien, “Breaking the Barriers: High
Performance Security for High-Performance Computing,” Proc.
10th New Security Paradigms Workshop (NSPW ’02), pp. 36-42,
2002.

[7] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task Graphs for
Free,” Proc. Sixth Int’l Workshop Hardware/Software Codesign
(CODES/CASHE ’98), pp. 97-101, 1998.

[8] I. Foster, N.T. Karonis, C. Kesselman, and S. Tuecke, “Managing
Security in High-Performance Distributed Computations,” Cluster
Computing, vol. 1, no. 1, pp. 95-107, 1998.

696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 8. Performance impact of security and computational heterogeneities.

Fig. 9. Performance impact of the number of nodes.

Fig. 10. Performance impact of CPU speedup.

[9] S. Gritzalis, “Enhancing Privacy and Data Protection in
Electronic Medical Environments,” J. Medical Systems, vol. 28,
no. 6, pp. 535-547, 2004.

[10] L. He, A. Jatvis, and D.P. Spooner, “Dynamic Scheduling of
Parallel Real-Time Jobs by Modelling Spare Capabilities in
Heterogeneous Clusters,” Proc. Fifth IEEE Int’l Conf. Cluster
Computing (CLUSTER ’03), pp. 2-10, 2003.

[11] A. Jones and J.C. Rabelo, “Survey of Job Shop Scheduling
Techniques,” NISTIR. Nat’l Inst. Standards and Technology, 1998.

[12] C.-J. Hou and K.G. Shin, “Allocation of Periodic Task Modules
with Precedence and Deadline Constraints in Distributed
Real-Time Systems,” IEEE Trans. Computers, vol. 46, no. 12,
pp. 1338-1356, Dec. 1997.

[13] W.T.C. Kramer, A. Shoshani, D.A. Agarwal, B.R. Draney, G. Jin,
G.F. Butler, and J.A. Hules, “Deep Scientific Computing Requires
Deep Data,” IBM J. Research and Development, vol. 48, no. 2,
pp. 209-232, 2004.

[14] B. Krebs, “Hackers Strike Advanced Computing Networks,”
Washington Post, Apr. 2004.

[15] Y.-K. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary
Task Graphs to Multiprocessors Using a Parallel Genetic
Algorithm,” J. Parallel and Distributed Computing, vol. 47, no. 1,
pp. 58-77, 1997.

[16] C. Irvine and T. Levin, “Towards a Taxonomy and Costing
Method for Security Services,” Proc. 15th Ann. Computer Security
Applications Conf. (ACSAC ’99), pp. 183-188, 1999.

[17] W. Li and R.B. Vaughn, “Cluster Security Research Involving the
Modeling of Network Exploitations Using Exploitation Graphs,”
Proc. Sixth IEEE Int’l Symp. Cluster Computing and Grid (CCGrid ’06),
pp. 26-36, 2006.

[18] B. Littlewood, S. Brocklehurst, N.E. Fenton, P. Mellor, S. Page,
D. Wright, J. Dobson, J. McDermid, and D. Gollmann,
“Towards Operational Measures of Computer Security,”
J. Computer Security, vol. 2, no. 3, pp. 211-230, 1993.

[19] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[20] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
“Dynamic Matching and Scheduling of a Class of Independent
Tasks onto Heterogeneous Computing Systems,” Proc. Eighth IEEE
Heterogeneous Computing Workshop (HCW ’99), pp. 30-44, 1999.

[21] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and
E. Roback, “Status Report on the First Round of the
Development of the Advanced Encryption Standard,”
J. Research of the Nat’l Inst. Standards and Technology, vol. 104,
no. 5, pp. 435-459, 1999.

[22] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A Weakest-
Adversary Security Metric for Network Configuration Security
Analysis,” Proc. Second ACM Workshop Quality of Protection
(QoP ’06), pp. 31-38, 2006.

[23] M. Pourzandi, D. Gordon, W. Yurcik, and G.A. Koenig, “Clusters
and Security: Distributed Security for Distributed Systems,” Proc.
Fifth IEEE Int’l Symp. Cluster Computing and the Grid (CCGrid ’05),
pp. 96-104, 2005.

[24] W. Shi, H.H.S. Lee, C. Lu, and M. Ghosh, “Towards the Issues in
Architectural Support for Protection of Software Execution,” ACM
SIGARCH Computer Architecture News, special issue workshop on
architectural support for security and antivirus (WASSA ’05),
vol. 33, no. 1, pp. 6-15, 2005.

[25] S. Song, K. Hwang, and Y.K. Kwok, “Risk-Resilient Heuristics and
Genetic Algorithms for Security-Assured Grid Job Scheduling,”
IEEE Trans. Computers, vol. 55, no. 6, June 2006.

[26] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C. Buttazzo,
Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms. Kluwer Academic Publishers, 1998.

[27] V. Subramani, V.R. Kettimuthu, S. Srinivasan, J. Johnston, and
P. Sadayappan, “Selective Buddy Allocation for Scheduling
Parallel Jobs on Clusters,” Proc. Fourth IEEE Int’l Conf. Cluster
Computing (CLUSTER ’02), pp. 107-116, 2002.

[28] M.E. Thomadakis and J.-C. Liu, “On the Efficient Scheduling of
Non-Periodic Tasks in Hard Real-Time Systems,” Proc. 20th IEEE
Real-Time Systems Symp. (RTSS ’99), pp. 148-151, 1999.

[29] A. Wagner, H.-W. Jin, D.K. Panda, and R. Riesen, “NIC-Based
Offload of Dynamic User-Defined Modules for Myrinet Clusters,”
Proc. Sixth IEEE Int’l Conf. Cluster Computing (CLUSTER ’04),
pp. 205-214, 2004.

[30] B. Wilkinson and M. Allen, Parallel Programming, Techniques and
Applications Using Networked Workstations and Parallel Computers.
Prentice Hall, 1999.

[31] C.M. Woodside and G.G. Monforton, “Fast Allocation of Processes
in Distributed and Parallel Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 4, no. 2, pp. 164-174, Feb. 1993.

[32] T. Xie, “Security-Aware Scheduling for Real-Time Systems,”
PhD dissertation, New Mexico Inst. Mining and Technology,
May 2006.

[33] T. Xie and X. Qin, “Scheduling Security-Critical Real-Time
Applications on Clusters,” IEEE Trans. Computers, vol. 55, no. 7,
pp. 864-879, July 2006.

[34] T. Xie and X. Qin, “A New Allocation Scheme for Parallel
Applications with Deadline and Security Constraints on Clusters,”
Proc. Seventh IEEE Int’l Conf. Cluster Computing (CLUSTER ’05),
pp. 1-10, 2005.

[35] T. Xie and X. Qin, “A Security Middleware Model for Real-time
Applications on Grids,” IEICE Trans. Information and Systems,
special issue on parallel/distributed computing and networking,
vol. E89-D, no. 2, pp. 631-638, 2006.

[36] T. Xie and X. Qin, “A Security-Oriented Task Scheduler for
Heterogeneous Distributed Systems,” Proc. 13th Ann. IEEE Int’l
Conf. High-Performance Computing (HiPC ’06), pp. 35-46, 2006.

[37] T. Xie, X. Qin, and M. Nijim, “SHARP: A New Real-Time
Scheduling Algorithm to Improve Security of Parallel Applica-
tions on Heterogeneous Clusters,” Proc. 25th IEEE Int’l Performance
Computing and Comm. Conf. (IPCCC ’06), Apr. 2006.

[38] Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-
Time Channels in Point-to-Point Packet Switched Network,” IEEE
Trans. Comm., vol. 42, pp. 1096-1105, 1994.

Tao Xie received the BSc and MSc degrees
from Hefei University of Technology, Hefei,
China, in 1991 and 2000, respectively, and the
PhD degree in computer science from the New
Mexico Institute of Mining and Technology in
2006. He is currently an assistant professor in
the Department of Computer Science, San
Diego State University, San Diego, California.
His research interests include security-aware
scheduling, high-performance computing, clus-

ter and grid computing, parallel and distributed systems, real-time/
embedded systems, storage systems, and information security. He is a
member of the IEEE and the IEEE Computer Society.

Xiao Qin received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, Wuhan, China, in 1996
and 1999, respectively, and the PhD degree in
computer science from the University of Nebras-
ka, Lincoln, in 2004. He is currently an assistant
professor of computer science at Auburn Uni-
versity. Prior to joining Auburn University in 2007,
he was with the New Mexico Institute of Mining
and Technology for three years. In 2007, he

received a US National Science Foundation Computing Processes and
Artifacts (NSF CPA) Award. He has been on the program committees of
various international conferences, including the IEEE International
Conference on Cluster Computing (Cluster), the IEEE International
Performance, Computing, and Communications Conference (IPCCC),
and the International Conference on Parallel Processing (ICPP). From
2000 to 2001, he was a subject area editor of the IEEE Distributed
Systems Online. His research interests include parallel and distributed
systems, real-time computing, storage systems, and fault tolerance. He is
a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIE AND QIN: SECURITY-AWARE RESOURCE ALLOCATION FOR REAL-TIME PARALLEL JOBS ON HOMOGENEOUS AND... 697

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

