

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

1

An Availability-Aware Task Scheduling Strategy for Heterogeneous Systems

 Xiao Qin Tao Xie
 Department of Computer Science Department of Computer Science
 and Software Engineering San Diego State University
 Auburn University, Auburn, Alabama 36849 San Diego, California 92182
 xqin@auburn.edu xie@cs.sdsu.edu

Abstract

High availability is a key requirement in the design and development of heterogeneous

systems, where processors operate at different speeds and are not continuously available for

computation. Most existing scheduling algorithms designed for heterogeneous systems do not

factor in availability requirements imposed by multiclass applications. To remedy this

shortcoming, we investigate in this paper the scheduling problem for multiclass applications

running in heterogeneous systems with availability constraints. In an effort to explore this issue,

we model each node in a heterogeneous system using the node’s computing capability and

availability. Multiple classes of tasks are characterized by their execution times and availability

requirements. To incorporate availability and heterogeneity into scheduling, we define new

metrics to quantify system availability and heterogeneity for multi-class tasks. We then propose a

scheduling algorithm to improve availability of heterogeneous systems while maintaining good

performance in response time of tasks. Experimental results show that our algorithm achieves a

good trade-off between availability and responsiveness.

Index Terms – Availability constraints, heterogeneous systems, multiclass applications,

scheduling, resource allocation.

1. Introduction

Over the last decade, heterogenous systems have been widely used for scientific and

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

2

commercial applications [9]. To improve performance of applications running in heterogenous

systems, past research has developed a wide variety of scheduling algorithms for heterogeneous

computing systems [8][30]. Dogan and F. Özgüner developed reliable matching and scheduling

algorithms for tasks with precedence constraints in heterogeneous distributed systems [8].

Srinivasan and Jha incorporated reliability cost, defined to be the product of processor failure

rate and task execution time, into scheduling algorithms for tasks with precedence constraints

[29]. Ranaweera and Agrawal proposed a scalable scheduling scheme called STDP for

heterogeneous systems [20]. The objective of scheduling algorithms is to map tasks onto nodes

and order their execution in a way to optimize overall performance.

In scheduling theory the basic assumption is that all machines are always available for

processing [23]. This assumption might be reasonable in some cases but it is not valid in

scenarios where there exist certain maintenance requirements, breakdowns or other constraints,

which make the machines not to be available for processing [23]. Examples of such constraints

can be found in many application areas. For instance, computational nodes in heterogeneous

systems need to be maintained periodically to prevent malfunctions [14]. In this study

availability is defined as the ratio of the total time a computing node is functional during a given

interval. The performance of a heterogeneous system will be degraded if one or multiple nodes

are out of order due to random breakdown or preventive maintenance. On the other hand,

however, nowadays many high-performance applications require computing platforms with high

availability [2][21][22][26][24]. Military applications, 24×7 healthcare applications,

international business applications and the like demand extremely high availability services since

severe damages or fatal errors could occur when even only one computing node becomes

unavailable [2]. As such, a scheduling strategy for heterogeneous systems has to factor in

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

3

availability to deal with maintenance activities and unexpected failures.

A multiclass application consists of tasks of multiple classes, which are characterized by their

distinctive arrival rates, execution time distributions and availability requirements. The issue of

scheduling multiple classes of tasks with availability constraints was raised by a wide range of

real-world distributed applications such as scalable web server systems [10], distributed

heterogeneous servers [24], and general multiclass systems built on high speed networks [11]. In

many multiclass applications, incoming requests are immediately dispatched to one of a set of

computing nodes, each of which independently executes a process running a local sequencing

algorithm [10][24]. Unfortunately, conventional scheduling algorithms [3][4][7][10] for multi-

class applications running in heterogeneous systems only concentrated on high throughput with

the goal of reducing response times, completely ignoring availability requirements of multiclass

tasks. It is challenging, however, to achieve high throughput and high availability simultaneously

because they are two conflict objectives [2]. For example, it is unacceptable to assign a critical

task with high availability requirement to a computing node that provides with high speed and

low availability. We argue that an ideal scheduling scheme has to guarantee tasks’ availability

requirements while efficiently reducing response times.

Some work has been done to investigate resource allocation schemes for tasks with

availability constraints [22]. Smith introduced a mathematical model for resource availability,

and then proposed a method to maintain availability information as new reservations or

assignments are made [26]. Adiri et al. addressed the scheduling issue in a single machine with

availability constraints [1]. Qi et al. developed three heuristic algorithms to tackle the problem of

scheduling jobs while maintaining machines [18] simultaneously. Very recently, Kacem et al.

investigated a branch and bound method to solve the single machine scheduling problem with

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

4

availability constraints [13]. Lee studied the two-machine scheduling problem in which an

availability constraint is imposed on one machine as well as on both machines [15]. The problem

was optimally solved by Lee using pseudo-polynomial dynamic programming algorithms.

Mosheiov addressed the scheduling issue in the context of identical parallel machines with

availability constraints [16]. Sadfi and Ouarda studied a dynamic programming approach to

solving the parallel machine scheduling problem with availability constraints [21]. More

scheduling problems where machines are not continuously available for processing can be found

in [22]. Although the above schemes considered scheduling problems with availability

constraints, they are inadequate for multiclass applications running in heterogeneous systems

because they either focused on a single machine [1] [13] [18], two machines [15], or a

homogeneous system [16] [21] [22]. Besides, all of them only considered applications with one

single-class tasks. To remedy this issue, in this paper we address the problem of scheduling

multiple classes of tasks with availability constraints in heterogeneous systems. Specifically, we

aim to develop a novel scheduling strategy used to enhance the availability of heterogeneous

systems while maintaining a good performance in average response time of multi-class tasks. In

this study we consider Poisson arrivals, in which case we design an availability-aware scheduling

algorithm applied to heterogeneous systems where computing capacity and availability

constraints are known a priori.

 In our previous work, we studied security-aware scheduling for embedded systems [32],

clusters [31][33], and Grids [34]. However, these scheduling algorithms are designed for

homogeneous systems. Further, our previous scheduling algorithms are not suitable for multi-

class tasks with availability requirements. In contrast, the algorithm proposed in this paper makes

a good trade-off between availability and responsiveness. The rest of the paper is organized as

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

5

Fig. 1. System model of the SSAC strategy.

Local Queue

N1

N2

Nn

Schedule
Queue

SSAC

Class 2

Class m

Class 1

λ1

λ2

λm

Availability Provider
Locator

Load Imbalance
Detector

Availability Cost
Calculator

follows. Section 2 describes a system model of heterogeneous systems with availability

constraints. Section 3 presents a scheduling algorithm focused on improving availability of

applications in heterogenous computing environments. Section 4 is devoted to evaluating the

performance of the proposed scheduling algorithm. We conclude the paper with future work in

Section 5.

2. Model Description and Problem Formulation

2.1 Architecture model

We consider a queuing architecture of a heterogeneous system in which n nodes are

connected via a network to process independent m classes of non-preemptive tasks submitted by

m users. Both m and n are finite integers that are greater than or equal to 1. Let N = {n1, n2, …,

nj, …, nn} denote the set of heterogeneous nodes. We assume that the nodes differ only in their

speeds and availability levels (hereinafter, the terms “availability level of a node” and

“availability of a node” are used interchangeably). The system architecture model, depicted in

Fig. 1, is composed of a task schedule queue, SSAC task scheduler, and n local task queues. The

goal of SSAC is to make a good task allocation decision for each class of tasks to satisfy their

availability requirements and maintain an ideal performance in response time.

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

6

 Fig. 2. Example node list sorted by availability level.

3

0.98
84

8 4 1 6 2 7 5

Ni

Availability level:

Node number:

 Expected finish time:
0.93
47

0.87
76

0.86
208

0.79
29

0.73
51

0.7
126

0.68
38

A schedule queue is used to accommodate incoming tasks. SSAC scheduler then processes all

arrival tasks in a First-Come First-Served (FCFS) manner. After being handled by SSAC, the

tasks are dispatched to one of the designated node nj ∈ N for execution. The nodes, each of

which maintains a local queue, can execute tasks in parallel. The centrepiece of the system

architecture model is SSAC, which is composed of three modules: (1) Availability Provider

Locator (APL); (2) Availability Cost Calculator (ACC); and (3) Load Imbalance Detector (LID).

For tasks of each class, the APL is used to find all nodes that can meet tasks’ availability

requirements and put these nodes in the set Ni. If Ni is non-empty, the APL will choose a node in

Ni that can offer tasks of the class with the minimal expected response time as a candidate node.

An empty Ni indicates that no node in the system can meet the availability constraints of the

current task class. In this case, SSAC will employ the ACC to calculate the availability cost of

each node in N for the current class. The node with the least availability cost will be selected as a

candidate node. The function of LID is to detect whether or not the candidate node is overloaded.

If it is overloaded, the current task class will be assigned to the node with the lightest load. The

task class will be allocated to the candidate node, otherwise. Detailed description of the SSAC

strategy can be found in Section 3. To illustrate how APL works, we give an example as below.

In Fig. 2 we assume that there are eight nodes in a system. The first row shows the availability

levels that the eight nodes exhibit. The second row displays the expected finish times for task

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

7

class i on the nodes. The third row is a node list sorted by the node’s availability level in a non-

decrease order. We suppose that the task’s availability requirement is 0.85. Therefore, the first 4

nodes (3, 8, 4, 1) will be put into set Ni as all of them can fully satisfy the task’s availability

requirement. SSAC will eventually choose node 8 (the black node) as the candidate node

because it can minimize the expected response time of the task class.

2.2 Modeling multiclass tasks with availability requirements

For future reference, we summarize the notation that is used throughout this paper in Table 1.

Table 1. Definitions of Notation

Notation Definition

n Number of nodes in a heterogeneous system. (1 ≤ n < ∞)
m Number of task classes submitted to the system. (1 ≤ m < ∞)

iλ Arrival rate of tasks in the ith class.

jΛ Aggregate task arrival rate of the jth node. (see Eq. 1)

ijp Probability that tasks of the ith class are dispatched to node j.

ijµ Service rate of tasks in class i allocated on node j.

iρ Service utilization of class i. (see Eq. 2)

jφ Service utilization for all tasks allocated to node j. (see Eq. 3)

φ Summation of the service utilizations of all the nodes. (see Eq. 4)

jTN Average response time of node j. (see Eq. 5)

iTC Expected response time of class i tasks. (see Eq. 8)

T Mean response time of jobs averaged over all the classes. (see Eq. 9)

jξ Availability of node j. (10 ≤≤ jξ)

ia Availability requirement of class i. (1a0 ≤≤ i
)

jδ Availability shortage of node j. (see Eq. 11)

ijd Availability shortage factor of class i on node j. (see Eq. 12)

ACij Availability cost of class i on node j. (see Eq. 14)

jθ Unavailable rate of node j. (see Eq. 15)

ACi Availability cost of class i. (see Eq. 16)

iA Availability of class i. (see Eq. 17)

A Availability exhibited by the system. (see Eq. 18)

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

8

There are m classes of tasks submitted to a heterogeneous system by users. Tasks are

independent of one another. Each class of tasks requires a common availability specified by a

user. Values of availability levels are normalized in the range from 0 to 1.0. For example, users

may set availability levels of critical task classes to 1.0, which means that critical tasks should be

assigned to a node which ensures that that the task can be successfully completed.

Since arrival patterns and service rates can be estimated by code profiling and statistical

prediction [5], it is assumed in this study that the arrival patterns and service rate is known a

priori. Without loss of generality, we assume that tasks of the ith (1 ≤ i ≤ m) class arrive

according to a Poisson process with rate iλ . All classes of tasks arrive at the system at an

aggregate rate of ∑ =
= m

i i1
λλ . Let pij be the probability that tasks of the ith class are dispatched

to node j, where 1 ≤ j ≤ n. Hence, the aggregate task arrival rate of the jth node is expressed as

 ∑
=

=Λ
m

i
iijj p

1

λ . (1)

Let ijµ denote the service rate of tasks in class i allocated on node j, and the corresponding

expected service time is computed by ijµ1 . It should be noted that the service time of the ith

task class on node j has a general distribution, which is independent of the arrival processes.

Thus, the service utilization of class i can be written as

 ()∑
=

=
n

j
ijiiji p

1

µλρ . (2)

Similarly, we can obtain the service utilization for all tasks allocated to node j as below

 ()∑
=

=
m

i
ijiijj p

1

µλφ . (3)

The total service utilization of a heterogeneous system, which can be derived from Eq. (3), is

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

9

the summation of the service utilizations of all the nodes. Thus, we have

 ()∑∑∑
= ==

==
n

j

m

i
ijiij

n

j
j p

1 11

µλφφ . (4)

In this study each node in the system is modelled as a single M/G/1 queue. Thus, the average

response time of node j can be computed as

)1(2

)(
)(

2

j

jj
jj

sE
sETN

φ−
Λ

+= , (5)

where E(sj) and)(2
jsE is the mean and mean-square service times. E(sj) and)(2

jsE are given as

 ∑∑
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

Λ
=

m

i ij

iij

j

m

i ijj

iij
j

pp
sE

11

11
)(

µ
λ

µ
λ

, (6)

 ()∑∑
== Λ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

Λ
=

m

i
ijiij

j

m

i
ij

j

iij
j sps

p
sE

1

2

1

22 1
)(λ

λ
, (7)

where js is the service time of multiple task classes on node j, 2
js is the second moments of the

service time, and 2
ijs is the second moment of the service time experienced by tasks of class ith

on node j.

 The expected response time TCi of class i tasks can be readily derived from the average

response times of nodes (see Eq. 5). Hence, we obtain TCi as given by Eq. (8)

 ()∑
=

⋅=
n

j
jiji TNpTC

1

. (8)

Now we derive the mean response time of jobs averaged over all the classes from Eq. (8) as

() .
1 1

1

∑ ∑

∑

= =

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

m

i

n

j
jij

i

m

i
i

i

TNp

TCT

λ
λ

λ
λ

 (9)

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

10

To minimize the average response time without taking availability constraints into account,

we have to balance the load of nodes by evenly distributing the service utilization. In other

words, making all the node service utilization equal leads to a perfect load balance. Therefore,

we have

 ()∑
=

==
m

i
ijiijj p

1
0φµλφ . (10)

Now we are positioned to consider availability constraints in the context of heterogeneous

computing environments. Formally, instantaneous availability of a system is the probability that

the system is not only performing properly without failures but also satisfying specified

performance requirements [12]. Steady-state availability is the probability that a system is

running during any period the system is required to be operational [12]. For simplicity and

without loss of generality, we refer to steady-state availability as availability throughout this

paper. Thus, the availability of node j is characterized by the probability jξ that the node is

continuously operational for computation during any random period. The availability of a node is

modeled as a function determined by a variety of factors including the node’s maintenance

status, the number of spare devices dedicated for the node, and the presence or absence of anti-

virus software. To determine the value of jθ of node j, we used the fuzzy-logic-based trust model

proposed in [28] to aggregate the multiple factors into a normalized scalar value. Detailed

information regarding the trust model can be found in [28].

Although the availability of a node could be a dynamically changed value in a long term due

to periodic maintenances, regular upgrades, and sudden invasions of malicious codes, it can be

approximated to a constant value during a short period of time like a complete execution cycle of

a multi-class application. In other words, the availability of a node is independent of allocations

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

11

of task classes, meaning that allocating class i to node j has no impact on the availability of node

j for other classes.

We denote ai as the availability requirement of task class i. Specifically, ai is the probability

that tasks of class i must be successfully executed. Different classes of tasks have distinct

availability requirements determined by the consequences of failures of their executions. Failures

of critical tasks are catastrophic, whereas failures of non-critical tasks are relatively less

damaging. As a result, a critical task requires to be assigned to a node with high availability,

because failures of the task could be catastrophic. A non-critical task may be assigned to a node

with a medium availability level because failures of the task will not lead to severe

consequences. For example, the availability requirement of a critical task might be 0.95, meaning

that the possibility that the task fails must not be higher than 0.05. It should be noted that ai and

iλ are mutually independent of each other. We quantify the availability of a heterogeneous

system by introducing concepts of availability shortage factor and availability shortage, which

characterize the discrepancy between availability demands and actual offered availability. The

availability shortage factor dij of task class i on node j is modeled as a step function. Thus, we

have

 1a0,
otherwise,a

a if,0
≤≤≤

⎪⎩

⎪
⎨
⎧

−

≤
= ji

ji

ji

ijd ξ
ξ

ξ
. (11)

The availability shortage of node j is calculated based on the availability factor as

 ∑∑
== Λ

=
Λ

=
m

i
ijiij

j

m

i
ij

j

iij
j dpd

p

11

1 λ
λ

δ , where ∑
=

=Λ
m

i
iijj p

1

λ . (12)

 The availability shortage of the system is written as the accumulative sum of availability

shortages of all the nodes. Thus, we have

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

12

 ∑ ∑∑ ∑∑
= == = = Λ

=
Λ

==
n

j

m

i
ijiij

j

n

j

n

j

m

i
ij

j

iij
j dpd

p

1 11 1 1

1 λ
λ

δδ . (13)

Eq. (13) measures the discrepancy between the system availability and the availability

requirements imposed by tasks. We can make use of the concept of availability shortage to

measure satisfaction degrees in terms of availability. However, it is inadequate to leverage the

availability shortage to quantitatively evaluate system availability for all the classes of tasks

during their executions on the system. To remedy this situation, we model the availability of the

system for all the classes as below. Our availability model is motivated by the reliability models

found in the literature [25][29]. Since the availability model relies on the concept of availability

cost, let us first introduce the availability cost of class i on node j using Eq. (14) as below

ij

j
ijij pAC

µ
θ

= , where jθ is the unavailable rate of node j. (14)

Eq. (14) shows that the availability cost of class i on node j is directly proportional to two

parameters: (1) the probability that tasks of the ith class are dispatched to node j and (2) the

unavailable rate of node j. Note that the unavailable rate used in this study is expressed as Eq.

(15), where α is a system parameter. The value of α used in our experiments is 0.1. Eq. (15)

indicates that the unavailable rate of node j is inversely proportional to the availability of node j.

System parameter α must agree with measurements taken from real systems, whereas availability

ξj can be estimated and provided by hardware vendors. It is worth noting that the way of

calculating unavailable rates is only for illustration purpose, and it is flexible to substitute any

unavailable rate model for Eq. (15).

)1(exp(1 jj ξαθ −−−= . (15)

The availability cost Ai of class i is derived from Eqs. (14) and (15) as follows

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

13

 ∑∑
==

==
n

j ij

j
ij

n

j
iji pACAC

11 µ
θ

. (16)

Based on Eq. (16), we can express the availability Ai experienced by class i as Eq. (17). Note

that this availability model is very similar to some reliability models proposed in the literature

[25][29].

 []
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=−= ∑

=

n

j ij

j
ijii pACA

1

expexp
µ
θ

, (17)

Now we calculate the availability A exhibited by the system. The system’s availability

expressed by Eq. (18) is the probability that the system is continuously performing at any

random period of time. Alternatively, the system’s availability can be computed by the expected

fraction of time the system is performing during the period it is required to be operational [12].

∑ ∑

∑

= =

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

⎟
⎠
⎞

⎜
⎝
⎛=

m

i

n

j ij

j
ij

i

m

i
i

i

p

AA

1 1

1

.exp
µ
θ

λ
λ

λ
λ

 (18)

Eq. (18) indicates that to enhance the system availability, we must substantially reduce

availability cost expressed by Eq. (16).

2.3 Problem formulation

Now we formulate the scheduling problem as a trade-off problem between availability and

mean response time. Thus, the proposed scheduling algorithm aims at improving system

availability (see Eq. 18) and maintaining an ideal response time of submitted tasks (see Eq. 9).

More formally, the problem of maximizing the availability of a heterogeneous system can be

formulated as follows:

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

14

 Maximize ∑ ∑
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

m

i

n

j ij

j
ij

i pA
1 1

exp
µ
θ

λ
λ

 Subject to response time constraints:

 :,1,1 jianjmi ξ≤≤≤≤≤∀ Minimize iTC .

The above constrain is the response time constraints, each of which means that among nodes

whose availability shortage factor for class i equals to zero, a node is chosen for the ith class in a

way to minimize the mean response time of class i. Notice that the response time constraints can

be satisfied by estimating the mean response times of class i on all candidate nodes whose

availability shortage factor for class i is zero.

2.4 Heterogeneity model

Each node in the architecture model (Fig. 1) is inherently heterogeneous in both

computational speed and availability level. Computational heterogeneity captures the nature of

heterogenous computing platforms where the execution times of each task on different nodes are

distinctive. While each multiclass task has an availability requirement, computational nodes

exhibit a variety of availability levels. For simplicity, and without loss of generality, the

availability levels and availability requirements are normalized in the range from 0 to 1.0.

We introduce the concepts of computational heterogeneity and availability heterogeneity. The

computational weight of class i on node j is defined as a ratio between its service rate on node j

and the fastest service rate in the system. That is, the computational weight is expressed

by ()ik

n

k
ijijw µµ

1
max

=
= . The computational heterogeneity of the ith class, i.e. iHC , can be

measured by the standard deviation of the computational weights. Thus, we have

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

15

 ()∑
=

−=
n

j
ijii ww

n
HC

1

21
, (19)

where iw is the average computational weight , i.e., nww
n

j
iji ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

.

The computational heterogeneity can be expressed as the following equation

 ∑
=

=
m

i
iHC

m
HC

1

1
. (20)

The heterogeneity of availability HA in a heterogenous system is measured by the standard

deviation of the availability offered by all the nodes in the system. Hence, HA is written as Eq.

(21)

 ()∑
=

−=
n

j
jn

HA
1

21 ξξ , where n
n

j
j ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

ξξ . (21)

2.5 Load imbalance detection mechanism

To fully satisfy tasks’ availability requirements, SSAC tends to assign tasks to a group of

nodes (a subset of N) that can provide high availability levels. Note that the availability level

offered by a node is orthogonal to its computational speed. The implication is that SSAC might

assign a large number of tasks onto a node with high availability level and low computational

speed. As a result, the mean response time achieved by SSAC could be suffered significantly due

to load imbalance. To prevent severe load-imbalance from occurring, SSAC leverages a load

imbalance detection mechanism called Load Imbalance Detector (LID) to detect whether or not a

node j in the system is overloaded. LID uses load index Lj defined by Eq. (22) to measure

relative workload of node j.

 Lj =
n

j

/φ
φ

, (22)

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

16

where jφ is the service utilization of node j (see Eq. 3) and φ /n is the average node service

utilization of the whole system (see Eq. 4). When Lj is higher than a threshold value TL, node j is

overloaded. Note that TL is an empirical parameter and we set it to 1.25 in our experiments. The

service utilization of node j is essentially the traffic intensity of node j.

3. The Availability-Aware Scheduling Algorithm

In this section, we present a novel Scheduling Strategy for multiple classes of tasks with

Availability Constraints or SSAC for short.

We now present the SSAC scheduling strategy, which is intended to determine probability

{pij}1≤ i≤ m, 1≤ j ≤ n in a judicious way to improve the availability of heterogeneous systems while

maintaining good performance in response time. Since the average response time largely depends

on sequencing strategies used in each node, we employ an existing optimal sequencing strategy

[24][27] to minimize the average response time of all classes (see Eq. 9). Our approach relies on

the following proposition that can be proved based on proposition 2.1 in [24].

Proposition 1. Given an m-class M/G/1 queue and an n-node heterogeneous system, class i has

arrival rate λi and service rate µij on node j. The scheduling policy on node j that gives priority to

class i over k whenever µij ≥ µkj minimizes the expected response time ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

m

i
i

i TCT
1 λ

λ
 (see Eq.

9).

Proposition 1 indicates that classes with higher service utilization must be given high priority

in the process of scheduling. For simplicity, we have the following assumption

Assumption 1. The classes are labelled such that ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L ,

where ∑ =

n

j iji 1
µλ is the service utilization of task class i.

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

17

This assumption is valid because the first step of the algorithm can sort the task classes in

such a way before having the task classes relabelled. The relabelling process of the algorithm

assigns a number of priority levels to the task classes. That is, the priority of class i is higher than

that of k if i < k. Based on the standard queuing theory, the expected response time for tasks of

class i on node j can be approximated by the following equation

 ,
)1)(1(2

)(1 1

2

∑∑
∑

≤<

=

−−
=+=

il ljil lj

m

i iiij

ij
iij

sEp
WTC

ρρ
λ

µ
where

lj

jlj
lj

p

µ
λ

ρ = . (23)

The SSAC algorithm, which is outlined in Fig. 3, aims to improve availability while

Fig. 3. The scheduling strategy for multiple classes of tasks with availability constraints.

1. Sort and label classes such that ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L ;

2. for each class i do
3. Initialize the availability cost and response time for class i, i.e., AC←∞, TC←∞;
4. Create a set Ni of nodes, where node j∈ Ni if ai ≤ ξj;
5. if (Ni ≠ ∅) then
6. for each node j in Ni do
7. pij ← 1; calculate expected response time of class i, TCi; (see Eq. 8)
8. if TCi < TC then
9. TC ← TCi; v ← j;
10. end for
11. else
12. for each node j in the system do
13. Calculate the availability cost of class i on node j,ACij; (see Eq. 14)
14. if ACij < AC or (ACij = AC and TCi < TC) then
15. AC = ACij; TC ← TCi; v ← j;
16. end for
17. end if
18. nmin = 1; Lmin = ∞; /* Assume node 1 is the lightest load node and its load index is ∞ */
19. for each node nj ∈ N do
20. Calculate its load index Lj; (see Eq. 22)
21. if Lj < Lmin then
22. Lmin = Lj; Nmin = j;
23. end for
24. if Lv <= TL then /* node v is not overloaded */
25. piv ← 1; /* indicate that class i to node v */
26. Allocate class i to node v;
27. else
28. Allocate class i to the node nmin;
29. end if
30.end for

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

18

achieving low average response time for multi-class tasks running in heterogeneous systems.

First, SSAC is intended to give higher priorities to classes with higher service utilization (see

Assumption 1). To achieve this goal, SSAC sorts and relabels all the classes in a way that the

condition ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L is satisfied (see Step 1).

Step 3 sets the initial values of the availability cost and response time for task class i to

infinity. Step 4 determines a set Ni of nodes that can meet the availability demands of tasks of

class i. Specifically, a node j ∈ Ni meets the availability constraints of class i if the ith class’s

availability requirement is smaller than the availability level offered by Ni (i.e., ai ≤ ξj).

Steps 5-17 are at the core of the SSAC algorithm. Step 5 determines if there exists at least one

node whose availability shortage factor for class i equals to zero. This process is implemented in

Step 5 by checking if set Ni has at least one element. In case where there is one or more nodes

with zero availability shortage factor for class i, Steps 6-10 aim at reducing the mean response

time of class i by estimating the mean response times of class i on all candidate nodes in set Ni.

Thus, the SSAC algorithm chooses the most appropriate node from set Ni in a way that the

selected candidate node can provide task class j with the minimal response time estimated by

Step 7.

There is a possibility that node set Ni is empty, meaning that no node in the heterogenous

system is capable of guaranteeing the availability constraint of class i. In this case Steps 12-16

make an effort to improve system availability derived from Eq. (18). More specifically, Step 13

leverages Eq. (14) to compute the availability cost ACij of class i on node j. Then, Steps 14 and 15

gradually reduce the availability cost value AC, thereby enhancing the system availability

characterized by Eq. (18). If two nodes offer the same availability for class i, the node offering a

smaller mean response time will be chosen for class i to break the tie (see Step 14).

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

19

Steps 18-23 calculate the load index value Lj for each node j in the system and find a node

nmin with the lightest load Lmin. If node v is not overloaded (Lv <= TL), Steps 25 and 26 allocate

tasks of class i to node v, which is expected to enhance the system availability.

 The mean response time of all the classes is further reduced through static load balancing

(see Step 28). Specifically, in case that node v is overloaded, Step 28 allocates class i to a node

with the lightest load. Node i is considered overloaded if its load index is greater than TL, which

is set to 1.25 in our experiments.

To analyze the computational overhead of SSAC, we obtain its worst time complexity as

follows.

Theorem 1. The worst case time complexity of SSAC is O(m(logm + 2n + 1), where n is the

number of nodes, and m is the number of classes.

Proof. The time complexity of sorting and label multiple classes is O(mlogm) (Step 1). If Ni = ∅,

it takes O(n) time to maximize availability by reducing availability cost (Steps 12-16) and Steps

6-10 will be skipped. If Ni = N, it takes O(n) time to discover a node who can offer the minimal

expected time for the current class of tasks (Steps 6-10) and Steps 12-16 will be skipped. In case

that Ni ⊂ N and Ni ≠ ∅, it takes O(k) (k is the length of Ni and 1 ≤ k < n) time to discover a

node that offers the minimal expected response time for the current class of tasks (Steps 6-10)

and Steps 12-16 will be ignored. Therefore, the worst case for Steps 5-17 is O(n). Additionally,

it takes O(n) time to calculate the load index of each node in the system (Steps 19-23). For other

steps, they only consume O(1). Since the total number of classes is m, the time complexity for

the process of optimizing availability (Steps 2-30) is O((n+1)m). Thus, the worst time

complexity of the SSAC algorithm is O(mlogm)+ O((2n+1)m) = O(m(logm + 2n + 1).

Since m and n are all finite integers, which are not big numbers in practice, Theorem 1 shows

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

20

that the time complexity of SSAC is low in most cases. This time complexity indicates that the

execution time of SSAC is a small value compared with task execution times. Thus, the CPU

overhead of executing SSAC is ignored in our experiments.

The following two theorems show important features of the SSAC strategy. Assuming that all

nodes in a heterogeneous system are able to fulfil availability requirements of all tasks classes,

we can prove the following two theorems regarding the availability shortage and mean response

time of the system. Theorem 2 demonstrates that if each node j ∈ N can fully satisfy the

availability requirements of tasks of any class i, there is no availability shortage in node j

(availability provider) for tasks of class i (availability consumer). Theorem 2 implies that in this

perfect availability satisfaction scenario, minimizing mean response time of the system becomes

the only goal pursued by SSAC.

Theorem 2. In a workload where the maximal availability requirement among all classes is less

than or equal to the minimal availability among all nodes in a system, then the availability

shortage of the system is zero. Thus, () () .0minmax 11 =→≤ == δξ j
n
ji

m
i a

Proof. Given a task class k (1 ≤ k ≤ m) and a node l (1 ≤ l ≤ n), we have

 () () .11 minmax lj
n
ji

m
ik aa ξξ ≤≤≤ ==

Since lka ξ≤ , it follows that .0:1,1 =≤≤≤≤∀ kldnlmk Therefore, we obtain

,00
1

1 1

1 11

=⋅⋅
Λ

=

⋅
Λ

==

∑ ∑

∑∑∑

= =

= ==

n

j

m

i
iij

j

n

j

m

i
ij

j

iij
n

j
j

p

d
p

λ

λ
δδ

which completes the proof of theorem 2.

Theorem 3. In a workload where the maximal availability requirement among all classes is less

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

21

than or equal to the minimal availability among all nodes in a system (i.e., () ≤= i
m
i a1max

()j
n
j ξ1min =), then the mean response time of the system is

()
,

)1(21 1

1

2

0∑ ∑
∑

= =

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

Λ
⋅

m

i

n

j o

m

k
kjkkj

j
ij

i

sp
p

φ

λ
φ

λ
λ

where ()∑
=

==
m

i
ijiijj p

1
0 ,µλφφ .1 nj ≤≤

Proof. Since () ()j
n
ji

m
i a ξ11 minmax == ≤ means that all the nodes can meet the availability

requirements of all the task classes, Steps 6-10 and 24-29 in the SSAC algorithm judiciously

reduce mean response time by balancing the load of the nodes. Hence,

() .1,
1

0 njp
m

i
ijiijj ≤≤==∑

=

φµλφ It follows that

 ()∑ ∑∑
= ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=⎟

⎠
⎞

⎜
⎝
⎛=

m

i

n

j
jij

i
m

i
i

i TNpTCT
1 11 λ

λ
λ
λ

 ∑∑
== ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
Λ

+⋅=
n

j o

jj
jij

m

i

i
sE

sEp
1

2

1)1(2

)(
)(

φλ
λ

()

∑
∑

∑
=

=

=
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

⋅⋅
+

Λ
⋅=

n

j o

m

k
kjkkj

j

o
ij

m

i

i

sp
p

1

1

2

1

.
)1(2

φ

λ
φ

λ
λ

We therefore conclude that the mean response time of the system can be calculated as

()
,

)1(21 1

1

2

0∑ ∑
∑

= =

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

Λ
⋅

m

i

n

j o

m

k
kjkkj

j
ij

i

sp
p

φ

λ
φ

λ
λ

 and the proof of theorem 3 is complete.

 Since homogeneous systems widely deployed in the real world are a special case of

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

22

heterogeneous systems, we study the behaviors of SSAC in a homogeneous system in the

following two theorems. Theorems 4 and 5 below capture the characteristic behaviors of SSAC

in the context of homogeneous systems. Specifically, Theorem 4 establishes that in case where

all nodes in a homogeneous system are incapable of guaranteeing the availability requirements of

a task class, the SSAC algorithm initially allocates the class to a node with the highest

availability among all the nodes in the system. Thus we have the following theorem.

Theorem 4. Given a task class i whose availability requirement can not be satisfied by any node

in a homogeneous system with n nodes (i.e., ia > ()k
n
k ξ1max =), SSAC initially allocates class i to

a node j whose availability is the highest among the n nodes, i.e., ()j
n
kj ξξ 1max == . Formally, if

()iikijkjnkjmi µµµ ==≠≤≤∀≤≤∀ :,,1:1 , then ia > ()k
n
k ξ1max = → SSAC initially allocates

class i to node j subject to ()j
n
kj ξξ 1max == .

Proof. Since we have ia > ()j
n
j ξ1max = , it is intuitive that all the nodes in the homogeneous

system are unable to meet the availability requirement of task class i. Thus we show that the set

Ni of nodes for class i is empty (see Step 4 in Fig. 3). In this case, Steps 12-16 are executed to

determine a node j that offers the smallest availability cost among all the nodes in the system (see

Step 14 in Fig. 3). The initial availability cost of class i on node j equals to
ij

j

µ
θ

 (see Eq 14).

Because the n nodes are homogeneous (i.e., iij µµ =), the availability cost of class i on node j

can be expressed as
i

j

µ
θ

. If the value of
i

j

µ
θ

 is the smallest among all the nodes and iµ is a

constant, then the value of unavailable rate jθ is also the smallest. The smallest value of jθ

indicates the highest availability jξ of node j among all the n nodes. Hence, we show that SSAC

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

23

initially allocates class i to a node j whose availability is the highest among the n nodes.

Theorem 5 below states that if all nodes in a homogeneous system are incapable of

guaranteeing the availability requirements of all tasks classes (i.e., ()j
n
j ξ1max = < ()i

m
i a1min =), the

SSAC strategy gracefully degrades to a load-balancing scheme.

Theorem 5. If all nodes in a homogeneous system are incapable of guaranteeing the availability

requirements of all tasks classes (i.e., ()j
n
j ξ1max = < ()i

m
i a1min =), the SSAC strategy gracefully

degrades to a load-balancing scheme.

Proof. Given ()j
n
j ξ1max = < ()i

m
i a1min = , we show that ij anjmi <≤≤≤≤∀ ξ:1,1 . This means

for any task class i, no node in the system can guarantee the class’s availability requirement.

Hence, the set Ni of nodes for class i is empty (see Step 4 in Fig. 3), making SSAC allocate class

i to a node j offering the smallest availability cost among all the nodes in the system (see Step 14

in Fig. 3). Based on Theorem 4, it is proved that Steps 12-16 in SSAC initially attempt to allocate

all the classes to a set NHA of nodes whose availability is the highest among the n nodes.

Therefore, nodes in set NHA have a high likelihood of being overloaded. If any node in set NHA is

overloaded, Step 28 of SSAC is invoked to balance the load across all the nodes in the system.

Thus, in case that all nodes in a homogeneous system are incapable of guaranteeing the

availability requirements of all tasks classes, the SSAC strategy gracefully degrades to a load-

balancing scheme. Hence, the proof.

4. Experimental Results

We evaluate in this section the performance of the SSAC algorithm using simulation

experiments. There are two important workload parameters: mean arrival rate λ of multi-class

tasks and mean execution time (see Table 1). The system parameters in our experiments are

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

24

chosen either based on those used in the literature [35] or to represent real-world heterogeneous

systems. It is assumed that task arrival times abide by Poisson distribution and task execution

times follow Uniform distribution. We evaluated the proposed SSAC algorithm under a wide

range of system workloads by varying λ and number of nodes n. To simulate a heterogenous

system, we randomly generated a vector of n (number of nodes) execution times for each task

using the heterogeneity model described in Section 3. For each simulated result we performed

1,000 runs, of which the average value is computed after discarding the 10 largest and 10

smallest measurements.

We compared SSAC with two well-known scheduling algorithms to reveal the strengths of the

proposed scheduling strategy. The alternative scheduling algorithms are MINMIN and

SUFFERAGE [28], which are non-preemptive task scheduling algorithms. MINMIN and

SUFFERAGE were selected for comparison purpose, because these two algorithms represent

many existing algorithms that are the closest to our SSAC algorithm. MINMIN and

SUFFERAGE can be applied to allocate a stream of independent tasks to a heterogeneous

system. It is important to note that the two alternatives are representative dynamic scheduling

algorithms for distributed systems that are either homogeneous or heterogenous in nature.

MINMIN and SUFFERAGE were successfully applied in real world distributed resources

management systems such as SmartNet. These two scheduling algorithms are described in brief

as follows.

(1) MINMIN: For each submitted task, the node providing the earliest completion time is

tagged. Among all the mapped tasks, the one that has the minimal earliest completion time is

chosen and then allocate to the tagged node.

(2) SUFFERAGE: A node is assigned to a task that would “suffer” most in terms of

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

25

completion time if that node is not allocated to the task.

Table 2 shows the parameters of simulated heterogenous systems. In what follows, we briefly

introduce the performance metrics used to evaluate the performance of the proposed availability-

aware scheduling strategy.

Table 2. Characteristics of System Parameters

 Parameter Value (Fixed) - (Varied)
Number of nodes (16) – (16, 32,64,128)

Mean task arrival rate λ (Poisson dist.) (1.0) – (0.2, 0.4, 0.6, 0.8, 1.0)
Task execution time range (Uniform dist.) (1, 500) second

Node availability (Uniform dist.) (0.1 – 1.0)
Task availability demands (Uniform dist.)

(0.1 – 1.0)

Computational heterogeneity (computed) 0.35
Availability heterogeneity (computed) 0.22

TL (Threshold value of load index) 1.25

 (1) Availability (see Eq. 18): The system’s availability, which is measured by Eq. (18), is the

probability that the system is continuously performing at any random period of time.

(2) Availability shortage (see Eq. 13): The availability shortage of the system quantifies the

discrepancy between availability demands and actual availability offered by the system.

(3) Average response time (see Eq. 9): The average response time of multiple task classes is the

average time interval between task arrival time and the finish time.

(4) Node utilization: Utilization of a node is the percentage of total task running time out of total

available time of the node. Node utilization is the average value of all nodes’ utilizations.

In the first group of experiments, we vary the mean arrival rate from 0.2 to 1.0 with an

increment of 0.2. Fig. 4 shows experimental results of the three evaluated algorithms applied to a

heterogeneous system with 16 nodes. We observe from Fig. 4a that SSAC significantly improve

system availability over the two alternatives, whereas MINMIN and SUFFERAGE algorithms

exhibit similar performance in terms of availability. For example, SSAC enhances system

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

26

availability over the existing approaches by an average of 73.3%. We attribute the availability

improvements of SSAC over MINMIN and SUFFERAGE to SSAC’s capability of considering

tasks’ availability requirements in the process of allocating tasks to heterogenous nodes.

Fig. 4b reveals that the availability shortage of the proposed SSAC is considerably smaller

than those of MINMIN and SUFFERAGE. We observe that the results plotted in Fig. 4b are

consistent with those reported in Fig. 4a, because a low value of availability shortage gives rise

to high system availability. Fig. 4c shows that the average response time yielded by SSAC is

marginally larger than those generated by MINMIN and SUFFERAGE. More specifically, the

 (a) (b)

 (c) (d)

Fig. 4. Performance impact of mean arrival rate λ.

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

27

performance degradation of our SSAC in terms of response time is less than 5.7% on average. In

other words, compared with MINMIN and SUFFERAGE, SSAC achieves much better

availability performance while maintaining reasonably short response times. Fig. 4d clearly

shows that MINMIN and SUFFERAGE perform slightly better than SSAC in terms of node

utilization. This is because MINMIN and SUFFERAGE only aim at minimizing response times;

therefore, they tend to assign tasks to nodes with high speed while ignoring tasks’ availability

requirements. Hence, the average task running time is relatively shorter. In accordance with the

definition of node utilization, a short average task running time results in low node utilization.

Unlike MINMIN and SUFFERAGE, SSAC guarantees tasks’ availability requirements while

shortening response times. SSAC may assign tasks to slow nodes with high availability levels,

thereby making tasks have long execution times, which in turn leads to higher node utilization.

An interesting observation drawn from Figs. 4(a) and 4(b) is that SSAC outperforms

MINMIN and SUFFERAGE in terms of system availability. Furthermore, Fig. 4(d) reveals that

compared with SSAC, MINMIN and SUFFERAGE can deliver better performance with respect

to node utilization. Let us make use of the example in Fig. 2 to explain this phenomenon. As we

described in Section 2.1, SSAC selects node 8 (the black one) to meet the task’s availability

requirement (0.85 in this example). Therefore,
8ξ = 0.93. On the contrary, MINMIN and

SUFFERAGE choose node 6 as the candidate node for the tasks of the current class because

node 6 can deliver the minimal expected finish time. Thus,
6ξ =0.79 for MINMIN and

SUFFERAGE. Eq. 15 indicates that a large value of
jξ implies a small value of jθ , which in

turn results in a small ijAC . A small value of ijAC gives rise to a high availability Ai (see Eq. 17),

which eventually leads to high system availability A (see Eq. 18). In short, a high
jξ results in

high system availability A. Since
8ξ (selected by SSAC) is noticeably higher than

6ξ (selected by

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

28

MINMIN and SUFFERAGE), SSAC outperforms MINMIN and SUFFERAGE in terms of

system availability. The rationale that SSAC judiciously reduces availability cost by choosing

nodes with high availability levels, while MINMIN and SUFFERAGE totally ignore the issue of

availability cost.

The second group of experiments is focused on the scalability of the SSAC algorithm. In this

set of experiments, we vary the number of nodes in the simulated heterogeneous system from 16

to 128. Fig. 5 plots the four performance metrics of all the three examined algorithms as

functions of the number of nodes.

 (a) (b)

 (c) (d)

Fig. 5. Performance impact of number of nodes.

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

29

An important observation made from Figs. 5a and 5b is that SSAC exhibits good scalability

with respect to system availability and availability shortage. This is because Fig 5a reveals that

the performance improvement in system availability becomes more pronounced when the

heterogenous system is scaled up. Similarly, Fig. 5b shows that the availability shortage

reduction of SSAC over the two competitive algorithms is more prominent with the increasing

number of nodes in the heterogenous system. Figs. 5a and 5b indicate that the performance gain

of SSAC in availability becomes more significant for large-scale heterogenous systems, because

a larger number of nodes means a higher probability that SSAC can choose a node to meet each

task’s availability demands. Figs. 5c and 5d show that for all the evaluated scheduling

algorithms, the average response time and node utilization reduce as the number of nodes

increases. These results are expected because a larger number of nodes implies less work for

each node, which in turn leads to a smaller response time on each node.

5. Summary and Future Work

An increasing number of applications with availability constraints are running on

heterogeneous computing platforms. However, most existing scheduling algorithms in

heterogeneous systems ignore availability requirements imposed by multi-class applications. To

remedy this deficiency, we address in this paper the scheduling problem for multi-class

applications with availability constraints running in heterogeneous systems. Multi-class tasks are

characterized by their execution times and availability requirements, whereas each node in a

heterogeneous system is modeled by the node’s computing capability and availability. We

introduced new metrics to quantify availability and heterogeneity in the context of multi-class

tasks. Next, we proposed a scheduling algorithm (or SSAC for short) geared to enhance

availability of heterogeneous systems while maintaining good performance in average response

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

30

time of multi-class tasks. Empirical results show that compared with existing schemes, the

proposed algorithm significantly improves availability of multi-class tasks in heterogeneous

systems without degrading response times.

As part of future directions, we will extend SSAC to schedule parallel applications with

flexible availability requirements. This future work will be accomplished by factoring in

communication availability and precedence constraints among tasks. To further improve the

performance of the SSAC scheduling algorithm that is heuristic in nature, in future work we also

plan to explore two efficient algorithms to solve the same problem addressed in this paper. The

first algorithm will take an efficient dynamic programming approach, whereas the second

algorithm will make use of a branch and bound method. A third future direction is to investigate

an availability-aware scheduling algorithm that handles cases of Poisson arrivals as well as

general arrivals.

Acknowledgements

The work reported in this paper was supported by the US National Science Foundation under

Grants No. CCF-0742187 and No. CNS-0713895, Auburn University under a startup grant, and

the Intel Corporation under Grant No. 2005-04-070.

References

[1] I. Adiri, J. Bruno, E. Frostig, and A.H.G. Rinnooy Kan, “Single Machine Flow-time

Scheduling with a Single Breakdown,” Acta Informatica, vol. 26, pp. 679-696, 1989.

[2] A. Apon and L. Wilbur, “AmpNet - a highly available cluster interconnection network,”

Proceedings IEEE Intl' Symp. Parallel and Distributed Processing, April 22-26, 2003.

[3] F. bonomi and A. Kumar, “Adaptive optimal load balancing in a nonhomogeneous

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

31

multiserver system with a central job scheduler,” IEEE Transactions on Computers, Vol.

39, No. 10, pp.199-234, 1995.

[4] S.C. Borst, “Optimal probabilistic allocation of customer types to servers,” Proc. ACM

Sigmetrics Conf. Measurement and Modeling Computer Systems, pp.116-125, 1995.

[5] T. D. Braun et al., “A Comparison Study of Static Mapping Heuristics for a Class of Meta-

tasks on Heterogeneous Computing Systems,” Proc. Workshop Heterogeneous Computing,

pp.15-29, Apr. 1999.

[6] T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in General-purpose Distributed

Computing Systems,” IEEE Trans. Software Engineering, Vol.14, No.2, pp.141-154, Feb.

1988.

[7] M.E. Crovella, M. Harchol-Balter, and C. Murta, “Task assignment in distributed systems:

Improving performance by unbalancing load,” Proc. ACM Sigmetrics Conf. Measurement

and Modeling Computer Systems, pp.268-269, 1998.

[8] A. Dogan and F. Özgüner, “Reliable Matching and Scheduling of Precedence-Constrained

Tasks in Heterogeneous distributed computing,” Proc. Int’l Conf. Parallel Processing, pp.

307-314, 2000.

[9] A. Dogan and F. Özgüner, “LDBS: A Duplication Based Scheduling Algorithm for

Heterogeneous Computing Systems,” Proc. Int’l Conf. Parallel Processing (ICPP), pp.352-

359, B.C., Canada, 2002.

[10] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee, “Network Dispatcher: A Connection

Router for Scalable Internet Services,” Proc. Int’l World Wide Web Conf., April 1998.

[11] Y. Jiang, C.-K. Tham, and C.-C Ko, “An Approximation for Waiting Time Tail

Probabilities in Multiclass Systems,” IEEE Communications Letters, vol. 5, no. 4, pp. 175-

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

32

177, 2001.

[12] A.M. Johnson, M. Malek, “Survey of software tools for evaluating reliability, availability,

and serviceability,” ACM Computing Surveys, vol. 20 , no. 4, pp. 227 – 269, Dec. 1988.

[13] I. Kacem, C. Sadfi, and A. El-Kamel, “Branch and Bound and Dynamic Programming to

Minimize the Total Completion Times on a Single Machine with Availability Constraints,”

IEEE Int’l Conf. Systems, Man and Cybernetics, pp. 1657 – 1662, vol. 2, Oct. 2005.

[14] H. C. Lau and C. Zhang, “Job Scheduling with Unfixed Availability Constraints,” Proc.

35th Meeting of the Decision Sciences Institute (DSI), 4401-4406, Boston, USA, November

2004.

[15] C.-Y. Lee, “Two-machine flowshop scheduling with availability constraints,” European

Journal of Operational Research, vol. 114, no. 2, pp. 420-429, April 1999.

[16] G. Mosheiov, “Minimizing the Sum of Job Completion Times on Capacitated Parallel

Machines,” Mathematical and Computer Modelling, vol. 20, pp. 91-99, 1994.

[17] D.-T. Peng and K.G. Shin, “Optimal scheduling of cooperative tasks in a distributed system

using an enumerative method,” IEEE Trans. Software Engineering, Vol.19, No.3, pp. 253-

267, March 1993.

[18] X. Qi, T. Chen, and F. Tu, “Scheduling the Maintenance on a Single Machine,” Journal of

the Operational Research, vol. 50, pp. 1071-1078, 1999.

[19] X. Qin and H. Jiang, “A Dynamic and Reliability-driven Scheduling Algorithm for Parallel

Real-time Jobs on Heterogeneous Clusters,” J. Parallel and Distributed Computing, Vol.

65, No. 8, pp.885-900, August 2005.

[20] S. Ranaweera, and D.P. Agrawal, “Scheduling of Periodic Time Critical Applications for

Pipelined Execution on Heterogeneous Systems,” Proc. Int’l Conf. Parallel Processing

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

33

(ICPP), pp. 131-138, Sept. 2001.

[21] C. Sadfi and Y. Ouarda, “Parallel Machines Scheduling Problem with Availability

Constraints,” Proc. Int’l Workshop Project Management and Scheduling, 2004.

[22] E. Sanlaville and G. Schmidt, “Machine scheduling with availability constraints,” Acta

Informatica, vol. 35, no. 9, pp. 795 – 811, Sept. 1998.

[23] G. Schmidt, “Scheduling with limited machine availability,” European Journal of

Operational Research, pp. 1-15, 121, 2000.

[24] J. Sethuraman and M. S. Squillante, “Optimal Stochastic Scheduling in Multicalss Parallel

Queues,” Proc. ACM Sigmetric Conf., May 1999.

[25] S.M. Shatz, J.P. Wang, and M. Goto, “Task Allocation for Maximizing Reliability of

Distributed Computer Systems,” IEEE Trans. Computers, vol. 41, no. 9, pp. 1156-1168,

Sept. 1992.

[26] S.P. Smith, “An Efficient Method to Maintain Resource Availability Information for

Scheduling Applications,” Proc. IEEE Int’l Conf. Robotics and Automation, vol. 2, pp.

1214-1219, May 1992.

[27] W. E. Smith, “Various Optimizers for Single-Stage Production,” Naval Research and

Logistics Quarterly, pp59-66, 1954.

[28] S. Song, Y.-K. Kwok, and K. Hwang, “Trusted Job Scheduling in Open Computational

Grids: Security-Driven Heuristics and A Fast Genetic Algorithms,” Proc. Int’l Symp.

Parallel and Distributed Processing, 2005.

[29] S. Srinivasn and N. K. Jha, “Safty and Reliability Driven Task Allocation in Distributed

Systems,” IEEE Trans. Parallel and Distributed Systems, vol.10, no.3, pp. 238-251, Mar.

1999.

IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008.

34

[30] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and Low-complexity Task

Scheduling for Heterogeneous Computing,” IEEE Trans. Parallel and Distributed Sys.,

Vol.13, No.3, Mar. 2002.

[31] T. Xie and X. Qin, “Scheduling Security-Critical Real-Time Applications on Clusters,”

IEEE Trans. Computers, vol. 55, no. 7, pp. 864-879, July 2006.

[32] T. Xie and X. Qin, "Improving Security for Periodic Tasks in Embedded Systems through

Scheduling," ACM Trans. Embedded Computing Systems, in press, 2006.

[33] T. Xie and X. Qin, “A New Allocation Scheme for Parallel Applications with Deadline and

Security Constraints on Clusters,” Proc. IEEE Int’l Conf. Cluster Computing, Boston, USA,

Sept. 2005.

[34] T. Xie and X. Qin, “Enhancing Security of Real-Time Applications on Grids through

Dynamic Scheduling,” Proc. 11th Workshop Job Scheduling Strategies for Parallel

Processing (JSSPP), MA, June 2005.

[35] T. Xie and X. Qin, “A Security-Oriented Task Scheduler for Heterogeneous Distributed

Systems,” Proc. 13th IEEE Int’l Conf. High Performance Computing (HiPC), Dec. 2006.

