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Abstract 
 

An efficient resource management mechanism is 
important in a heterogeneous distributed system to 
discover available resources, to allocate an 
appropriate subset of resources to applications, and to 
map data or tasks onto selected resources. The key 
component, task scheduling, draws our attention. 
Makespan is the principal concern of many existing 
researches. But, other QoS requirements are also 
important in more and more realistic applications. 
For example Cloud Computing is expected that the 
service provider is reliable, robust, or highly 
available. In this study, we develop H2ACO (Hybrid 
Heuristic-Ant Colony Optimization) which makes a 
good trade-off between availability and makespans 
for heterogeneous distributed systems running 
multiclass applications. H2ACO comprises two key 
components: (1) an ant optimization algorithm which 
makes initial scheduling decisions; (2) an 
availability-aware scheduling mechanism which 
optimizes initial schedules offered by the first 
component. The experiment results indicate that 
compared with two existing solutions (PSO and 
SSAC), H2ACO significantly improves the 
availability and performance of multiclass tasks 
running in heterogeneous systems. 
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QoS Scheduling; Availability; Optimization. 
 
1   Introduction 

A heterogeneous distributed system (HDS) is a 
group of processors connected via a high speed 
network, which supports the execution of parallel 
applications. The efficiency of executing parallel 
applications on distributed systems depends how the 
tasks are scheduled among the processors. Task 

scheduling is aiming at optimizing some certain 
performance metric. Generally, it involves two parts: 
allocating tasks from applications to the set of 
available processors and ordering the execution of 
the tasks on each processor. The task scheduling 
problem is an NP-complete problem [1, 2]. 

The performance of heterogeneous systems can be 
improved by a wide variety of scheduling algorithms 
[3, 4]. This paper focuses on scheduling of multiclass 
tasks. A multiclass application consists of tasks of 
multiple classes, which are characterized by their 
distinctive arrival rates, execution time distributions 
and availability requirements.  

Existing scheduling algorithms [5, 6] tailored for 
multi-class applications running in heterogeneous 
systems only concentrated on performance. They 
ignore availability constraints of multiclass tasks. 
Processors are not continuously available for 
computation. Recent study [7] shows that it is 
challengeable to achieve both high performance and 
high availability because these two requirements are 
conflicting objectives. For example, it is unwise to 
allocate tasks with availability constraints to 
high-performance computing nodes which offer low 
availability. In this study, we aim at developing a 
scheduling scheme that guarantees the availability 
requirements of multiclass tasks while achieving 
high performance of heterogeneous systems. 

Qin and Xie proposed a novel strategy called 
SSAC (Stochastic Scheduling with Availability 
Constraints) to schedule multiclass tasks in 
heterogeneous systems [7]. However, we observed 
that the SSAC algorithm assigns a large number of 
tasks to a node with a high availability level. As a 
result, system performance achieved by SSAC may 
significantly decline due to imbalanced load. To 
address this performance issue, we presented an 
approach which makes a good trade-off between 
availability and makespan for heterogeneous 
systems. 



In this paper, we propose an algorithm using 
evolutionary computation to schedule multiclass 
tasks running in heterogeneous systems where the 
computing capacity and availability constraints are 
known as a priori. The four major contributions of 
this study are listed below: 
 For the first time, scheduling optimization is 

formally formulated as an integer programming 
problem in the context of heterogeneous 
distributed systems with the availability 
constraints. 

 An optimization approach is presented to 
increase system availability and meanwhile to 
reduce scheduling makespans. 

 A new evolutionary-computation based schedu- 
ling algorithm is proposed to incorporate the 
above optimization scheme to schedule multi- 
class tasks with availability constraints in 
heterogeneous computing systems. 

 It is demonstrated through performance compar- 
isons that the proposed algorithm improves both 
performance and availability of heterogeneous 
systems supporting multiclass applications. 

The rest of this paper is organized as follows. 
Section 2 reviews related work on scheduling 
techniques in heterogeneous systems. Section 3, 
shows a motivational example. Section 4 describes 
the system model and the formalization of the 
scheduling problem with availability constraint. 
Section 5, presents the idea of our optimization 
scheme to solve task scheduling problem in 
heterogeneous systems. The experiments and results 
are given in Section 6. Finally, conclusions are drawn 
in Section 7. 
 
2   Related work 

Many existing scheduling solutions require an 
assumption that machines have 100 percent 
availability. However, this assumption is not valid in 
real-world systems, where maintenance requirements, 
breakdowns, or other constraints make the machines 
unavailable for a certain period of time [8]. 
Importantly, many high-performance applications 
(e.g., military applications, 24*7 healthcare 
applications, and international business applications) 
require computing platforms to have extremely high 
availability [9, 10]. This is because catastrophic 
consequences may occur, even if only one computing 
node becomes unavailable [9]. Therefore, any 
practical scheduling mechanism must make an effort 
to improve the availability of heterogeneous 
computing systems. 

Recently, researchers have developed task 
scheduling strategies for computing systems with 

availability constraints. For example, Wang et al. 
studied a single-machine scheduling problem in 
which tasks have availability constraints [11]. Their 
scheduling scheme aims to minimize total weighted 
completion times with several unavailability periods 
for preemptive jobs. Kacem and Chu proposed a 
single-machine scheduling algorithm to minimize 
total weighted completion time for jobs with a single 
unavailability period [12]. After discovering a new 
lower bound for the problem, Kacem and Chu 
designed two heuristics called WSPT and MWSPT 
(i.e., modified weighted shortest processing time), 
which have the same worst case error bound. 
Recently, Kacem and Chu improved the 
branch-and-bound algorithm using new heuristics 
offering lower bounds [13-14] proposes a new 
job-scheduling algorithm called first come first 
served plus predictor (FCFSPP). This scheduling 
algorithm is based on an existing resource 
availability prediction method that anticipates the 
future availability of resources to help make reliable 
job allocation decisions. 

The existing algorithm SSAC [7] has been proved 
to be a good trade-off between availability and 
responsiveness while maintaining a good 
performance in the average response time of 
multiclass tasks. But the makespan may be 
influenced due to the load imbalance. [15] proposed 
an approach to trade off makespan and availability by 
using quantum-behaved particle swarm optimization.  
The performance improves a little bit. And this paper 
tries to provide much better performance.  
 
3   Motivation example 

To improve the availability of multiclass tasks 
running in a heterogeneous system without degrading 
performance, the SSAC [7] can make good task- 
allocation decisions for each class of tasks to satisfy 
their availability requirements while achieving an 
ideal performance in terms of the response time. This 
approach, of course, tends to distributed tasks over 
some computing nodes providing high availability to 
fully satisfy the tasks’ availability requirements. As a 
result, a large number of tasks might be assigned to a 
single node with the highest availability. Thus, from 
the systematic prospect, the remained availability of 
the entire system and the makespan of tasks may be 
adversely affected due to such a load imbalance. We 
make use of the following motivational example to 
demonstrate that the above availability-aware 
scheduler may lead to imbalanced load and poor 
performance. 

Considering a small-scale scheduling problem 
with 5 tasks and 3-node heterogeneous system, the 



availability levels of these three computing nodes are 
0.98, 0.86 and 0.6, respectively. Other parameters are 
listed in Table 1, in which the columns n0, n1, and n2 
represent execution time of a task on the three nodes, 
respectively, and the column iα represents the 
availability requirement of tasks.  

Table 1 Parameters and their values in example 1 
5 tasks on 3 nodes 0n  1n  2n  iα  

0t  3 5 8 0.50 

1t  6 8 11 0.60 

2t  2 5 4 0.70 

3t  3 6 2 0.82 

4t  5 3 7 0.99 
The scheduling result of an existing scheme (i.e., 

SSAC) is shown in Table 2, which indicates that the 
makespan (the longest completion time of all the 
nodes) is 13 (3+2+3+5=13). The result shows that to 
enhance system availability, the availability cost 
must be reduced. The scheduling decision illustrated 
in Table 2 increased the availability at the cost of 
performance, as load imbalance is caused by 
assigning a large number of tasks to the node with the 
highest availability. We observe that if 0t is moved 
to 2n  from 0n (see Table 3), a better scheduling 
decision is obtained that offers higher system 
availability and shorter makespan. 

Table 2 Makespan of the schedule from SSAC 
5 tasks on 3 nodes 0n  1n  2n  

0t  3 - - 

1t  - 8 - 

2t  2 - - 

3t  3 - - 

4t  5 - - 
Table 3 shows an improved schedule made by an 

optimization algorithm. The makespan of the 
improved schedule is 10, which is 30% smaller than 
that generated by the existing scheme. In addition, 
the system availability offered by the improved 
schedule is higher than that shown in Table 2, since 
the availability cost of 0t  on the new node is smaller. 

Therefore, [7] proposes a simple detector to make 
up for load imbalance. This detector uses a 
customized threshold to judge whether a node is 
overloaded. If the number of tasks on a certain node 
is greater than this threshold, then tasks are 
transferred to the under-loaded ones. The 
improvement of performance by this method is 
limited. This paper proposes a global optimization to 
get a dramatic improvement. 

Table 3 Makespan of an optimized schedule 
5 tasks on 3 nodes 0n  1n  2n  

0t  - - 8 

1t  - 8 - 

2t  2 - - 

3t  3 - - 

4t  5 - - 
 
4   Problem definition 

Based on the aforementioned motivation, we 
address the scheduling problem of multiclass tasks 
with availability constraints in heterogeneous 
systems. Figure 1 outlines the model of a scheduling 
mechanism for heterogeneous computing systems. 
When tasks arrive at the scheduler, the tasks enter a 
queue and wait for processing by the scheduler, 
which is in charge of making scheduling decisions 
and assigning tasks to the appropriate computing 
nodes for execution. 

P1

P2

Pn

·
·
·

Scheduler

Local queues

Arrival queue

t1

t2

tm

·
·
·

Pij

Figure 1 A scheduling mechanism for heterogeneous 
computing systems 

In this model, we consider a heterogeneous system 
containing n nodes connected by a network to 
process independent m classes of non-preemptive 
tasks. Let 1 2{ , ,..., ,..., }j nN n n n n= denotes the set of 
heterogeneous computing nodes, which have various 
speeds and availability levels. 

Note that the following definitions of makespan 
and availability refer to those in [7]. And we propose 
our optimization method based on them in Section 5.  
 
4.1 Makespan analysis 

There are m classes of tasks submitted to a 
heterogeneous system by users. Tasks are 
independent from each other. Each class of tasks has 
an availability requirement specified by the user. 
Values of the availability levels are normalized in the 
range from 0 to 1. For example, users may set 
availability level of critical tasks to 1, which means 
that critical tasks should be assigned to a node which 
ensures that they can be successfully completed. In 
this paper, it is also assumed that tasks of the i th 
( 1 i m≤ ≤ ) class arrive according to a Poisson 



process with rate iλ . All classes of tasks arrive at the 

system at an aggregated rate
1

m
ii

λ λ
=

=∑ . Let ijp  be 

the probability that tasks of the i th class are 
dispatched to node j , where1 j n≤ ≤ . Hence, the 
aggregated task arrival rate of the j th node is 
expressed as  

1

m

j ij i
i

p λ
=

Λ =∑                             (1) 

Let ijµ  denote the service rate of tasks of class i  
on node j , and the corresponding expected service 
time is computed by1/ ijµ . It should be noted that the 
service time of the tasks of class i on node j has a 
general distribution, which is independent of the 
arrival processes. Thus, the service utilization for all 
tasks allocated to node j is as below 

1
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m
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In this study, each node in the system is modeled as a 
single M/G/1 queue. Thus, the schedule length of 
node j  is computed as 
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Where ( )jE s  and 2( )jE s  are the expectation and 

second moment of the service time. ( )jE s  and 
2( )jE s  are given 
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Where js  is the service time of all task classes on 

node j , 2
js  is the square of the service time, and 2

ijs  
is the square of the service time experienced by tasks 
of class i  on node j . 

The expected response time iTC  of tasks of class 
i  can be readily derived from the schedule length of 
nodes (see Eq.3). Hence, we obtain iTC  as given by 
Eq.4 

1
( )

n

i ij j
j

TC p TN
=

= ⋅∑                         (4) 

Now we derive the mean response time of jobs 
averaged over all the classes from Eq.4 as 

1 1 1
( ) ( ( ))

m m n
i i

i ij j
i i j

T TC p TNλ λ
λ λ= = =

= = ⋅∑ ∑ ∑       (5) 

To minimize the schedule length without taking 
availability constraints into account, we have to 
balance load by evenly distributing the service 
utilization. 
 
4.2 Availability analysis 

The availability of node j is characterized by the 
probability jξ that the node is continuously oper- 
ational for computation during any random period. 
The availability of a node is modeled as a function 
determined by a variety of factors including the 
node’s maintenance status, the number of spare 
devices dedicated for the node, and the presence or 
absence of anti-virus software. To determine the 
unavailable rate jθ of node j , we used the fuzzy- 
logic based trust model proposed in [16] to aggregate 
the multiple factors into a normalized scalar value. 
Detailed information regarding the trust model can be 
found in [16]. 

Our availability model is motivated by the 
reliability models found in the literature [17, 18]. Let 
us first introduce the availability cost of class i  on 
node j using Eq.6 as below 

j
ij ij

ij

AC p
θ
µ

=                          (6) 

Where jθ is the unavailable rate of node j . 
Eq.6 shows that the availability cost of class i  on 

node j  is directly proportional to two parameters: (1) 
the probability that tasks of the i th class are 
dispatched to node j  and (2) the unavailable rate of 
node j . Note that the unavailable rate used in this 
study is expressed as Eq.7, whereα used in our 
experiments is 0.1. Eq.7 indicates that the 
unavailable rate of node j  is inversely proportional 
to the availability of node j . System parameterα  
must agree with the measurements taken from real 
systems. Availability jξ  can be estimated and 
provided by hardware vendors. Eq.7 just gives one 
way to calculate unavailable rates for illustration 
purpose, and it is possible to substitute it by any other 
unavailable rate model. 

1 exp( (1 ))j jθ α ξ= − − −                (7) 

The availability cost iAC  of class i  is derived 
from Eq.6 and Eq.7 as follows 
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n n
j

i ij ij
j j ij

AC AC P
θ
µ= =

= =∑ ∑              (8) 

Based on Eq.8, we can express the availability iA  
for class i  as Eq.9.  

1
exp[ ] exp[ ]

n
j

i i ij
j ij

A AC p
θ
µ=

= − = −∑       (9) 

Now we calculate the availability A  exhibited by 
the system. The system’s availability expressed by 
Eq.10 is the probability that the system is 
continuously performing at any random period of 
time. 

1 1 1
( ) { exp[ ]}

m m n
ji i

i ij
i i j ij

A A p
θλ λ

λ λ µ= = =

= = −∑ ∑ ∑  (10) 

Eq.10 indicates that in order to enhance the system 
availability, it is necessary to reduce availability cost 
substantially expressed by Eq.8. 
 
4.3 Problem definition 

The problem of scheduling non-preemptive tasks 
of m classes on n  heterogeneous nodes is 
considered with various speeds and availability. 
Although each task can be completed at any node, 
some nodes may be more efficient than other nodes in 
terms of processing speed. The goal is to find a 
schedule that provides a good trade-off between the 
availability and the makespan. 

Let ijp  be the probability that tasks of the i th 

class are dispatched to node j . If 1ijp = , it means 
that task of class i  is processed on node j . In our 
optimization method, ijp  is binary, and {0,1}ijp ∈ . 
The optimal strategy is defined as below: 

1 ;1* { * }ij i m j nP P ≤ ≤ ≤ ≤≡                   (11) 

(i) , ,i jj α ξ∀ > which means the availability 
requirement of the ith class of tasks cannot be 
satisfied by any nodes. The key is to decrease the 
availability cost of tasks as much as possible without 
harm to the makespan. Refer to Eq.12. 

1 1
{ exp[ ]}

m n
ji

ij
i j ij

Maxmize A p
θλ

λ µ= =

= −∑ ∑  

                        (12) 
 (ii) , ,i jj α ξ∃ ≤  which indicates there is at least one 
node able to satisfy the availability requirement of 
the ith class of tasks. In this case, the key is to 
minimize the makespan.  

1 1
1 1

( ) {max[ ,..., ]}
m m

i i in in
i i

Minmize f x p TN p TN
= =
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(13) 

where ( )f x   is the makespan.  
  Eqs.(12) and (13) are constrained by the equation 
below. 
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    (14) 
In fact, the problem (ii) has already solved in [7]. 

But it considers the mean response time there. For the 
problem (i), the approach in the previous work [7] 
attaches most attention to the system availability, so 
that the negative influence on makespan, load 
imbalance, is caused.  Consequently, the following 
section gives an optimization method to relieve load 
imbalance and a complete scheduling algorithm 
based on Ant Colony Optimization (ACO).  

 
5   H2ACO scheduling algorithm 

The H2ACO scheduling algorithm contains two 
key components. The first component is an ant 
colony optimization algorithm that makes initial 
scheduling decision. The fitness function is the 
reciprocal of f(x) in Eq.13. The second one is an 
availability aware scheduling mechanism to optimize 
the initial schedules made by the first component, 
thereby improving both availability and 
performance.  

In the following, we outline the H2ACO algorithm 
that aims at deciding how to map heterogeneous tasks 
to the most appropriate computing resources to meet 
users’ availability requirements. Our scheme 
performs the following four steps to make a 
scheduling decision. 
 Step 1: Run a scheduling algorithm to map tasks 

to set of heterogeneous computing nodes. 
 Step 2: Migrate certain tasks from one node to 

another node which has lower availability cost 
or satisfies the availability requirement of the 
task. 

 Step 3: Check whether migrations made in Step 
2 can satisfy the following condition: 
The total makespan is decreased if doing so. 

 Step 4: Repeatedly perform Step 2 and Step 3 
until the schedule cannot be further optimized. 

Let us denote response times on n  nodes as 1RT , 

2RT ,... nRT , with which we model its makespan as 

1 2max{ , ,..., }nRT RT RT RT= . Our optimization 
scheme aims at improving system availability 
without adversely increasing the makespan of 



schedules. From Eq.6, to enhance system availability 
actually means to reduce the availability cost. 

The conditions used in Steps 2 and 3 to determine 
the qualified migrations can be formally expressed 
below.  

, ,i jj α ξ∃ ≤  Otherwise ,jk

ik ij

θθ
µ µ

>  

j ij oldRT TC RT+ ≤                   (15) 

where oldRT  represents the makespan before task i  
is migrated from node k  to node j . 

The optimization processes (i.e., Step 2 and Step 3) 
are repeatedly performed until the schedule cannot be 
further optimized (see Step 4). After the optimization 
procedure terminates, the optimization process can 
fulfill the following conditions. 

new oldA A>  
(16) 

new oldRT RT<                            
where oldA  and oldRT are the old system availability 
and makespan, while newA  and newRT  are the new 
availability and makespan after optimization. 

Let us make use of the motivation example to 
demonstrate how the optimization process is carried 
out. We assume that the availability cost of 0t  on 0n  
is 0.67, while the availability cost of 0t on node 2n  is 
0.54. Table 1 shows that the availability requirement 
of 0t  is 0.50, which is smaller than the availability of 
node 2n  (0.60), so the availability of node 2n  can 
satisfy the availability constraints of 0t . Although 
the execution time of 0t  on node 2n  is larger than 
that on node 0n , migrating 0t  to 2n  still can shorten 
the total makespan (see Table 3).  

We can improve the performance by migrating 
tasks to new nodes after a tentative schedule is made 
by any immature algorithm. Steps 2-4 give this 
optimization scheme to further improve the overall 
scheduling performance.  

The H2ACO approach addresses the scheduling 
problem of m  classes of non-preemptive tasks on n  
heterogeneous nodes with various speed and 
availability. The initial schedule in Step 1 is 
generated by an algorithm based on ACO approach. 
The H2ACO scheme strives to find a schedule that 
provides a good trade-off between the availability 
and the makespan. Algorithm 1 outlines the basic 
idea of H2ACO algorithm, and its time complexity is 

( 2 )O n mn+ . 
Algorithm 1 The H2ACO Algorithm 
Initialize ants’ distribution among nodes  

Repeat 
   for each ant do 
       for each task in an application do 
             select next route 
       end for 
       evaluate fitness of individual path 
       update pheromone along its path 
   end for 
until maximal iterations we set 
for 0j =  to n  do 

1 2max{ , ,..., }old nRT RT RT RT=  
end for 
for 0i =  to m  do 

for 0j =  to n  do 

calculate j

ij

θ
µ

 

end for 
end for 
repeat  

for 0i =  to m  do 
for 0j =  to n  do 

if node j  satisfied expression (15) then 
move i  to j  from the original node 
end if 

end for 
end for  

until the user terminates the algorithm; 
 
6   Experimental results 

To evaluate the efficiency of our algorithm, we 
implement it in Simgrid - a modular trace-driven 
simulator, and conduct extensive simulation studies. 
We also implement H2ACO and deploy it on real 
clusters to validate our simulation results. 

Let us first describe the simulation environment. 
Simgrid contains a set of core abstractions and 
functionalities that allow us to quickly implement 
H2ACO for multiclass applications running in 
heterogeneous computing environments. Simgrid 
provides the following two components: 
 The SG toolkit: is the original low-level toolkit, 

with which simulations are conducted in the 
form of explicitly scheduling tasks on some 
resources. 

 The MSG simulator: is an application-oriented 
simulator built using SG. It can be used to 
perform realistic simulations supported by the 
SG toolkit. The simulator was built on the 
concept of communicating agents. 

Two performance metrics considered in our 
experiments are makespan and system availability, 
which are defined below: 



 Makespan: The makespan of a schedule is the 
maximal time of the individual nodes spent on 
completing the tasks assigned to them. The 
scheduling time is equal to the sum of execution 
time and waiting time. 

 Availability: The availability of a heterogeneous 
system is measured by Equation 10. 

Our algorithm is compared with two existing 
solutions-the SSAC, and ACO algorithms. These 
algorithms. One is SSAC[7] which have the same 
model with our approach. The other is the approach 
of [15] which makes trade-off between makespan and 
availability using Particle Swarm Optimization 
(PSO). In the figures, we use PSO to represent the 
second approach. These algorithms are the best 
candidate algorithms to be compared with our 
algorithm. 

To make fair comparisons, we implement all the 
three algorithms within the same scheduling 
framework. The implementations of the above three 
algorithms share identical data structures (i.e., an 
arrival queue and multiple local queues) and 
supporting modules (e.g., the task dispatcher).  

Three groups of experiments are performed. In the 
first two groups of experiments, we use synthetic task 
sets running on simulated clusters to show the 
impacts of the task-set size and service rate on 
H2ACO and its alternatives. In the last group of 
experiments, we validate the simulation results by 
running real applications on a heterogamous cluster. 
 
6.1   Impacts of task sets 

In the first group of experiments, we focus on the 
impacts of the size of task sets on H2ACO and its two 
alternatives-PSO and SSAC. We schedule and assign 
20 tasks on a 5-node heterogeneous cluster. The 
availabilities of the five computing nodes are 0.804, 
0.576, 0.698, 0.732, and 0.468, respectively. 

Figures 2-4 shows the availabilities, response 
times, and makespans of the schedules made by 
H2ACO, SSAC and PSO under the synthetic task sets 
when the task size varies from 20 to 100. Figure 2 
compares the availabilities of the three algorithms.  It 
decreases when the task size increases. The 
availability offered by H2ACO is noticeably higher 
than those provided by the two alternative 
approaches. For example, when task set is 40, 
H2ACO substantially improves the system 
availability.  

Figures 3-4 show the response times and 
makespans of the task sets. For all the three examined 
algorithms, the response time and makespans are 
increasing when the task size grows. Makespans 
largely depend on response time and availability, 
because makespan measures time interval between 

the earliest task’s arrival time and the last task’s 
finishing time on a specific node. Therefore, the 
increased makespan is attributed to the increase in 
response time. Figures 3-4 illustrate that H2ACO 
helps in reducing both the response time and 
makespan of schedules. The improvement of 
H2ACO becomes more pronounced when the task set 
is large (e.g., 100). H2ACO makes good trade-off 
between makespan and availability. Thus, the results 
plotted in Figures 2-4 confirm that compared with 
SSAC and PSO, H2ACO improves system 
availability, response time, and makespan in terms of 
task size. 

 
Figure 2 The availability of the schedules made by 

H2ACO, SSAC and PSO 

 
Figure 3 The response time of the schedules made by 

H2ACO, SSAC and PSO 

 
Figure 4 The makespan of the schedules made by H2ACO, 

SSAC and PSO 
 

6.2   Impacts of service rate 
In the second group of experiments, we study the 

impacts of service rate on H2ACO. Figures 5-6 plot 
the availabilities and response times of the three 
scheduling approaches when the service rate 



(No./Sec) increases from 0.2 to 1. The size of the task 
sets in the experiments shown in Figure 5 is 40. The 
service rate represents the speed at which each node 
can process tasks. A node with higher service rate 
handles more tasks than those with lower service rate.  

 
Figure 5 The availabilities of the schedules made by 

H2ACO, SSAC and PSO 

 
Figure 6 The response times of the schedules made by 

H2ACO, SSAC and PSO  
The results in Figure 5 illustrate that the 

heterogeneous systems with higher service rates can 
benefit more from H2ACO in terms of availability. 
Figure 6 reveals that H2ACO maintains a similar 
response time in contrast with SSAC and PSO when 
the service rate is higher than 0.4 No./Sec. When the 
service rate is low (e.g., 0.2 No./Sec.), H2ACO has 
the shortest response time compared with SSAC and 
PSO. 
 
6.3 Real applications and clusters 

In the last group of experiments, we compare 
H2ACO with SSAC and PSO using applications 
running on 8-node heterogeneous cluster. In this 
experiment, we run 20 molecular dynamics 
applications which solve molecular collision 
problems and simulate the processes of molecular 
ionization, adsorption, composite, diffusion, and 
photoionization. To test the scalability of H2ACO, 
we run the applications on 4-node, 6-node, and 
8-node heterogeneous clusters, respectively. 

Figures 7-8 shows the availabilities of the 
schedules made by H2ACO, SSAC and PSO. Figure 
7 confirms that for the real scientific applications, 
H2ACO still offers higher availability than SSAC 
and PSO. For example, in the case of the 4-node 

cluster, H2ACO improves the availability over SSAC 
and PSO by 42.5% and 36.25%, respectively. The 
4-node cluster benefits more from H2ACO in terms 
of availability than 6-node and 8-node clusters, 
because both SSAC and PSO perform poorly for the 
4-node cluster. It is observed that the cluster’s 
availability increases as the number of nodes grows 
for the three algorithms. This is possibly caused by 
the reason that more diverse nodes in a 
heterogeneous cluster offer more opportunities for 
system availability satisfaction. 

 
Figure 7 The comparisons of availability measurements 

among H2ACO, SSAC and PSO 
Figure 8 reveals the comparison of makespan 

measurements among H2ACO, SSAC and PSO. 
Figure 8 shows that H2ACO achieves the shortest 
makespan for the real applications compared with 
both SSAC and PSO. For instance, when it comes to 
the 8-node cluster running the real applications, 
H2ACO reduces the makespan by 25.7% and 17.1% 
in contrast with SSAC and PSO. Moreover, we 
observe that increasing the number of nodes can help 
in reducing the makespan. The makespan reduction 
provided by H2ACO becomes more pronounced 
when the number of nodes increases from 4 to 8. We 
conclude that in terms of makespan, large-scale 
clusters can benefit more from H2ACO than SSAC 
and PSO. 

 
Figure 8 The comparisons of makespan measurements 

among H2ACO, SSAC and PSO 
 

7   Conclusion and future work 



Traditional scheduling solutions can no longer 
provide satisfactory resource management for 
heterogeneous systems running multiclass tasks with 
availability constraints. Based on the existed model, 
we define the scheduling problem for multiclass 
applications under heterogeneous computing systems. 
Then we come up with an optimization mechanism 
and further propose a scheduling algorithm using Ant 
Colony Optimization technique. In a word, a better 
trade-off between availability and makespan is 
achieved in this study. 

In future work, it is planned to extend H2ACO by 
investigating two intriguing issues: upgrade H2ACO 
for parallel applications that have flexible availability 
requirements; apply dynamic programming and 
branch-and-bound approaches when scheduling 
multiclass tasks in heterogeneous computing 
systems. 
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