
Journal of Internet Technology, vol. 15, no. 1, pp. 115-124, January 2014.

H2ACO: An Optimization Approach to Scheduling Tasks with Availability
Constraint in Heterogeneous Systems

ZHAO TONG1, KENLI LI1, ZHENG XIAO1, XIAO QIN2

1 College of Information Science and Engineering
Hunan University

 CHINA
{tongzhao1985, lkl, zxiao}@hnu.edu.cn

2 Department of Computer Science and Software Engineering
Auburn University, USA

http://www.eng.auburn.edu/~xqin
xqin@auburn.edu

Abstract

An efficient resource management mechanism is
important in a heterogeneous distributed system to
discover available resources, to allocate an
appropriate subset of resources to applications, and to
map data or tasks onto selected resources. The key
component, task scheduling, draws our attention.
Makespan is the principal concern of many existing
researches. But, other QoS requirements are also
important in more and more realistic applications.
For example Cloud Computing is expected that the
service provider is reliable, robust, or highly
available. In this study, we develop H2ACO (Hybrid
Heuristic-Ant Colony Optimization) which makes a
good trade-off between availability and makespans
for heterogeneous distributed systems running
multiclass applications. H2ACO comprises two key
components: (1) an ant optimization algorithm which
makes initial scheduling decisions; (2) an
availability-aware scheduling mechanism which
optimizes initial schedules offered by the first
component. The experiment results indicate that
compared with two existing solutions (PSO and
SSAC), H2ACO significantly improves the
availability and performance of multiclass tasks
running in heterogeneous systems.

Keywords: Heterogeneous systems; Task scheduling;
QoS Scheduling; Availability; Optimization.

1 Introduction

A heterogeneous distributed system (HDS) is a
group of processors connected via a high speed
network, which supports the execution of parallel
applications. The efficiency of executing parallel
applications on distributed systems depends how the
tasks are scheduled among the processors. Task

scheduling is aiming at optimizing some certain
performance metric. Generally, it involves two parts:
allocating tasks from applications to the set of
available processors and ordering the execution of
the tasks on each processor. The task scheduling
problem is an NP-complete problem [1, 2].

The performance of heterogeneous systems can be
improved by a wide variety of scheduling algorithms
[3, 4]. This paper focuses on scheduling of multiclass
tasks. A multiclass application consists of tasks of
multiple classes, which are characterized by their
distinctive arrival rates, execution time distributions
and availability requirements.

Existing scheduling algorithms [5, 6] tailored for
multi-class applications running in heterogeneous
systems only concentrated on performance. They
ignore availability constraints of multiclass tasks.
Processors are not continuously available for
computation. Recent study [7] shows that it is
challengeable to achieve both high performance and
high availability because these two requirements are
conflicting objectives. For example, it is unwise to
allocate tasks with availability constraints to
high-performance computing nodes which offer low
availability. In this study, we aim at developing a
scheduling scheme that guarantees the availability
requirements of multiclass tasks while achieving
high performance of heterogeneous systems.

Qin and Xie proposed a novel strategy called
SSAC (Stochastic Scheduling with Availability
Constraints) to schedule multiclass tasks in
heterogeneous systems [7]. However, we observed
that the SSAC algorithm assigns a large number of
tasks to a node with a high availability level. As a
result, system performance achieved by SSAC may
significantly decline due to imbalanced load. To
address this performance issue, we presented an
approach which makes a good trade-off between
availability and makespan for heterogeneous
systems.

In this paper, we propose an algorithm using
evolutionary computation to schedule multiclass
tasks running in heterogeneous systems where the
computing capacity and availability constraints are
known as a priori. The four major contributions of
this study are listed below:
 For the first time, scheduling optimization is

formally formulated as an integer programming
problem in the context of heterogeneous
distributed systems with the availability
constraints.

 An optimization approach is presented to
increase system availability and meanwhile to
reduce scheduling makespans.

 A new evolutionary-computation based schedu-
ling algorithm is proposed to incorporate the
above optimization scheme to schedule multi-
class tasks with availability constraints in
heterogeneous computing systems.

 It is demonstrated through performance compar-
isons that the proposed algorithm improves both
performance and availability of heterogeneous
systems supporting multiclass applications.

The rest of this paper is organized as follows.
Section 2 reviews related work on scheduling
techniques in heterogeneous systems. Section 3,
shows a motivational example. Section 4 describes
the system model and the formalization of the
scheduling problem with availability constraint.
Section 5, presents the idea of our optimization
scheme to solve task scheduling problem in
heterogeneous systems. The experiments and results
are given in Section 6. Finally, conclusions are drawn
in Section 7.

2 Related work

Many existing scheduling solutions require an
assumption that machines have 100 percent
availability. However, this assumption is not valid in
real-world systems, where maintenance requirements,
breakdowns, or other constraints make the machines
unavailable for a certain period of time [8].
Importantly, many high-performance applications
(e.g., military applications, 24*7 healthcare
applications, and international business applications)
require computing platforms to have extremely high
availability [9, 10]. This is because catastrophic
consequences may occur, even if only one computing
node becomes unavailable [9]. Therefore, any
practical scheduling mechanism must make an effort
to improve the availability of heterogeneous
computing systems.

Recently, researchers have developed task
scheduling strategies for computing systems with

availability constraints. For example, Wang et al.
studied a single-machine scheduling problem in
which tasks have availability constraints [11]. Their
scheduling scheme aims to minimize total weighted
completion times with several unavailability periods
for preemptive jobs. Kacem and Chu proposed a
single-machine scheduling algorithm to minimize
total weighted completion time for jobs with a single
unavailability period [12]. After discovering a new
lower bound for the problem, Kacem and Chu
designed two heuristics called WSPT and MWSPT
(i.e., modified weighted shortest processing time),
which have the same worst case error bound.
Recently, Kacem and Chu improved the
branch-and-bound algorithm using new heuristics
offering lower bounds [13-14] proposes a new
job-scheduling algorithm called first come first
served plus predictor (FCFSPP). This scheduling
algorithm is based on an existing resource
availability prediction method that anticipates the
future availability of resources to help make reliable
job allocation decisions.

The existing algorithm SSAC [7] has been proved
to be a good trade-off between availability and
responsiveness while maintaining a good
performance in the average response time of
multiclass tasks. But the makespan may be
influenced due to the load imbalance. [15] proposed
an approach to trade off makespan and availability by
using quantum-behaved particle swarm optimization.
The performance improves a little bit. And this paper
tries to provide much better performance.

3 Motivation example

To improve the availability of multiclass tasks
running in a heterogeneous system without degrading
performance, the SSAC [7] can make good task-
allocation decisions for each class of tasks to satisfy
their availability requirements while achieving an
ideal performance in terms of the response time. This
approach, of course, tends to distributed tasks over
some computing nodes providing high availability to
fully satisfy the tasks’ availability requirements. As a
result, a large number of tasks might be assigned to a
single node with the highest availability. Thus, from
the systematic prospect, the remained availability of
the entire system and the makespan of tasks may be
adversely affected due to such a load imbalance. We
make use of the following motivational example to
demonstrate that the above availability-aware
scheduler may lead to imbalanced load and poor
performance.

Considering a small-scale scheduling problem
with 5 tasks and 3-node heterogeneous system, the

availability levels of these three computing nodes are
0.98, 0.86 and 0.6, respectively. Other parameters are
listed in Table 1, in which the columns n0, n1, and n2
represent execution time of a task on the three nodes,
respectively, and the column iα represents the
availability requirement of tasks.

Table 1 Parameters and their values in example 1
5 tasks on 3 nodes 0n 1n 2n iα

0t 3 5 8 0.50

1t 6 8 11 0.60

2t 2 5 4 0.70

3t 3 6 2 0.82

4t 5 3 7 0.99
The scheduling result of an existing scheme (i.e.,

SSAC) is shown in Table 2, which indicates that the
makespan (the longest completion time of all the
nodes) is 13 (3+2+3+5=13). The result shows that to
enhance system availability, the availability cost
must be reduced. The scheduling decision illustrated
in Table 2 increased the availability at the cost of
performance, as load imbalance is caused by
assigning a large number of tasks to the node with the
highest availability. We observe that if 0t is moved
to 2n from 0n (see Table 3), a better scheduling
decision is obtained that offers higher system
availability and shorter makespan.

Table 2 Makespan of the schedule from SSAC
5 tasks on 3 nodes 0n 1n 2n

0t 3 - -

1t - 8 -

2t 2 - -

3t 3 - -

4t 5 - -
Table 3 shows an improved schedule made by an

optimization algorithm. The makespan of the
improved schedule is 10, which is 30% smaller than
that generated by the existing scheme. In addition,
the system availability offered by the improved
schedule is higher than that shown in Table 2, since
the availability cost of 0t on the new node is smaller.

Therefore, [7] proposes a simple detector to make
up for load imbalance. This detector uses a
customized threshold to judge whether a node is
overloaded. If the number of tasks on a certain node
is greater than this threshold, then tasks are
transferred to the under-loaded ones. The
improvement of performance by this method is
limited. This paper proposes a global optimization to
get a dramatic improvement.

Table 3 Makespan of an optimized schedule
5 tasks on 3 nodes 0n 1n 2n

0t - - 8

1t - 8 -

2t 2 - -

3t 3 - -

4t 5 - -

4 Problem definition

Based on the aforementioned motivation, we
address the scheduling problem of multiclass tasks
with availability constraints in heterogeneous
systems. Figure 1 outlines the model of a scheduling
mechanism for heterogeneous computing systems.
When tasks arrive at the scheduler, the tasks enter a
queue and wait for processing by the scheduler,
which is in charge of making scheduling decisions
and assigning tasks to the appropriate computing
nodes for execution.

P1

P2

Pn

·
·
·

Scheduler

Local queues

Arrival queue

t1

t2

tm

·
·
·

Pij

Figure 1 A scheduling mechanism for heterogeneous
computing systems

In this model, we consider a heterogeneous system
containing n nodes connected by a network to
process independent m classes of non-preemptive
tasks. Let 1 2{ , ,..., ,..., }j nN n n n n= denotes the set of
heterogeneous computing nodes, which have various
speeds and availability levels.

Note that the following definitions of makespan
and availability refer to those in [7]. And we propose
our optimization method based on them in Section 5.

4.1 Makespan analysis

There are m classes of tasks submitted to a
heterogeneous system by users. Tasks are
independent from each other. Each class of tasks has
an availability requirement specified by the user.
Values of the availability levels are normalized in the
range from 0 to 1. For example, users may set
availability level of critical tasks to 1, which means
that critical tasks should be assigned to a node which
ensures that they can be successfully completed. In
this paper, it is also assumed that tasks of the i th
(1 i m≤ ≤) class arrive according to a Poisson

process with rate iλ . All classes of tasks arrive at the

system at an aggregated rate
1

m
ii

λ λ
=

=∑ . Let ijp be

the probability that tasks of the i th class are
dispatched to node j , where1 j n≤ ≤ . Hence, the
aggregated task arrival rate of the j th node is
expressed as

1

m

j ij i
i

p λ
=

Λ =∑ (1)

Let ijµ denote the service rate of tasks of class i
on node j , and the corresponding expected service
time is computed by1/ ijµ . It should be noted that the
service time of the tasks of class i on node j has a
general distribution, which is independent of the
arrival processes. Thus, the service utilization for all
tasks allocated to node j is as below

1
(/)

m

j ij i ij
i

pφ λ µ
=

=∑ (2)

In this study, each node in the system is modeled as a
single M/G/1 queue. Thus, the schedule length of
node j is computed as

2()
()

2(1)
j j

j j
j

E s
TN E s

φ
Λ

= +
−

 (3)

Where ()jE s and 2()jE s are the expectation and

second moment of the service time. ()jE s and
2()jE s are given

1 1

1 1() () ()
m m

ij i ij i
j

i iij j ij

p p
E s

j
λ λ

µ µ= =

= ⋅ =
Λ Λ∑ ∑

2 2 2

1 1

1() () ()
m m

ij i
j ij ij i ij

i ij

p
E s s p s

λ
λ

= =

= ⋅ =
Λ Λ∑ ∑

Where js is the service time of all task classes on

node j , 2
js is the square of the service time, and 2

ijs
is the square of the service time experienced by tasks
of class i on node j .

The expected response time iTC of tasks of class
i can be readily derived from the schedule length of
nodes (see Eq.3). Hence, we obtain iTC as given by
Eq.4

1
()

n

i ij j
j

TC p TN
=

= ⋅∑ (4)

Now we derive the mean response time of jobs
averaged over all the classes from Eq.4 as

1 1 1
() (())

m m n
i i

i ij j
i i j

T TC p TNλ λ
λ λ= = =

= = ⋅∑ ∑ ∑ (5)

To minimize the schedule length without taking
availability constraints into account, we have to
balance load by evenly distributing the service
utilization.

4.2 Availability analysis

The availability of node j is characterized by the
probability jξ that the node is continuously oper-
ational for computation during any random period.
The availability of a node is modeled as a function
determined by a variety of factors including the
node’s maintenance status, the number of spare
devices dedicated for the node, and the presence or
absence of anti-virus software. To determine the
unavailable rate jθ of node j , we used the fuzzy-
logic based trust model proposed in [16] to aggregate
the multiple factors into a normalized scalar value.
Detailed information regarding the trust model can be
found in [16].

Our availability model is motivated by the
reliability models found in the literature [17, 18]. Let
us first introduce the availability cost of class i on
node j using Eq.6 as below

j
ij ij

ij

AC p
θ
µ

= (6)

Where jθ is the unavailable rate of node j .
Eq.6 shows that the availability cost of class i on

node j is directly proportional to two parameters: (1)
the probability that tasks of the i th class are
dispatched to node j and (2) the unavailable rate of
node j . Note that the unavailable rate used in this
study is expressed as Eq.7, whereα used in our
experiments is 0.1. Eq.7 indicates that the
unavailable rate of node j is inversely proportional
to the availability of node j . System parameterα
must agree with the measurements taken from real
systems. Availability jξ can be estimated and
provided by hardware vendors. Eq.7 just gives one
way to calculate unavailable rates for illustration
purpose, and it is possible to substitute it by any other
unavailable rate model.

1 exp((1))j jθ α ξ= − − − (7)

The availability cost iAC of class i is derived
from Eq.6 and Eq.7 as follows

1 1

n n
j

i ij ij
j j ij

AC AC P
θ
µ= =

= =∑ ∑ (8)

Based on Eq.8, we can express the availability iA
for class i as Eq.9.

1
exp[] exp[]

n
j

i i ij
j ij

A AC p
θ
µ=

= − = −∑ (9)

Now we calculate the availability A exhibited by
the system. The system’s availability expressed by
Eq.10 is the probability that the system is
continuously performing at any random period of
time.

1 1 1
() { exp[]}

m m n
ji i

i ij
i i j ij

A A p
θλ λ

λ λ µ= = =

= = −∑ ∑ ∑ (10)

Eq.10 indicates that in order to enhance the system
availability, it is necessary to reduce availability cost
substantially expressed by Eq.8.

4.3 Problem definition

The problem of scheduling non-preemptive tasks
of m classes on n heterogeneous nodes is
considered with various speeds and availability.
Although each task can be completed at any node,
some nodes may be more efficient than other nodes in
terms of processing speed. The goal is to find a
schedule that provides a good trade-off between the
availability and the makespan.

Let ijp be the probability that tasks of the i th

class are dispatched to node j . If 1ijp = , it means
that task of class i is processed on node j . In our
optimization method, ijp is binary, and {0,1}ijp ∈ .
The optimal strategy is defined as below:

1 ;1* { * }ij i m j nP P ≤ ≤ ≤ ≤≡ (11)

(i) , ,i jj α ξ∀ > which means the availability
requirement of the ith class of tasks cannot be
satisfied by any nodes. The key is to decrease the
availability cost of tasks as much as possible without
harm to the makespan. Refer to Eq.12.

1 1
{ exp[]}

m n
ji

ij
i j ij

Maxmize A p
θλ

λ µ= =

= −∑ ∑

 (12)
 (ii) , ,i jj α ξ∃ ≤ which indicates there is at least one
node able to satisfy the availability requirement of
the ith class of tasks. In this case, the key is to
minimize the makespan.

1 1
1 1

() {max[,...,]}
m m

i i in in
i i

Minmize f x p TN p TN
= =

= ∑ ∑
(13)

where ()f x is the makespan.
 Eqs.(12) and (13) are constrained by the equation
below.

.s t
1

1,
n

ij
j

p i
=

= ∀∑

1

1,
m

ij
i

p j
=

= ∀∑

 (14)
In fact, the problem (ii) has already solved in [7].

But it considers the mean response time there. For the
problem (i), the approach in the previous work [7]
attaches most attention to the system availability, so
that the negative influence on makespan, load
imbalance, is caused. Consequently, the following
section gives an optimization method to relieve load
imbalance and a complete scheduling algorithm
based on Ant Colony Optimization (ACO).

5 H2ACO scheduling algorithm

The H2ACO scheduling algorithm contains two
key components. The first component is an ant
colony optimization algorithm that makes initial
scheduling decision. The fitness function is the
reciprocal of f(x) in Eq.13. The second one is an
availability aware scheduling mechanism to optimize
the initial schedules made by the first component,
thereby improving both availability and
performance.

In the following, we outline the H2ACO algorithm
that aims at deciding how to map heterogeneous tasks
to the most appropriate computing resources to meet
users’ availability requirements. Our scheme
performs the following four steps to make a
scheduling decision.
 Step 1: Run a scheduling algorithm to map tasks

to set of heterogeneous computing nodes.
 Step 2: Migrate certain tasks from one node to

another node which has lower availability cost
or satisfies the availability requirement of the
task.

 Step 3: Check whether migrations made in Step
2 can satisfy the following condition:
The total makespan is decreased if doing so.

 Step 4: Repeatedly perform Step 2 and Step 3
until the schedule cannot be further optimized.

Let us denote response times on n nodes as 1RT ,

2RT ,... nRT , with which we model its makespan as

1 2max{ , ,..., }nRT RT RT RT= . Our optimization
scheme aims at improving system availability
without adversely increasing the makespan of

schedules. From Eq.6, to enhance system availability
actually means to reduce the availability cost.

The conditions used in Steps 2 and 3 to determine
the qualified migrations can be formally expressed
below.

, ,i jj α ξ∃ ≤ Otherwise ,jk

ik ij

θθ
µ µ

>

j ij oldRT TC RT+ ≤ (15)

where oldRT represents the makespan before task i
is migrated from node k to node j .

The optimization processes (i.e., Step 2 and Step 3)
are repeatedly performed until the schedule cannot be
further optimized (see Step 4). After the optimization
procedure terminates, the optimization process can
fulfill the following conditions.

new oldA A>
(16)

new oldRT RT<
where oldA and oldRT are the old system availability
and makespan, while newA and newRT are the new
availability and makespan after optimization.

Let us make use of the motivation example to
demonstrate how the optimization process is carried
out. We assume that the availability cost of 0t on 0n
is 0.67, while the availability cost of 0t on node 2n is
0.54. Table 1 shows that the availability requirement
of 0t is 0.50, which is smaller than the availability of
node 2n (0.60), so the availability of node 2n can
satisfy the availability constraints of 0t . Although
the execution time of 0t on node 2n is larger than
that on node 0n , migrating 0t to 2n still can shorten
the total makespan (see Table 3).

We can improve the performance by migrating
tasks to new nodes after a tentative schedule is made
by any immature algorithm. Steps 2-4 give this
optimization scheme to further improve the overall
scheduling performance.

The H2ACO approach addresses the scheduling
problem of m classes of non-preemptive tasks on n
heterogeneous nodes with various speed and
availability. The initial schedule in Step 1 is
generated by an algorithm based on ACO approach.
The H2ACO scheme strives to find a schedule that
provides a good trade-off between the availability
and the makespan. Algorithm 1 outlines the basic
idea of H2ACO algorithm, and its time complexity is

(2)O n mn+ .
Algorithm 1 The H2ACO Algorithm
Initialize ants’ distribution among nodes

Repeat
 for each ant do
 for each task in an application do
 select next route
 end for
 evaluate fitness of individual path
 update pheromone along its path
 end for
until maximal iterations we set
for 0j = to n do

1 2max{ , ,..., }old nRT RT RT RT=
end for
for 0i = to m do

for 0j = to n do

calculate j

ij

θ
µ

end for
end for
repeat

for 0i = to m do
for 0j = to n do

if node j satisfied expression (15) then
move i to j from the original node
end if

end for
end for

until the user terminates the algorithm;

6 Experimental results

To evaluate the efficiency of our algorithm, we
implement it in Simgrid - a modular trace-driven
simulator, and conduct extensive simulation studies.
We also implement H2ACO and deploy it on real
clusters to validate our simulation results.

Let us first describe the simulation environment.
Simgrid contains a set of core abstractions and
functionalities that allow us to quickly implement
H2ACO for multiclass applications running in
heterogeneous computing environments. Simgrid
provides the following two components:
 The SG toolkit: is the original low-level toolkit,

with which simulations are conducted in the
form of explicitly scheduling tasks on some
resources.

 The MSG simulator: is an application-oriented
simulator built using SG. It can be used to
perform realistic simulations supported by the
SG toolkit. The simulator was built on the
concept of communicating agents.

Two performance metrics considered in our
experiments are makespan and system availability,
which are defined below:

 Makespan: The makespan of a schedule is the
maximal time of the individual nodes spent on
completing the tasks assigned to them. The
scheduling time is equal to the sum of execution
time and waiting time.

 Availability: The availability of a heterogeneous
system is measured by Equation 10.

Our algorithm is compared with two existing
solutions-the SSAC, and ACO algorithms. These
algorithms. One is SSAC[7] which have the same
model with our approach. The other is the approach
of [15] which makes trade-off between makespan and
availability using Particle Swarm Optimization
(PSO). In the figures, we use PSO to represent the
second approach. These algorithms are the best
candidate algorithms to be compared with our
algorithm.

To make fair comparisons, we implement all the
three algorithms within the same scheduling
framework. The implementations of the above three
algorithms share identical data structures (i.e., an
arrival queue and multiple local queues) and
supporting modules (e.g., the task dispatcher).

Three groups of experiments are performed. In the
first two groups of experiments, we use synthetic task
sets running on simulated clusters to show the
impacts of the task-set size and service rate on
H2ACO and its alternatives. In the last group of
experiments, we validate the simulation results by
running real applications on a heterogamous cluster.

6.1 Impacts of task sets

In the first group of experiments, we focus on the
impacts of the size of task sets on H2ACO and its two
alternatives-PSO and SSAC. We schedule and assign
20 tasks on a 5-node heterogeneous cluster. The
availabilities of the five computing nodes are 0.804,
0.576, 0.698, 0.732, and 0.468, respectively.

Figures 2-4 shows the availabilities, response
times, and makespans of the schedules made by
H2ACO, SSAC and PSO under the synthetic task sets
when the task size varies from 20 to 100. Figure 2
compares the availabilities of the three algorithms. It
decreases when the task size increases. The
availability offered by H2ACO is noticeably higher
than those provided by the two alternative
approaches. For example, when task set is 40,
H2ACO substantially improves the system
availability.

Figures 3-4 show the response times and
makespans of the task sets. For all the three examined
algorithms, the response time and makespans are
increasing when the task size grows. Makespans
largely depend on response time and availability,
because makespan measures time interval between

the earliest task’s arrival time and the last task’s
finishing time on a specific node. Therefore, the
increased makespan is attributed to the increase in
response time. Figures 3-4 illustrate that H2ACO
helps in reducing both the response time and
makespan of schedules. The improvement of
H2ACO becomes more pronounced when the task set
is large (e.g., 100). H2ACO makes good trade-off
between makespan and availability. Thus, the results
plotted in Figures 2-4 confirm that compared with
SSAC and PSO, H2ACO improves system
availability, response time, and makespan in terms of
task size.

Figure 2 The availability of the schedules made by

H2ACO, SSAC and PSO

Figure 3 The response time of the schedules made by

H2ACO, SSAC and PSO

Figure 4 The makespan of the schedules made by H2ACO,

SSAC and PSO

6.2 Impacts of service rate
In the second group of experiments, we study the

impacts of service rate on H2ACO. Figures 5-6 plot
the availabilities and response times of the three
scheduling approaches when the service rate

(No./Sec) increases from 0.2 to 1. The size of the task
sets in the experiments shown in Figure 5 is 40. The
service rate represents the speed at which each node
can process tasks. A node with higher service rate
handles more tasks than those with lower service rate.

Figure 5 The availabilities of the schedules made by

H2ACO, SSAC and PSO

Figure 6 The response times of the schedules made by

H2ACO, SSAC and PSO
The results in Figure 5 illustrate that the

heterogeneous systems with higher service rates can
benefit more from H2ACO in terms of availability.
Figure 6 reveals that H2ACO maintains a similar
response time in contrast with SSAC and PSO when
the service rate is higher than 0.4 No./Sec. When the
service rate is low (e.g., 0.2 No./Sec.), H2ACO has
the shortest response time compared with SSAC and
PSO.

6.3 Real applications and clusters

In the last group of experiments, we compare
H2ACO with SSAC and PSO using applications
running on 8-node heterogeneous cluster. In this
experiment, we run 20 molecular dynamics
applications which solve molecular collision
problems and simulate the processes of molecular
ionization, adsorption, composite, diffusion, and
photoionization. To test the scalability of H2ACO,
we run the applications on 4-node, 6-node, and
8-node heterogeneous clusters, respectively.

Figures 7-8 shows the availabilities of the
schedules made by H2ACO, SSAC and PSO. Figure
7 confirms that for the real scientific applications,
H2ACO still offers higher availability than SSAC
and PSO. For example, in the case of the 4-node

cluster, H2ACO improves the availability over SSAC
and PSO by 42.5% and 36.25%, respectively. The
4-node cluster benefits more from H2ACO in terms
of availability than 6-node and 8-node clusters,
because both SSAC and PSO perform poorly for the
4-node cluster. It is observed that the cluster’s
availability increases as the number of nodes grows
for the three algorithms. This is possibly caused by
the reason that more diverse nodes in a
heterogeneous cluster offer more opportunities for
system availability satisfaction.

Figure 7 The comparisons of availability measurements

among H2ACO, SSAC and PSO
Figure 8 reveals the comparison of makespan

measurements among H2ACO, SSAC and PSO.
Figure 8 shows that H2ACO achieves the shortest
makespan for the real applications compared with
both SSAC and PSO. For instance, when it comes to
the 8-node cluster running the real applications,
H2ACO reduces the makespan by 25.7% and 17.1%
in contrast with SSAC and PSO. Moreover, we
observe that increasing the number of nodes can help
in reducing the makespan. The makespan reduction
provided by H2ACO becomes more pronounced
when the number of nodes increases from 4 to 8. We
conclude that in terms of makespan, large-scale
clusters can benefit more from H2ACO than SSAC
and PSO.

Figure 8 The comparisons of makespan measurements

among H2ACO, SSAC and PSO

7 Conclusion and future work

Traditional scheduling solutions can no longer
provide satisfactory resource management for
heterogeneous systems running multiclass tasks with
availability constraints. Based on the existed model,
we define the scheduling problem for multiclass
applications under heterogeneous computing systems.
Then we come up with an optimization mechanism
and further propose a scheduling algorithm using Ant
Colony Optimization technique. In a word, a better
trade-off between availability and makespan is
achieved in this study.

In future work, it is planned to extend H2ACO by
investigating two intriguing issues: upgrade H2ACO
for parallel applications that have flexible availability
requirements; apply dynamic programming and
branch-and-bound approaches when scheduling
multiclass tasks in heterogeneous computing
systems.

Acknowledgements This work was supported by the Key
Program of National Natural Science Foundation of China (Grant
No. 61133005), the Hunan Provincial Natural Science
Foundation of China (Grant NO. 13JJ4038) and Youth Growth
Plan of Hunan University. Xiao Qin’s research was supported
by the U.S. National Science Foundation under Grants
CCF-0845257 (CAREER), CNS-0917137 (CSR),
CNS-0757778 (CSR), CCF-0742187 (CPA),
CNS-0831502 (CyberTrust), CNS-0855251 (CRI),
OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and
DUE-0830831 (SFS).

References
[1] M. Zhu, F. Cao and J. Mi, A hybrid mapping and

scheduling algorithm for distributed workflow
applications in a heterogeneous computing envi-
ronment, Studies in Computational Intelligence,
Vol.382, 2012, pp.117-127.

[2] F. A. Omara, M. M. Arafa, Genetic algorithms
for task scheduling problem, Journal of Parallel
and Distributed Computing, Vol.70, No.1, 2010,
pp.13-22.

[3] X. Qin, H. Jiang, A dynamic and reliability-dr
-iven scheduling algorithm for parallel real-time
jobs executing on heterogeneous clusters, Journal
of Parallel and Distributed Computing, Vol.65,
No.8, 2005, pp.885-900.

[4] Y. Lee, A. Zomaya, Energy conscious scheduling
for distributed computing systems under different
operating conditions, IEEE Transactions on
Parallel and Distributed Systems, Vol.22, No.8,
2011, pp.1374-1381.

[5] H. Jiang, A. Iyengar and E. Nahum, Design,
implementation, and performance of a load
balancer for SIP server clusters, IEEE/ACM
Transactions on Networking, Vol.20, No.4, 2012,
pp.1190-1202.

[6] M. A. Salehi, B. Javadi, and R. Buyya, QoS and
preemption aware scheduling in federated and
virtualized grid computing environments, Journal
of Parallel and Distributed Computing, Vol.72,
No.2, 2012, pp.231-245.

[7] X. Qin, T. Xie, An availability-aware task
scheduling strategy for heterogeneous systems,
IEEE Transactions on Computers, Vol.57, No.2,
2008, pp.188-199.

[8] Schmidt G. Scheduling with limited machine
availability. European Journal of Operational
Research, Vol.121, 1998, pp.1-15.

[9] Apon A. and Wilbur L. Ampneta highly available
cluster interconnection network. In Proceedings
of the Parallel and Distributed Processing
Symposium, 2003, pp.1-10.

[10] Sadfi C. and Ouarda Y. Parallel machines
scheduling problem with availability constraints.
In Proceedings of the International Workshop on
Project Management and Scheduling, 2004,
pp.570-571,.

[11] Wang G., Sun H., and Chu C. Adaptive optimal
load balancing in a nonhomogeneous multiserver
system with a central job scheduler. Annals of
Operations Research, Vol.133, No.4, 2005,
pp.183-192.

[12] Kacem I. and Chu C. Worst-case analysis of the
wspt and mwspt rules for single machine
scheduling with one planned setup period.
European Journal of Operational Research,
Vol.187, 2006, pp.1080-1089.

[13] Kacem I. and Chu C. Efficient
branch-and-bound algorithm for minimizing the
weighted sum of completion times on a single
machine with one availability constraint.
International Journal of Production Economics,
Vol.112, No.1, 2008, pp.138-150.

[14] Jun Zhang, Chris Phillips, Job-scheduling via
resource availability prediction for volunteer
computational grids, Int. J. of Grid and Utility
Computing, Vol.2, No.1, 2011, pp.25-32.

[15] Hao Yuan, Yong Wang, and Long Chen, An
Availability-Aware Task Scheduling for
Heterogeneous Systems Using Quantum-behaved
Particle Swarm Optimization, Lecture Notes in
Computer Science, vol. 6145, 2010, pp.120-127.

[16] S. Song, K. Hwang, and Y. Kwok, Risk-resilient
heuristics and genetic algorithms for security
-assured grid job scheduling, Microprocessors
and Microsystems, Vol.55, No.6, 2006, pp.
703-719.

[17] F. Omaraa, M. Arafa, Genetic algorithms for
task scheduling problem, Journal of Parallel and
Distributed Computing, Vol.70, No.1, 2010,
pp.13-22.

[18] S. K. Garg, R. Buyya, and H. J. Siegel, Time and
cost trade-off management for scheduling parallel
applications on utility grids, Future Generation
Computer Systems, Vol.26, No.8, 2010, pp.
1344-135.

[19] H. Kellerer, V. A. Stusevich, Fully polynomial
approximation schemes for a symmetric quadratic
knapsack problem and its scheduling applications,
Algoirthmica, Vol.57, No.4, 2010, pp.769-795.

	Abstract

