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Exploiting Redundancies to Enhance Schedulability
in Fault-Tolerant and Real-Time Distributed Systems

Wei Luo, Xiao Qin, Member, IEEE, Xian-Chun Tan, Ke Qin, and Adam Manzanares

Abstract—In the past decades, distributed systems have been
widely applied to real-time applications, most of which have
fault-tolerance requirements to assure high reliability. Due to
the stringent space constraints of real-time systems, the issue of
schedulability becomes a major concern in the design of fault-
tolerant and real-time distributed systems. Most existing real-time
and fault-tolerant scheduling algorithms, which are based on the
primary–backup scheme for periodic real-time tasks, introduce
unnecessary redundancies by aggressively using active-backup
copies. To solve this problem, we propose two novel fault-tolerant
techniques, which are seamlessly integrated with fixed-priority-
based scheduling algorithms. These techniques leverage redun-
dancies to enhance schedulability in fault-tolerant and real-time
distributed systems. Our fault-tolerant techniques make use of
the primary–backup scheme to tolerate permanent hardware
failures. The first technique (referred to as Tercos) terminates the
execution of active-backup copies, when corresponding primary
copies are successfully completed. Tercos is designed to reduce
scheduling lengths in fault-free scenarios to enhance schedula-
bility by virtue of executing portions of active-backup copies in
passive forms. The second technique (referred to as Debus) uses
a deferred-active-backup scheme to further minimize schedule
lengths to improve the schedulability performance. Debus sched-
ules active-backup copies as late as possible, while terminating
active-backup copies when their primary copies are completed.
Experimental results show that, compared with existing algo-
rithms in literature, Tercos can significantly improve schedula-
bility by up to 17.0% (with an average of 9.7%). Furthermore,
empirical results reveal that Debus can enhance schedulability
over Tercos by up to 12% (with an average of 7.8%).

Index Terms—Distributed systems, fault tolerance, rate–
monotonic (RM) algorithm, real-time task scheduling, primary–
backup copy.

I. INTRODUCTION

W ITH the ever-increasing reliance on distributed systems
for a variety of real-time applications like avionics,

automated manufacturing, and nuclear plant control systems,
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it is imperative to develop dependable distributed systems de-
livering an array of real-time services. In real-time distributed
systems, failing to produce correct results in a timely manner
may cause catastrophic consequences. Hardware and software
can cause failures in an unpredictable way in distributed sys-
tems; therefore, it is of paramount importance to provide fault
tolerance for real-time distributed systems.

A large number of real-time distributed applications are
comprised of a set of periodic tasks running on an array of
computational nodes or processors. Scheduling periodic tasks
as to guarantee that their deadlines are met is a challenging
research issue. Real-time distributed systems may have some
extra constraints, e.g., stringent space and weight constraints.
Reducing the space and weight of an avionics system can con-
serve power consumption and thus exemplifies the space and
weight constraints. Consequently, it is desirable to minimize
the number of necessary processors used to execute real-time
tasks without violating deadlines.

The primary–backup scheme plays an important role in
achieving fault tolerance in real-time distributed systems. In
this approach, each task has two versions allocated to two dif-
ferent processors. An acceptance test is employed to check the
correctness of schedules [17]–[19], [21], [22]. There are three
variants of the primary–backup scheme: 1) the active-backup
copy [23], [24]; 2) passive-backup copy [17]–[19], [21], [22];
and 3) primary–backup copy overlapping techniques [25], [26].
In the active-backup copy schemes, if a primary copy (or a
backup copy) finishes before its corresponding backup copy
(or primary copy), the backup copy (or the primary copy) will
not be terminated and deallocated, thereby leading to wasted
processor time. To overcome this problem, Tatsuhiro et al.
proposed a technique to reduce redundancies by employing
active-backup copies [26]. The task model used in their study is
constructed for aperiodic and nonpreemptive tasks; thus, their
approach is inadequate for periodic and preemptive tasks.

In this paper, we address the redundancy problems intro-
duced by active-backup copies of periodic and preemptive
tasks. It is challenging to tackle this problem in the context of
periodic and preemptive tasks running in distributed systems,
because tasks may be preempted by high-priority tasks, result-
ing in different response times in different instances of a task.

The major contribution of this paper includes two novel
real-time fault-tolerant techniques integrated with fixed-priority
scheduling algorithms to exploit redundancies for enhancing
schedulability in fault-tolerant and real-time distributed sys-
tems. The primary–backup approach is employed by both
scheduling techniques to tolerate permanent processor failures.
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The first technique (referred to as Tercos) terminates the exe-
cution of active-backup copies when their primary copies are
successfully completed. Tercos can reduce schedule lengths
in fault-free scenarios to enhance schedulability by executing
active-backup copies in passive forms. Although Tercos aims at
reducing the redundancies of active-backup copies, redundant
active-backup copies may be aggressively executed in parallel
with their corresponding primary copies. To further improve
the performance of real-time distributed systems in terms of
schedulability, we developed a second scheduling technique
(referred to as Debus), which makes use of a deferred-active-
backup scheme. Unlike the Tercos scheme, Debus schedules
passive-backup copies as late as possible while terminating the
execution of active-backup copies when corresponding primary
copies are completed. The major difference between Tercos and
Debus is that Tercos is a passive way of eliminating redundan-
cies of backup copies, while Debus is a proactive approach that
takes advantage of deferring the execution of backup copies.

This paper is organized as follows. Related works are briefly
discussed in Section II. Section III presents a system model
and some assumptions. The Tercos and Debus techniques are
described in Sections IV and V, respectively. Simulation experi-
ments and the performance analysis are presented in Section VI.
Finally, Section VII concludes this paper by summarizing the
main contributions of this paper and commenting on the future
directions of this work.

II. RELATED WORK

In the past two decades, various scheduling algorithms have
been proposed to support real-time systems. For example,
many scheduling algorithms were designed and implemented
to schedule periodic real-time tasks running in uniprocessor
or multiprocessor systems. Liu and Layland developed the
well-known rate-monotonic scheduling (RMS) algorithm for
preemptively scheduling periodic task sets running on a single
processor [1]. Liu and Layland derived a least upper bound
of processor utilization to check the schedulability of a set of
periodic tasks on a single processor [1]. Joseph and Pandya
investigated the completion time test (CTT) for checking the
schedulability of a set of fixed-priority tasks on a single pro-
cessor. The CTT is stronger than the previous schedulability
test method proposed by Liu and Layland [2].

It is worth noting that the RM algorithm is becoming an
industrial standard because of its simplicity, and it is relatively
straightforward to implement. Dhall and Liu proposed the
RM first-fit (RMFF) algorithm, which is a major extension
of the RM algorithm [3]. RMFF can be used to generate
real-time schedules for multiprocessor systems. Moreover,
Burchard et al. addressed the issue of assigning real-time tasks
to multiprocessor systems [4].

Studies of real-time distributed systems reveal a number of
challenges, including load balancing [13], resource manage-
ment [14], [36], security [15], [33], availability [34], coop-
erative systems [35], scheduling mechanisms [37], and fault
tolerance [18]–[22]. Fault tolerance is an inherent requirement
of modern real-time systems, which can be implemented in
both hardware and software. Multiple replicas of real-time tasks

can be executed on different hardware components to achieve
fault tolerance [5]. Fault tolerance can be implemented by
N -version programming or recovery blocks [6]. In addition,
hardware- and software-based fault-tolerant techniques can be
integrated to provide hybrid fault-tolerant approaches for real-
time distributed systems [7].

Fault-tolerant scheduling is an attractive avenue to achieving
high reliability in uniprocessor and multiprocessor real-time
systems. One of the first fault-tolerant scheduling mechanisms
for uniprocessor real-time systems was developed by Liestman
and Campbell [8]. Their algorithm can generate optimal sched-
ules where passive replications are employed to tolerate soft-
ware failures. Ghosh et al. [9] proposed an algorithm that
considers the re-execution of faulty tasks to tolerate transient
faults, and the algorithm is based on the RMS priority as-
signment policy [1]. An earliest deadline first (EDF)-based
scheduling approach, which takes the effects of transient faults
into account, was designed and implemented by Liberato et al.
[10]. Their main idea is to simulate the EDF scheduler and
to use slack times for executing task recoveries provided that
fault patterns, or the maximum number of faults per task, are
known a priori. Another EDF-based scheduling approach to
supporting fault-tolerant systems was investigated by Caccamo
and Buttazzo [11]. Their task model consists of instance skip-
pable and fault-tolerant tasks. Primary jobs are scheduled online
to provide high-quality service, while backup jobs are sched-
uled offline to provide acceptable services. Lima and Burns
proposed an appropriate schedulability analysis using response
time analysis [12]. An optimal priority assignment algorithm
can be used in combination with their schedulability analysis
to facilitate system fault resilience [13]. Some researchers also
investigated the power management issues in the fault-tolerant
real-time systems [31].

Fault-tolerant scheduling is an efficient way of achieving
fault tolerance in real-time distributed systems. Krishna and
Shin proposed a dynamic programming algorithm for multi-
processors [16]; in their algorithm, backup copies are ensured
to be efficiently embedded with primary schedules. Schedul-
ing algorithms along with fault-tolerant scheduling algorithms
designed for real-time distributed systems fall into two major
camps: static [17]–[19] and dynamic scheduling [20]–[22].
Many fault-tolerant scheduling algorithms leverage the
primary–backup scheme to tolerate processor failures. In the
primary–backup approach, each task has two versions allocated
to two different processors. The acceptance test is a widely
adopted approach to checking the correctness of schedules
[17]–[19], [21], [22]. Three variants of the primary–backup
approach include: 1) the active-backup-copy-based schemes
[23], [24]; 2) the passive-backup-copy-based schemes [17]–
[19], [21], [22]; and 3) the primary–backup-copy overloading
techniques [25], [26].

In the active-backup-copy-based schemes, the primary and
backup copies of each task are executed in parallel on two
processors [23], [24]. For example, Bertossi et al. extended
the well-known RMFF assignment algorithm. Their algorithm
assigns RM priorities to all task copies, which are allocated to
the first processor that can accommodate the task copies [27].
The active-backup-based schemes exhibit the advantages of
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requiring no synchronization between two copies and imposing
no constraints on the execution times of tasks. However, it is
recognized that processor times required by tasks in the active-
backup-based approaches are doubled when compared with
the passive-backup-based schemes. In contrast, the passive-
backup-copy-based schemes only execute the backup copy of
a task if its primary copy fails to pass the acceptance test
[17]–[19], [21], [22]. The backup copy of a task can be
deallocated from its schedule if the task’s primary copy is
successfully finished. More importantly, the passive-backup-
copy-based schemes can take advantage of the backup copy
overloading technique. This overloading technique allows
passive-backup copies assigned to different processors to be
overlapped on the same process to tolerate a single processor
failure. However, the passive-backup-copy-based schemes have
a shortcoming of tight timing constraints. The primary–backup-
copy overlapping technique allows the primary copy and
backup copies to be overlapped in execution times [25], [26].
This technique, which can exploit the advantages of the afore-
mentioned two schemes, is envisioned as a compromise be-
tween the other two. Nevertheless, the common drawback of the
aforementioned fault-tolerant scheduling schemes is that they
merely support a single type of backup copy.

Much attention has been paid to system schedula-
bility improvements in fault-tolerant distributed systems.
Al-Omari et al. studied a schedulability enhancing technique
(called primary–backup overloading), in which the primary
copy of each task can overlap in time with the backup copy
of another task on a processor. This technique inherently
introduces redundancies due to active-backup copies [30].
Tatsuhiro et al. proposed an approach to reducing redundancies
imposed by backup copies [26]. However, the task models
used in their studies only address the issue of aperiodic and
nonpreemptive tasks. To bridge the technology gap in fault-
tolerant scheduling, in this study, we exploit the redundancies
of active-backup copies to improve the schedulability of fault-
tolerant distributed systems running periodic real-time tasks. In
this paper, we make use of the dual priority scheme [28] to
postpone the execution of active-backup copies by identifying
spare capacities of RMS.

III. SYSTEM MODEL

In this section, we describe a system model of real-time
distributed systems. The system model is composed of a set
of processors (the terms processors and computational nodes
will be used interchangeably throughout this paper) as well
as a set of real-time primary copy tasks along with a set of
corresponding backup copies of the real-time tasks running in
the distributed system. In this study, we consider real-time dis-
tributed systems where processors accessing their local memory
modules are connected to one another via an interconnection
network. Formally, a real-time distributed system model is
composed of a set Γ = {τ1, τ2, τ3, . . . , τN} of tasks in addition
to a set Ω = {P1, P2, . . . , PM} of processors executing the task
set. The ith periodic preemptive task τi is characterized by two
parameters: period Ti and execution time Ci. A new instance of
task τi is generated every Ti time units, and the jth instance of

τi will be arriving at time (j − 1)Ti. Without loss of generality,
we assume that the deadline of each instance is at the end of its
period, i.e., the jth instance must be completed before time jTi.
A periodic task is said to be feasible if all its instances can be
transmitted before their corresponding deadlines. In this paper,
we apply the RM algorithm to schedule tasks allocated to any
processor in the distributed system.

A set BΓ = {β1, β2, β3, . . . , βN} of backup copies of pe-
riodic tasks are introduced to make fault tolerance possible.
Note that βi = (Di, Ti)(i = 1, 2, . . . , N) is the backup copy
with respect to the ith task τi. Di is the execution time of βi,
and Ti denotes the period of βi. We assume that the backup
and primary copies of a task are identical, i.e., Di = Ci. This
assumption does not limit the applications of our approach to
cases where backup and primary copies of a task are different.
In our system model, each backup copy may be in one of two
states: passive-backup copy or active-backup copy. We assign a
task’s primary copy before assigning its backup copy regardless
of the backup copy’s status form. The status forms of backup
copies are formally determined by the following:

Status(βi) =
{

passive, Bi > Di

active, Bi ≤ Di

where P (τi)= Pj , P (βi)=Pk, and Bi =Ti−R(i, j). (1)

R(i, j) in (1) denotes the worst case response time or WCRT
of τi on processor Pj [4]. Bi denotes the recovery time for
βi, i.e., the time left after the execution of τi. P (τi) or P (βi)
denotes the processor on which τi or βi is scheduled on. For
ease of presentation, γi represents a primary copy or a backup
copy, i.e., γi = τi or βi. Equation (1) indicates that an active-
backup copy must be running in parallel with its primary copy,
whereas a passive-backup copy only needs to be executed if its
primary copy fails.

The failure characteristics of processors are given in the
following. Note that similar failure models can be found in the
literature (see, for example, [18] and [27]).

1) Processors fail in a fail–stop manner. A processor has
either ceased functioning or is operational, and a faulty
processor cannot cause incorrect behavior in any non-
faulty processor.

2) All nonfaulty processors in a real-time distributed sys-
tem can communicate with each other through message
passing.

3) The failure of a processor Pf can be effectively detected
by the remaining nonfaulty processors after the failure;
the failure is determined before the closest task comple-
tion time of a task scheduled on Pf .

As for a periodic task with a primary copy τi and a cor-
responding passive-backup copy βi, βi is informed of the
completion of τi at every occurrence of the periodic task by
receiving a message from a processor running τi in the jth
period (i.e., [jTi, (j + 1)Ti]) upon τi’s completion time. This
message can be very small, since the message usually contains
the indexes of the primary task τi and the sender and receiver
processors. In the worst case, when the message is not received
by βi within a certain due time, the passive back copy is
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immediately scheduled by assuming that a failure on the proces-
sor running τi occurs. In general, processor failure detections
inevitably introduce marginal overheads due to the latency of
delivering the message from τi to βi. With the current off-the-
shelf communication technology in place, such overhead can
be measured on the order of a few microseconds. Therefore,
this overhead can be easily included in the execution time of
primary copies of periodic tasks. Except for the short message
sent from τi to βi, there is not any other form of synchronization
between the primary copy τi and backup copy βi.

A k-timely-fault-tolerant (k-TFT) schedule is defined as a
schedule in which no task deadlines are missed, despite k
arbitrary processor failures [32]. Our goal in this study is to gen-
erate 1-TFT schedules by employing processor and task redun-
dancies in the scheduling algorithm. To achieve this goal, we
focused on scenarios where only one processor may encounter
failures at any instant of time, meaning that a second processor
cannot fail before the first failed processor is recovered.

To facilitate the description of our algorithms, we introduce
the following notation. Note that the similar notation was
used in [27].

1) Sets Primary(Pj) and Backup(Pj) represent pri-
mary and backup copies assigned to processor Pj , i.e.,
Primary(Pj) = {τi|P (τi) = Pj} and Backup(Pj) =
{βi|P (βi) = Pj}.

2) A set active(Pj) includes active-backup copies as-
signed to processor Pj , i.e., active(Pj) = {βi|βi ∈
Backup(Pj), Status(βi) = active}.

3) A set passiveRecover(Pj , Pf ) contains all the passive-
backup copies that Pj must start scheduling when a fail-
ure of Pf is detected, i.e., passiveRecover(Pj , Pf ) =
{βi | βi ∈ Backup(Pj), Status(βi) = passive,
P (τi) = Pf}.

4) A set activeRecover(Pj , Pf ) denotes active copies
assigned to Pj with primary copies assigned to Pf .
This set contains all the active-backup copies that
processor Pj must keep scheduling when Pf fails,
i.e., activeRecover(Pj , Pf ) = {βi|βi ∈ Backup(Pj),
Status(βi) = active, P (τi) = Pf}.

5) Recover(Pj , Pf ) gives the union between sets
passiveRecover(Pj , Pf ) and activeRecover(Pj , Pf ),
i.e., Recover(Pj , Pf ) = passiveRecover(Pj , Pf ) ∪
activeRecover(Pj , Pf ).

IV. TERCOS STRATEGY

A. Motivation

Existing algorithms like fault-tolerant RMFF (FTRMFF)
make use of the WCRT analysis to check the schedulability of
a task set and to determine the status of backup copies [27].
Although FTRMFF strives to schedule as many backup copies
as possible to be executed in passive forms, active-backup
copies still exhibit considerable unnecessary task redundancies
when primary copies are successfully finished prior to their
backup copies. For example, consider four real-time periodic
tasks along with their backup copies, e.g., τ1 = β1 = (2, 4),
τ2 = β2 = (2, 5), τ3 = β3 = (5, 9), and τ4 = β4 = (3, 15).

Fig. 1. Illustration of a redundancy imposed by an active-backup copy.

Fig. 2. Segmentation of active-backup copies in a fault-free scenario.

Fig. 3. Segmentation of active-backup copies when a failure occurs.

The FTRMFF algorithm generates a schedule where the
primary and backup copies are allocated to nodes in a real-time
distributed system as follows: Primary(P1) = {τ1, τ2},
backup(P1) = {Φ}, Primary(P2) = {Φ}, backup(P2) =
{β1, β2, β3}, Primary(P3) = {τ3, τ4}, backup(P3) = {Φ},
Primary(P4) = {Φ}, backup(P4)={β4}, and Status(β1)=
passive, Status(β2) = active, Status(β3) = active, and
Status(β4) = active. Fig. 1 shows a task schedule in a time
interval between time 0 and 19.

It should be noted from Fig. 1 that, in a fault-free scenario,
task τ3 finishes its execution prior to its backup β3. Specifically,
at time slot 5, τ3 has already been completed, whereas β3

only has been running for three time slots. Nevertheless, β3

continues executing despite the successful completion of τ3,
thereby wasting two time slots. The unnecessary redundancy
introduced by β3 can be eliminated by deallocating β3 from its
node immediately after the execution of τ3. Fig. 2 shows that
the schedulability of the distributed system can be improved by
taking advantage of the free time slots left for such a deallo-
cation. Only in the case where processor P3 fails (e.g., at time
slot 5), the remaining part of β3 continues its execution without
the deallocation (see Fig. 3). As a result, the Tercos strategy can
reduce the number of processors needed to schedule the whole
task set without adversely affecting the real-time and fault-
tolerant constraints of the distributed system. In other words,
Tercos improves schedulability over the FTRMFF algorithm.

B. Description of Tercos

Fig. 4 shows that the WCRT of τi is R(i, 1) and the WCRT
of βi is BR(i, 2). Note that BR(i, 2) is larger than R(i, 1),
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Fig. 4. Illustration of Tercos technique.

because in Tercos, the WCRTs of primary copies are always
less than or equal to the WCRTs of the corresponding backup
copies (see Section IV-C). The execution of βi is comprised of
two parts: a redundant part (referred to as RP) and a backup
part (referred to as BP). The RP of a backup copy executes
concurrently with its primary copy, while the BP of a backup
copy only executes when its primary copy encounters failures.
The BP will be deallocated when the primary copy successfully
completes its execution. Thus, we can execute the BP of active-
backup copies in passive forms, which can take advantage
of backup copy deallocations and overlapping techniques to
enhance system schedulability. However, the implementation
of Tercos is somewhat nontrivial for two reasons. First, the RP
of βi can be preempted by other tasks with higher priorities,
and therefore, we must take high-priority tasks into account
while scheduling the RP. Second, deallocating the BP of βi

implies that the BP must be executed under the condition that
τi encounters a failure, which in turn, increases the processor
load of P2 when other processors fail.

Hereafter, we use Redundant(βi) and Backup(βi) to de-
note the execution time of the RP and BP of βi, respectively.
Thus, Redundant(βi) = Ci − Backup(βi). Note that all the
task copies are assigned following the decreasing order of RM
priorities (see Section IV-C). Redundant(βi) is equal to free
time slots in the time interval [0, R(i, 1)] before assigning βi.
Suppose that Idle(t) is the amount of free time that is in a
period of time [0, t]; then, Redundant(βi) = Idle(R(i, 1)).
Idle(R(i, 1)) can be computed by the following two steps.
First, we add a virtual task τ = (T = R(i, 1), C) with the
lowest priority among all the tasks that have been allocated
to processor P2. Second, we calculate the maximal value of C
such that task γ meets its deadline. Thus, the value of Idle(t)
can be determined using

Idle (t) = max{C|γ is schedule}. (2)

The finishing time t of task γ is given by

t = C +
γj isPrimary Copy∑

γj∈hep(γ)

⌈
t

Tj

⌉
∗ Ci

+
status(γj)=active∑

γj∈hep(γ)

⌈
t

Tj

⌉
∗ Redundant(γj). (3)

A schedulability test can be carried out using the finishing
time t computed by (3). Thus, if t is less than or equal to

R(i, 1), then γ is schedulable. Otherwise, γ is not schedulable.
It is to be noted that we have to consider the interference of
task γj on itself. Hereinafter, we denote the set of tasks with
a higher or equal priority than that of task γj by hep(γj).
Equation (3) can be derived by a recurrence on the value t.
The range of values to check from 0 to t can be computed
by a bisection search (Please refer to [29] for effective upper
and lower bounds). Using the technique, we can easily obtain
Redundant(βi) = Idle(R(i, 1)).

C. Task Allocation Strategy

Now, we present our task allocation strategy. Although a
similar allocation strategy can be found in [27], a major dif-
ference is present in the schedulability test for tasks allocated
to a processor. We present three task assignment conditions
followed by the main scheduling heuristic policies.

In order to assign a task copy to a processor, the Tercos algo-
rithm deals with two cases for each task copy, depending on its
status form (i.e., primary, active backup, or passive backup). In
the first scenario, no processor failure occurs, and in the second
case, one processor fails during the course of task executions.
In each scenario, Tercos has to test the schedulability of a task
set on a single processor by means of the Tercos fault-tolerant
CTT (TFT-CTT).

1) Primary task copy. To allocate a primary task τi to Pj .
a) Fault-free case: The task set σ = Primary(Pj) ∪

active(Pj) ∪ {τi} must be schedulable.
b) Possible failure of another processor Pf : The task set

σ = Primary(Pj) ∪ Recover(Pj , Pf ) ∪ {τi} must
be schedulable as well.

2) Active-backup copy. To allocate an active-backup copy
βi to Pj , assuming that the primary copy τi is assigned to
processor Pf .
a) Fault-free case: The task set σ = Primary(Pj) ∪

active(Pj) ∪ {βi} must be schedulable.
b) Processor Pf fails: The task set σ = Primary(Pj) ∪

Recover(Pj , Pf ) ∪ {βi} must be schedulable. Note
that, if any processor other than Pf is fault free and
Pf fails, then βi can be deallocated without being
executed.

3) Passive-backup copy. To allocate a passive-backup task
βi to Pj , assuming that the primary copy τi is assigned
to processor Pf . Because the passive-backup copy is
executed only when Pf fails, there is only one case to
be considered.
a) Processor Pf fails: The task set σ = Primary(Pj) ∪

Recover(Pj , Pf ) ∪ {βi} must be schedulable.

Before task copies are allocated, both primary and backup
copies are sorted by an increasing order of periods (Note that
the priority of a copy is equal to the inverse of its period). A
tie between primary copy τi and its backup copy βi is broken
by giving a higher priority to βi. Without loss of generality,
each task copy has an initial priority at a lower level and a
unique promoted priority i, where 1 ≤ i ≤ 2n, at an upper level
(Note that τ1 has the highest priority 1 and βN has the lowest
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priority 2n). Thus, tasks are assigned to processors in accor-
dance to the following order:

τ1, β1, τ2, β2, . . . , τN , βN . (4)

Assigning task copies in the decreasing order of priorities
greatly simplifies the implementation of our algorithms, be-
cause tasks assigned later will not affect the WCRTs of tasks
previously allocated. It is very convenient to determine the
status form of a backup copy because the WCRT of its primary
copy is unchanged during the process of task allocation and
scheduling.

We apply the “best-fit” policy to assign and schedule tasks to
processors; thus, each task is assigned to the “best” processor
that can accommodate it. If the tasks cannot fit in any processor,
a new extra processor will be added. It is worth noting that the
best processors have different meanings for primary and backup
copies. The three scheduling policies are listed as follows.

1) To assign a primary task copy to a processor on which
WCRT is the smallest. This policy has the goal of reserv-
ing long recovery times for backup copies.

2) To assign a backup task copy to a processor on which it
can be executed in the passive form.

3) If the backup task copy has to be executed in the active
form, the backup copy is allocated to a processor on
which Redundant(βi) is minimized.

D. Schedulability Tests

Joseph and Pandya derived a necessary and sufficient schedu-
lability criterion as follows [4].

Theorem 1: Given a set Γ = {τ1, τ2, τ3, . . . , τN} of tasks
that are sorted in decreasing order of priorities (the earlier the
deadline of a task, the higher the priority of the task), we can
calculate the WCRT Ri of the ith task using

Ri = Ci +
i−1∑
j=1

⌈
Ri

Tj

⌉
· Cj (5)

where Ci is the execution time of task τi. If the response time
Ri of task τi is smaller than the deadline Ti of τi, i.e., Ri ≤ Ti,
then all periodic instances of task τi will have their dead-
lines guaranteed under all task phasings. This schedulability is
called CTT.

Although Theorem 1 provides a means of efficient schedu-
lability analysis, it is based on the conventional RMS model.
It is believed that the existing schedulability analysis is not
applicable to the task model constructed in our study. Therefore,
we extend the CTT to the TFT-CTT based on our fault-tolerant
model.

To facilitate the description of the following theorems, we
introduce an important notation. γmaxc is a task copy to be
currently assigned. It is intuitive that the priority of γmaxc is
lower when compared to task copies that have been allocated
and scheduled. hp(γmaxc) represents a set of tasks whose pri-
orities are higher than that of γmaxc on a processor where γmaxc

is about to be allocated. Similarly, hep(γmaxc) represents a set
of tasks with priorities higher than or equal to that of γmaxc on

a processor where γmaxc will be assigned, i.e., hep(γmaxc) =
hp(γmaxc) ∪ {γmaxc}.

Theorem 2: Suppose that γmaxc is a primary copy that is
currently being assigned. hp(γmaxc) is a set of tasks with higher
priorities than γmaxc on processor Pk. In the case of no faulty
processors, the WCRT of γmaxc, RFR(γmaxc), is calculated by

RFR(γmaxc) =
∑

τi∈hep(γmax c)

⌈
RFR(γmaxc)

Ti

⌉
∗ Ci

+
status(βi)=active∑

βi∈hep(γmax c)

⌈
RFR(γmaxc)

Ti

⌉

∗ Redundant(βi),

if γmaxc is a primary copy. (6)

If RFR(γmaxc) is smaller than or equal to Tmaxc, then
γmaxc is schedulable in fault-free scenarios. Otherwise, γmaxc

is unschedulable. This schedulability test is called Tercos fault-
free fault-tolerant CTT (or TFR-FTCTT for short).

Proof: Recall that all task copies are allocated and
scheduled in the decreasing order of RM priorities. Thus,
all the tasks in task set hp(γmaxc) have already been allo-
cated and are schedulable. To prove that γmaxc is schedu-
lable, we simply need to show that RFR(γmaxc) is smaller
than γmaxc’s deadline. As per Theorem 1, γmaxc is the
task copy with the longest response time, and its WCRT
is equal to the workload of hep(γmaxc) during the time
interval RFR(γmaxc). In the case of a fault-free scenario,
hep(γmaxc) contains primary copies and active-backup copies
allocated to processor Pk, i.e., hep(γmaxc) = Primary(Pk) ∪
active(Pk) ∪ {γmaxc}. To derive the value of RFR(γmaxc), we
have to consider the following two cases.

Case 1) Each primary copy τi is executed once during each
period Ti, meaning that τi will execute �t/Ti�
times during time interval [0, t]. The total workload
of a primary copy on processor Pk is �t/Ti�∗Ci,
and therefore, the workload contributed by primary
copies to RFR(γmaxc) is expressed by the first item
on the right-hand side of (6).

Case 2) Each active-backup copy is executed in a similar
way as its primary copy counterpart. An active-
backup copy is an RP of its primary copy. Hence,
the workload contribution of active-backup copies
to RFR(γmaxc) is computed by the second item on
the right-hand side of (6).

Considering the previous two cases, we can derive the value
of RFR(γmaxc) using (6). If γmaxc is an active-backup copy
(see Section IV-B), then its schedulability is guaranteed in
a fault-free scenario. Thus, we only need to deal with cases
where γmaxc is a primary copy. Consequently, we show that,
if RFR (γmaxc) ≤ Tmaxc, then γmaxc is schedulable because
its deadline is guaranteed. �

Theorem 3: Suppose that γmaxc, a primary copy or any form
of backup copy, is a task copy currently being assigned and
scheduled. hp(γmaxc) is a set of tasks with higher priorities
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than that of γmaxc on Pk in the presence of Pj’s failures. The
WCRT of γmaxc, RFO(γmaxc), is calculated by

RFO(γmaxc) =
∑

τi∈hep(γmax c)

⌈
RFO(γmaxc)

Ti

⌉
∗ Ci

+
∑

βi∈hep(γmax c)

ΦFT (i, RFO(γmaxc)) (7)

where ΦFT (i, t) and DeadL(γmaxc) are shown at the bottom
of the page.

If RFO(γmaxc) satisfies RFO(γmaxc) ≤ DeadL(γmaxc),
then γmaxc is schedulable, i.e., γmaxc can meet its deadline
in the presence of any processor failures. Otherwise, γmaxc is
unschedulable. This schedulability test is called Tercos fault-
occurrence fault-tolerant CTT (TFO-FTCTT).

Proof: To show that γmaxc is schedulable, we need to
prove that RFO(γmaxc) is less than γmaxc’s fault-tolerant dead-
line. In the case where a processor failure occurs on processor
Pj(j �= k), hep(γmaxc) may contain primary copies and all
types of backup copies, i.e., hep(γmaxc) = Primary(Pk) ∪
Recover(Pk, Pj). RFO(γmaxc) can be derived by considering
the following two cases.

Case 1) Each primary copy τi is executed once during its pe-
riod Ti. During the time interval [0, t], τi is executed
�t/Ti� times. The total execution time during [0, t]
is �t/Ti�∗Ci.

Case 2) Let us consider a backup copy βi. The function
ΦFT (i, t) gives the overall execution time of βi

during time interval [0, t]. If βi is a passive-backup
copy, then the first request of βi must be executed
within a recovery time interval [0, B(i−1)], which
is shorter than Ti, while the subsequent requests of
βi will be executed once every period Ti. Thus, if
t ≤ B(i−1), only one request of βi will be executed
in [0, t]. Otherwise, one request of βi has to be
executed within [0, B(i−1)], and �(t − B(i−1))/Ti�
requests must be executed within [B(i−1), t]. Hence,
Φ(i, t) = �(t − B(i−1))/Ti� + 1, when t > B(i−1).
If βi is an active copy, then it performs in a similar
way as a passive-backup copy. The active copy βi

must finish its execution of BP in the recovery
time B(i−1). The execution time of βi’s next re-
quests is Ci.

Equation (7) can be derived from the previously mentioned
two cases. Now, let us prove the correctness of (9). If γmaxc is
a primary copy, the deadline is the period of γmaxc, i.e., Tmaxc.
If βi is a passive-backup copy, however, the first instance of
βi may be less than or equal to B(maxc−1). If βi is an active-
backup copy, we first should guarantee the schedulability of βi

after a processor failure, i.e., the schedulability of Backup(βi).
We also have to check the schedulability of βi in the sub-
sequent instances. Therefore, the fault-tolerant deadline of βi

in its first invocation is Tmaxc + B(maxc−1). Thus, the fault-
tolerant deadline of γmaxc can be written as (9). Consequently,
we prove that, if RFO(γmaxc) ≤ DeadL(γmaxc), γmaxc is
schedulable. �

E. Algorithm Description

We have delineated the scheduling strategy and schedulabil-
ity test criterion in Sections IV-C and IV-D. Now, we present
our proposed scheduling algorithm as follows.

Algorithm 1: the Tercos algorithm

(1) Sort task copies in the increasing order of RM priorities:
τ1, β1, τ2, β2, . . . , τN , βN . Set number M of required
processors to 1, namely, M = 1;

(2) Repeat the following steps for i = 1, 2, . . . , N ;
(2.1) Assign primary copy τi to a processor Pj on

which τi is schedulable and τi’s response time
is minimized. That is, σ = Primary(Pj) ∪
active(Pj) ∪ {τi} passes the TFR-FTCTT, and
for all the processors Pf (f = 1, . . . , M ; f �= j),
σ = Primary(Pj) ∪ Recover(Pj , Pf ) ∪ {τi}
passes the TFO-FTCTT. If such a candidate
processor does not exist, then increase M by 1 and
assign τi to P (τi) = PM . Determine the status form
of βi according to (1).

(2.2) If Status(βi) = passive, then assign βi to the
first processor Pf on which βi is schedulable.
Thus, identify the first processor Pf (f �= j), σ =
Primary(Pf ) ∪ Recover(Pf , Pj) ∪ {βi} can pass
the TFO-FTCTT, and set P (βi) = Pf . If no existing
processor can accommodate βi, then increase M
by 1 and assign βi to PM = P (βi);

(2.3) If Status(βi) = active, then assign βi to a processor
Pf on which βi is schedulable and the backup

ΦFT (i, t) =

⎧⎪⎪⎨
⎪⎪⎩

Backup(βi), if status(βi) = active and t ≤ B(i−1)

Backup(βi) +
⌈
(t − B(i−1))/Ti

⌉
∗ Ci, if status(βi) = active and t > B(i−1)

Ci, if status(βi) = passive and t ≤ B(i−1)(⌈(
t − B(i−1)

)
/Ti

⌉
+ 1

)
∗ Ci, if status(βi) = passive and t > B(i−1)

(8)

DeadL(γmaxc) =

⎧⎪⎪⎨
⎪⎪⎩

Tmaxc, γmaxc is a primary copy
B(maxc−1), γmaxc is a passive-backup copy

B(maxc−1), γmaxc is
(
active and for the first RFO(γmaxc) ≤ B(maxc−1)

)
Tmaxc + B(maxc−1), γmaxc is

(
active and for the first RFO(γmaxc) > B(maxc−1)

) (9)
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time is minimized. That is, σ = Primary(Pf ) ∪
active(Pf ) ∪ {βi} passes the TFR-FTCTT, and
for all processors Pf (f = 1, . . . ,M ; f �= j),
σ = Primary(Pj) ∪ Recover(Pj , Pf ) ∪ {βi}
passes the TFO-FTCTT. If no such processor exists,
then increase M by 1 and assign βi to PM = P (βi);

(3) For all the required processors, determine a feasible
schedule for assigned task copies;

(4) Return the number of required processors M .

The Tercos algorithm performs two major phases, namely,
a static task assignment phase and a processor scheduling
phase. In the first phase, Tercos judiciously assigns primary
and backup copies to processors in a way to reduce the number
of processors needed to schedule periodic tasks. This phase is
performed in Steps 1)–2) in Algorithm 1. In the second phase
(see Step 3) in Algorithm 1), all assigned task copies are sched-
uled according the fixed-priority scheduling algorithm. After
the task assignment and processor scheduling are handled by
Steps 1)–3), Step 4) returns the number of required processors
necessary to satisfy the timing constraints of the primary and
backup copies of periodic tasks.

Theorem 4: Let N be the number of primary copies of
periodic tasks in a real-time distributed system and M be the
number of required processors to execute the task copies. The
time complexity of the Tercos task assignment algorithm is
O(M2∗N2).

Proof: The time complexity of the TFR-CTT or TFO-CTT
is O(N). To assign a primary or backup copy, Tercos has to
examine at most M processors. It is imperative to conduct the
TFR-CTT or TFO-CTT to do the schedulabilty analysis for each
processor in the worst case. Hence, the time complexity of
the schedulability analysis on each processor is O(N ∗M ∗M).
Therefore, the time complexity of the Tercos assignment algo-
rithm is O(N ∗M ∗M)∗O(N) = O(M2∗N2). �

V. DEBUS STRATEGY

A. Motivation

Existing algorithms like FTRMFF make use of the
WCRT analysis to check the schedulability of a task set
and to determine the status of backup copies [27]. Although
FTRMMF strives to schedule as many backup copies as
possible to be executed in passive forms, active-backup
copies still exhibit considerable unnecessary task redundancies
when primary copies are successfully finished prior to their
backup copies. For example, consider four real-time periodic
tasks along with their backup copies, e.g., τ1 = β1 = (2, 4),
τ2 = β2 = (2, 5), τ3 = β3 = (5, 9), and τ4 = β4 = (3, 15).
The FTRMFF algorithm generates a schedule where the
primary and backup copies are allocated to nodes in a
real-time distributed system as follows: Primary(P1) =
{τ1, τ2}, backup(P1) = {Φ}, Primary(P2) = {Φ},
backup(P2) = {β1, β2, β3}, Primary(P3) = {τ3, τ4},
backup(P3) = {Φ}, Primary(P4) = {Φ}, backup(P4) =
{β4}, and Status(β1) = passive, Status(β2) = active,
Status(β3) = active, and Status(β4) = active. Fig. 5 shows
a task schedule in a time interval between time 0 and 19.

Fig. 5. Illustration of a redundancy imposed by an active-backup copy.

Fig. 6. Segmentation of active-backup copies in a fault-free scenario.

Fig. 7. Segmentation of deferred-active-backup copy when any failure occurs.

Fig. 8. Illustration of deferred-active-backup copies when any failure occurs.

If Tercos is used to allocate and schedule the four tasks, the
number of required processors is four. In contrast, the Debus
strategy postpones the execution of β3 for four time units
while terminating the execution of β3 when its primary copy
successfully completes the execution. In doing so, β4 can be
scheduled on P2 (see Fig. 6) in fault-free scenarios. If P3 fails at
the end of τ ′

3 execution (i.e., at time slot 5), then β3 can continue
running without being terminated (see Fig. 7). Consequently,
Debus reduces the number of required processors from four to
three.

B. Description of Debus

Fig. 8 shows that Debus delays the execution of βi by Yi

time units. Let the WCRTs of τi and βi be Ri and BRi,
respectively. Note that BRi is always larger than Ri, and
this fact is determined by our task assignment strategy (see
Section V-D). Divided by Ri, the execution of βi is separated
into two parts: BP and RP. RP executes in parallel with the
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primary copy, whereas BP is executed after its primary copy
fails in producing correct results before the deadline. The
implementation of Debus is challenging, because Debus has
to precisely determine how much time the execution of active-
backup copies should be delayed.

Again, we use Redundant(βi) and Backup(βi) to de-
note the execution time of RP and BP for βi. Thus,
Redundant(βi) = Ci − Backup(βi). It should be noted that
not all active-backup copies can be executed in schedules
made by Debus. This is because, when a primary copy fails
to produce correct results before its deadline, the recovery time
of the primary copy may be occupied by copies of other tasks
with higher priorities. This leads to an insufficient amount of
time for the corresponding backup copy to be executed. We
now introduce the third type of backup copy—deferred-active-
backup copies, i.e., status(βi) = deferred-active. The status
of active-backup copies that cannot make use of the Debus
technique are active, i.e., status(βi) = active. The following
notation is used throughout Section V.

1) deferred-active(Pj) = {βi | βi ∈ Backup(Pj),
status(βi) = deferred-active}.

2) deferred-activeRecovery(Pj , Pf ) = {βi | βi ∈
Backup(Pj), Status(βi) = deferred-active,
P (τi) = Pf}

3) DRecover(Pj , Pf ) = passiveRecover(Pj , Pf ) ∪
activeRecover(Pj , Pf ) ∪
deferred-activeRecovery(Pj , Pf ).

Lemma 1: Suppose that σ is a set of task copies on
processor Pj when Pi fails. Then, σ = Primary(Pj) ∪
DRecover(Pj , Pi), and the cumulative workload W (t, σ) on
processor Pj required by σ during [0, t] is

W (t, σ) =
∑
τi∈σ

⌈
t

Ti

⌉
∗ Ci +

∑
βi∈σ

ΦT (i, t) (10)

where ΦT (i, t) is shown at the bottom of the page.
Proof: When Pi encounters failures, tasks copies run-

ning on Pj include all the primary copies that have been
assigned to Pj and all the backup copies whose primary
copies have been assigned to Pi. Thus, σ = Primary(Pj) ∪
DRecover(Pj , Pi). The W (t, σ) can be derived from two
cases.

Case 1) Each primary copy τi is executed in the same way
as that described in Theorems 2 and 3. Thus, the
workload contributed by primary copies to W (t, σ)
is calculated by the first item on the right-hand side
of (10).

Case 2) Now, we consider each backup copy βi. The func-
tion ΦFT (i, t) gives the total execution time of
the instances of βi during time interval [0, t]. If
βi is an active copy, then it performs as a pri-
mary copy. If βi is a passive-backup copy, then
the first instance of βi must be executed within
recovery time [0, B(i−1)], which is shorter than Ti.
The next instance of βi will be executed once
every period Ti. If t ≤ B(i−1), there is only one
instance of βi to be executed in [0, t]. Other-
wise, there is one instance of βi to be executed
within [0, B(i−1)] and �(t − B(i−1))/Ti� instances
to be executed within [B(i−1), t]. Hence, ΦT (i, t) =
(�(t − B(i−1))/Ti� + 1)∗Ci, when t is larger than
B(i−1). If βi is a passive-backup copy, the BP of βi

must be executed within a recovery time [0, B(i−1)].
The next instance of βi will be executed once every
period Ti. If t ≤ B(i−1), there is only one backup
time of βi to be executed in [0, t]. Otherwise,
there is only one backup time of βi to be executed
within [0, B(i−1)] and �(t − B(i−1))/Ti� instances
to be executed within [B(i−1), t]. Thus, ΦT (i, t) =
Backup(i − 1) + �(t − B(i−1))/Ti�∗Ci, when t is
larger than B(i−1).

Considering the aforementioned two cases, we can derive
W (t, σ) using (10). �

With Lemma 1 in place, we can calculate Backup(βi),
which is the amount of free time in a period of time [0, Bi], i.e.,
Backup(βi) = Idle(Bi). Here, Idle(t) can be computed by
the following two steps. First, we add a virtual task γ = (T =
Bi,C) with the lowest priority among all tasks that have been
assigned on processor Pj . Second, we determine the maximal
value of C such that task γ meets its deadline. Formally, we
have

Idle (t) = max{C | γ is schedulable}. (12)

The finishing time t for task γ can be written as

t = W (Bmaxc, σ ∪ {γ}) . (13)

Moreover, if t ≤ Bi, then γ is schedulable; else, γ is
unschedulable. Using this strategy, we can easily obtain
Backup(βi) = Idle(Bi).

C. Employing the Dual Priority Scheduling Strategy

Debus is an effective algorithm to reduce redundancies im-
posed by active-backup copies. However, the implementation of

ΦT (i, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�t/Ti�∗Ci, if status(βi) = active
Ci, if status(βi) = passive and t ≤ B(i−1)(⌈(

t − B(i−1)

)
/Ti

⌉
+ 1

)∗
Ci, if status(βi) = passive and t > B(i−1)

Backup(i − 1), if status(βi) = deferred-active and t ≤ B(i−1)

Backup(i − 1) +
⌈(

t − B(i−1)

)
/Ti

⌉∗
Ci, if otherwise

(11)
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Debus is nontrivial. In this study, we leverage the well-known
dual priority scheduling technique to delay the executions of
active-backup copies, thereby forcing active-backup copies to
be executed in passive forms.

In the dual priority scheduling scheme [28], we assume that
there are three unique priority bands: Upper, Medium, and
Lower. Hard real-time tasks execute at either an upper or lower
priority band. Upon release, each task is set by default to the
lower priority band. At a fixed time offset from release, the
priority of the task is promoted to the upper band. At run
time, other tasks with soft deadlines are assigned priorities
in the medium priority band. Hence, soft real-time tasks are
executed in preference to hard real-time tasks that are yet to
undergo priority promotion, and the execution of periodic tasks
are delayed without adversely affecting the schedulability of
periodic tasks.

In our model, each hard real-time task has an initial priority
in the lower level and a unique promoted priority i, where 1 ≤
i ≤ 2n in the upper level (Note that 1 is the highest and 2n is
the lowest priority in the upper band). The lower priorities have
2n priority levels, and the assignment of lower band priorities
can be arbitrary.

In the Debus strategy, each active-backup copy βi has a
priority promotion delay Yi(0 ≤ Yi ≤ Di) measured relative to
its release. Upon the release of a task, its priority is set to a
lower band priority. After Yi time units, its priority is promoted
to priority i (in the upper band).

Calculating Yi for a backup copy βi is the key issue in
implementing the Debus algorithm. R. Davis and A. Wellings
proved that the dual priority scheduling technique is equivalent
to the fixed-priority scheduling algorithm with offsets, i.e.,
with Oi = Yi [28]. Thus, the computation of Ymaxc (suppose
that βmaxc is the current deferred-active-backup copy to be
assigned) is given by

Ymaxc = max {y ≥ 0 | Idlei(Rmaxc) − Idlei(y)

≥ Redundant(βmaxc)} (14)

where Idlei(t) is the amount of computation time a task at
priority level i could perform during the time interval [0, t].
The optimal value of Ymaxc can be computed by a dichotomic
search between values y, 0, and Rmaxc − Redundant(βmaxc).
Here, Idle(t) can be derived in a similar way described in
Section IV-B. To calculate Idle(t), Lemma 2 is proved in the
following.

Lemma 2: Let ω be a set of task copies on proces-
sor Pi in fault-free scenarios. Thus, ω = Primary(Pi) ∪
active(Pi) ∪ deferred-active(Pi), and the cumulative work-
load Q(t, ω) on Pi required by σ during time interval [0, t] is
expressed as

Q(t, ω) =
∑
τj∈ω

⌈
t

Tj

⌉∗
Cj +

status(βj)=active∑
βj∈ω

⌈
t

Tj

⌉∗
Cj

+
status(βj)=deferred-active∑

βj∈ω

⌈
t−Yj

Tj

⌉∗
Redundant(βj). (15)

Proof: In fault-free scenarios, task copies running
on Pi includes all primary copies, active-backup copies,
and all deferred-active-backup copies that have been as-
signed to Pi. That is, ω = Primary(Pi) ∪ active(Pi) ∪
deferred-active(Pi). To derive Q(t, ω), let us consider the
following three cases.

Case 1) Each primary copy τi is executed in the way de-
scribed in Theorems 2 and 3. Therefore, the work-
load contribution of primary copies to Q(t, ω) is
calculated by the first item on the right-hand side
of (15).

Case 2) Each active-backup copy is executed in the same
way as its primary copy; therefore, the workload
contributed by active-backup copies to Q(t, ω) is
expressed as the second item on the right-hand side
of (15).

Case 3) Each deferred-active-backup copy is executed in a
similar way as its primary copy. The main difference
is that, during period Ti, each execution time is only
the RP of its execution time. Therefore, the work-
load imposed by deferred-active-backup copies is
written as the third item on the right-hand side
of (15).

Considering the aforementioned three cases, we can calculate
Q(t, ω) using (15). �

Lemma 2 suggests a means of computing Idle(t) in two
phases. First, a virtual task γ = (T = t, C) is added, and the
virtual task has the lowest priority among all the tasks that have
been assigned on processor Pi. Next, the maximal value of C is
determined in such a way that task γ meets its deadline. Thus,
we have

Idle (t) = max{C | γ is schedulable}. (16)

The finishing time f for task γ is written as

f = Q (t, ω ∪ {γ}) . (17)

If f is smaller than or equal to t, then γ is schedulable. Other-
wise, γ is not schedulable. If we are unable to determine Ymaxc

satisfying Rmaxc − Redundant(βmaxc), then βmaxc cannot
be successfully allocated to a processor as a deferred-active
backup copy.

D. Schedulabilty Test

In an effort to calculate Ymaxc, the schedulability of
deferred-active backup copies is checked assuming no
processor failures. Consequently, we only need to perform the
schedulability test for primary and active-backup copies when
systems experience no processor failures.

Let hp(γmaxc) denote a set of all tasks with higher priorities
than that of γmaxc. Let hep(γmaxc) be a set of all tasks with
priorities higher than or equal to γmaxc’s priority. Thus, we
have hep(γmaxc) = hp(γmaxc) ∪ {γmaxc}.

Theorem 4: Let γmaxc be a primary copy or an active-
backup copy currently being assigned and scheduled. The
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WCRT of γmaxc, RFR(γmaxc), is calculated by

RFR(γmaxc) = Q (RFR(γmaxc), hep(γmaxc)) . (18)

If RFR(γmaxc) is smaller than or equal to Tmaxc, then γmaxc

is schedulable in fault-free scenarios. Otherwise, γmaxc is not
schedulable. This schedulability test is called Debus fault-free
fault-tolerant CTT or DFR-CTT for short.

Proof: To prove that γmaxc is schedulable, we need to
show that RFR(γmaxc) is less than γmaxc’s deadline. As
per Theorem 1, γmaxc is a task copy with the longest re-
sponse time, and its WCRT is equal to the workload of
tasks in hep(γmaxc) during time interval RFR(γmaxc). In
the case of a fault-free scenario, hep(γmaxc) contains pri-
mary copies, active-backup copies, and deferred-active-backup
copies on processor Pk along with γmaxc, i.e., hep(γmaxc) =
Primary(Pk) ∪ active(Pk) ∪ deferred-active(Pk) ∪
{γmaxc}. Thus, RFR(γmaxc) can be calculated using (18).

The deadline of γmaxc is the period of γmaxc, i.e., Tmaxc,
when γmaxc is a primary copy or an active-backup copy. It
is evident that, if RFR(γmaxc) ≤ Tmaxc, then γmaxc can be
completed before its deadline, which in turn proves that γmaxc

is schedulable. �
Theorem 5: Let γmaxc be a primary copy or any form

of a backup copy currently being assigned and scheduled.
hp(γmaxc) represents a set of tasks with higher priorities than
that of γmaxc on processor Pk in the presence of Pj’s failures.
The WCRT of γmaxc, RFO(γmaxc), is derived from (19), as
shown at the bottom of the page.

If RFO(γmaxc) is smaller than or equal to DeadL(γmaxc),
then γmaxc is schedulable in the presence of any processor fail-
ure. Otherwise, γmaxc is not schedulable. This schedulability
test is called DFR-CTT.

Proof: To show that γmaxc is schedulable, we need
to prove that RFO(γmaxc) is less than γmaxc’s fault-
tolerant deadline. In case of processor failures in Pj , we
have hep(γmaxc) = Primary(Pk) ∪ DRecover(Pk, Pj) ∪
{γmaxc}. RFO(γmaxc) can be derived from (19).

Now, let us prove the correctness of (20). If γmaxc is a
primary or an active-backup copy, the deadline is the period
of γmaxc, i.e., Tmaxc. If βi is a passive-backup copy, the first
instance of βi is less than or equal to B(maxc−1). If βi is
a deferred-active-backup copy, the value of Backup(βi) can
guarantee the schedulability of βi in case of a processor fail-
ure. Nevertheless, we still need to check the schedulability of
βi’s subsequent instances. Therefore, the fault-tolerant deadline
of βi’s first instance is Tmaxc + B(maxc−1). Thus, the fault-
tolerant deadline of γmaxc can be written as (20). Consequently,
we prove that, if RFO(γmaxc) ≤ DeadL(γmaxc), then γmaxc’s
deadline is guaranteed, and γmaxc is schedulable. �

E. Task Assignment Strategy

The task assignment strategy of Debus is identical to that
of Tercos. The task assignment strategy of Debus is following
the best-fit policy. When real-time tasks cannot be accom-
modated by any processor, an extra processor will be added.
The scheduling heuristics, task assignment algorithm, and time
complexity can be found in Section IV.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms through
extensive simulations. To reveal performance improvements
gained by our algorithms, we first compare Tercos with
FTRMFF [27]. Next, we compare Debus with Tercos to show
the strengths of the Debus algorithm.

A. Experimental Platform

Large task sets with periodic tasks are generated according
to the following parameters.

1) Periods of tasks (Ti). A value randomly generated from
the interval [0, 500].

2) Execution time of the ith task. A value taken from a
random distribution in the interval 0 < Ci ≤ αTi, where
the parameter α = max(Ci/Ti)(i = 1, . . . , N), which
represents the maximum load occurring in the task set
on all processors. Three values are chosen for α, namely,
0.2, 0.5, and 0.8. The three values represent a real-time
system with a low, medium, and heavy workload, res-
pectively.

3) Size of a task set (L). A value selected from a set [100,
200, 300, 400, 500, 600, 700, 800, 900, 1000].

Varying parameters L and α, we generate 30 different task
sets. For the chosen n and α, each experiment is repeated
30 times, and the average result is calculated.

The performance metric in our experiments is the number of
processors required to assign a set of tasks. In the results of
the experiments, we denote the number of processor used by
FTRMFF as N , M is the number of processors required by
Tercos, and T is the number of processors used by Debus. Our
simulation source code was written in Visual C++ 6.0 and run
on Pentium 4.0 2.9 G with 512-M RAM.

B. Performance Comparisons Between FTRMFF and Tercos

First, we compare FTRMFF and Tercos with respect to
schedulability. Figs. 9 and 10 shows the impact of the task set
size on the schedulability of the two algorithms. It is clear that
both M and N proportionally increase with the task size L.

RFO(γmaxc) = W (RFO(γmaxc), hep(γmaxc)) (19)

DeadL(γmaxc) =

⎧⎨
⎩

Tmaxc, γmaxc is (Primary or active)
B(maxc−1), γmaxc is passive
Tmaxc + B(maxc−1), γmaxc is

(
deferred-active and for the first RFO(γmaxc) > B(maxc−1)

) (20)
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Fig. 9. Schedulability of Tercos and FTRMFF when L is increasing.

Fig. 10. (N − M)/N shows the savings in the number processors required
when L is increasing.

This is because, when the number of tasks increases, more
processors are required to guarantee the deadlines of the tasks.
Fig. 9 shows that Tercos provides remarkable savings in the
number of required processors, because Tercos attempts to
reduce redundancies introduced by active-backup copies when
primary copies are successfully completed.

Moreover, Fig. 10 shows the value of (N − M)/N , which
gives the ratio of savings in processors provided by Tercos.
It is observed that the ratio of savings in processors reaches
its peak when α is set to 0.5. We attribute this to the fact
that, when α = 0.5, the WCRTs of most primary copies are
nearly half of their deadlines. Therefore, we can make the
WCRTs of most back copies longer, which in turn results in
shortened RPs. It is to be noted that the advantage of Tercos
over FTRMFF is smallest when α is set to 0.8. This is mainly
because the WCRTs of both primary and backup copies are
relatively large, meaning that the overlapping of primary and
backup copies is small. This means that there are few RPs
which are required for Tercos to improve the ratio of savings in
processors.

In summary, Tercos can reduce the number of required
processors by up to 17.0% (with an average of 9.7%). Hence,
we can conclude that Tercos improves schedulability over
FTRMFF by reducing unnecessary redundancies.

Fig. 11. Schedulability of Tercos and FTRMFF when L is increasing.

Fig. 12. (M − T )/M shows the savings in the number processors required
when L is increasing.

C. Performance Comparisons Between Debus and Tercos

In this experiment, we compare Tercos and Debus in terms
of schedulability. Fig. 11 shows the impact of the task set
size on the schedulability measured as the number of required
processors. Fig. 11 shows that M and T proportionally increase
with the increase in task size L. These results are consistent
with those shown in Fig. 9. Fig. 12 shows that Debus provides
significant savings in the number of required processors, be-
cause Debus can further reduce task redundancies by delaying
the execution of active-backup copies.

Furthermore, Fig. 12 shows the value of (M − T )/M , which
is the ratio of savings in required processors provided by
Debus. It is noticed that the savings in the number of processors
reaches its peak when α is set to 0.5. Again, this finding can be
explained by the fact that, when α = 0.5, the WCRTs of most
primary copies are nearly half of their deadlines. Consequently,
a vast majority of active-backup copies are postponed to be
executed as deferred-active-backup copies. It is observed that
the advantage that Debus has over Tercos is smallest when α is
set to 0.8. This phenomenon can be explained by the fact that,
when α is large, the WCRTs of primary copies are very long,
which lead to small recovery times of backup copies. Hence,
the effectiveness of deferred-active-backup copies becomes
insignificant. Fig. 12 also shows that the size of the task set has
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no apparent impact on the ratio (M − T )/M when α = 0.8;
we can also attribute this result to the fact that fewer parts of
the active-backup copies can be executed as passive status.

Compared with Tercos, Debus reduces the number of re-
quired processors by up to 12% (with an average of 7.8%).
Thus, the experimental results show that Debus significantly
improves schedulability over Tercos by employing the concept
of deferred-active-backup copies.

VII. SUMMARY AND FUTURE WORK

In recognition that achieving high schedulability is one of the
main design objectives of fault-tolerant and real-time distrib-
uted systems, we first addressed the limitations of conventional
fault-tolerant real-time scheduling algorithms for periodic and
preemptive real-time tasks. Next, we designed two efficient
scheduling strategies with a goal to improve the schedulability
of fault-tolerant and real-time distributed systems running pre-
emptive and periodic tasks. The first strategy or Tercos makes
an effort to avoid task redundancies by terminating the execu-
tions of active-backup copies as long as their corresponding
primary copies can be successfully completed. The second
scheme or Debus further enhances the schedulability of Tercos
by delaying executions of active-backup copies. Empirical
results show that, compared with existing algorithms in the
literature, Tercos significantly improves system schedulability
by up to 17.0% (with an average of 9.7%), whereas Debus is
able to improve the system schedulability over Tercos by up to
12% (with an average of 7.8%).

Future studies in this emerging field include the following
points. First, we will extend the Debus algorithm by further
eliminating task redundancies to boost system schedulability.
Second, we will be developing an advanced version of Debus
by taking task precedence constraints into account.
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