
An Energy-Delay Tunable Task Allocation
Strategy for Collaborative Applications in

Networked Embedded Systems
Tao Xie, Member, IEEE, and Xiao Qin, Member, IEEE

Abstract—Collaborative applications with energy and low-delay constraints are emerging in various networked embedded systems

like wireless sensor networks and multimedia terminals. Conventional energy-aware task allocation schemes developed for

collaborative applications only concentrated on energy savings when making allocation decisions. Consequently, the length of the

schedules generated by such allocation schemes could be very long, which is unfavorable or, in some situations, even not tolerated.

To remedy this problem, we developed a novel task allocation strategy called Balanced Energy-Aware Task Allocation (BEATA) for

collaborative applications running on heterogeneous networked embedded systems. The BEATA algorithm aims at blending an

energy-delay efficiency scheme with task allocations, thereby making the best trade-offs between energy savings and schedule

lengths. Aside from that, we introduced the concept of an energy-adaptive window, which is a critical parameter in the BEATA strategy.

By fine-tuning the size of the energy-adaptive window, users can readily customize BEATA to meet their specific energy-delay trade-off

needs imposed by applications. Further, we built a mathematical model to approximate the energy consumption caused by both

computation and communication activities. Experimental results show that BEATA significantly improves the performance of

embedded systems in terms of energy savings and schedule length over existing allocation schemes.

Index Terms—Collaborative applications, energy conservation, energy latency trade-off, heterogeneous embedded systems, task

allocation.

Ç

1 INTRODUCTION

NETWORKED embedded systems like wireless sensor
networks and multimedia terminals have increasingly

become popular as platforms for executing collaborative
applications such as target tracking and infrastructure
monitoring since the last decade [2], [8], [12], [17], [22].
Much of this trend can be attributed to rapid advances in
processing power, network bandwidth, and storage capa-
city. A collaborative application in its general form consists
of a number of tasks cooperating with each other through
communications to fulfill a common mission [3], [15], [18],
[28], [32]. A typical example of collaborative applications is
a cluster-based target tracking sensor network [32], where
all sensor nodes in one cluster transfer parameters, which
are sampled from a surrounding environment, to a gateway
node via radio transmitters. The gateway node performs the
fusion of the received data and then sends reports
generated through the fusion of sensor readings to a
command node. The command node carries out the
system-level fusion of collected reports from multiple
clusters for tracking and identifying the target [32]. A

collaborative application can be symbolized as a task graph,
which is generally represented by a directed acyclic graph
(DAG) [30], [31], [35] that is assumed to be known a priori.
Efficient allocation of these task graphs considering both
computation and communication overhead onto embedded
systems plays a vital role in energy conservation and
performance improvement [3], [5], [35].

Energy conservation must be achieved for embedded
systems because they usually have low power capacities
operating in distributed mobile or wired environments [1],
[11], [17], [19], [20], [23]. Meanwhile, it is desirable and, in
many cases, mandatory to provide collaborative applica-
tions with high performance in terms of throughput or
response time [4], [9], [13], [15], [34]. For example, a real-
time military surveillance application demands a low
latency in addition to significant energy savings because
tardy responses make the application worthless [33]. There-
fore, a task allocation scheme that merely aims at reducing
energy dissipation is inadequate for many collaborative
applications with low-delay requirements as it is most
likely to result in unacceptable latencies.

Energy savings and low delay, however, are two
conflicting objectives in the context of allocating a colla-
borative application represented by a task graph onto a set
of connected processing nodes in a heterogeneous net-
worked embedded system. It becomes more challenging to
solve the energy-delay dilemma in heterogeneous em-
bedded systems, mainly because of a multidimensional
heterogeneity bearing by networked embedded systems
that are heterogeneous in nature (see Sections 3.1 and 3.4).
When it comes to a heterogeneous embedded system, a
processing node providing a task with the earliest finish
time may not be an ideal candidate for energy conservation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008 1

. T. Xie is with the Department of Computer Science, San Diego State
University, 5500 Campanile Drive, GMCS 544, San Diego, CA 92182.
E-mail: xie@cs.sdsu.edu.

. X. Qin is with the Department of Computer Science and Software
Engineering, Dunstan Hall, Auburn University, Auburn, AL 36849-5347.
E-mail: xqin@auburn.edu.

Manuscript received 12 Nov. 2006; revised 27 Apr. 2007; accepted 26 July
2007; published online 29 Aug. 2007.
Recommended for acceptance by S. Nikoletseas.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0431-1106.
Digital Object Identifier no. 10.1109/TC.2007.70809.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This statement is arguably true and the reason is threefold.
First, the finish time of a task allocated to a node largely
depends on the task’s execution time. Second, the energy
consumption incurred by the task is a product of the node’s
energy consumption rate and the task’s execution time.
Third, the node’s energy consumption rate and the task’s
execution time are independent of one another. Therefore,
two unfavorable scenarios are possible: 1) A node offering a
task the earliest finish time could lead to high energy
consumption caused by the task’s execution, although the
execution time is short, and 2) a node presenting a task the
least energy consumption could result in a late finish time for
the task, which, in turn, may give rise to a long delay. The
objective of this study is to solve the energy-delay dilemma
that exists in heterogeneous embedded systems, where
energy conservation and delay time optimization are equally
crucial. In this paper, we aim at minimizing the energy
consumption of heterogeneous embedded systems while
confining schedule lengths through task allocations. To be
specific, we develop an energy-delay balanced heuristic task
allocation strategy or Balanced Energy-Aware Task Alloca-
tion (BEATA), where the concept of an energy-adaptive
window (EAW) is introduced. Users can readily adjust trade-
offs between energy consumption and schedule length by
fine-tuning the size of the EAW. Experimental results
demonstrate that our scheme can provide significant
energy savings while achieving reasonably high perfor-
mance for heterogeneous embedded systems.

Our main contributions include

1. developing an energy-delay-driven task allocation
strategy called BEATA for collaborative applications
running in heterogeneous networked embedded
systems,

2. constructing an energy consumption model for
quantitatively measuring the energy caused by both
computation and communications,

3. extending a heterogeneity model to reveal an inherent
nature of a heterogeneous embedded system and its
impact on the system performance, and

4. simulating a heterogeneous embedded system
where the BEATA strategy is implemented and
evaluated.

The rest of this paper is organized as follows: In Section 2, we
discuss related work. In Section 3, we build the system model,
task model, energy consumption model, and heterogeneity
model. Section 4 presents the BEATA scheme and introduces
two alternative algorithms for collaborative applications in
heterogeneous embedded systems. In addition, the optim-
ality of BEATA is proven in Section 4. In Section 5, we evaluate
the performance of BEATA based on synthetic benchmarks
and a real-world application. Section 6 concludes this paper
with a summary and future directions.

2 RELATED WORK AND MOTIVATION

Numerous studies over the past decade have been
conducted to reduce the overall energy consumption for a
variety of embedded systems by using diverse techniques
[12], [17], [19], [26], [27], [35], [36]. Source code optimization
and profiling were exploited by Simunic et al. to minimize
energy consumption in embedded systems [27]. Zhu et al.
devised a mechanism to make use of slack-time reclamation

to increase reliability and reduce energy dissipation of real-
time embedded systems [36]. Park et al. studied a way of
making trade-offs between energy efficiency and fairness in
multiresource for multitasks in embedded systems [19].
Mohanty and Prasanna proposed a hierarchical approach to
improving the energy efficiency of heterogeneous em-
bedded systems [17]. Yu and Prasanna developed an
energy-balanced task allocation scheme for collaborative
processing in a homogeneous WSN, with a goal of
maximizing the lifetime of the entire system [35].

Although many research results on energy conservation
have been reported since the early 1990s, only a few pieces
of work studying ways of making energy-delay trade-offs
have emerged in the literature very recently. In these
studies, a diverse array of energy-delay-driven protocols
were proposed for WSNs [4], [6], [11], [15], [25], [34].
Ammari and Das devised a data dissemination protocol to
realize a trade-off between energy savings and source-to-
sink delay so as to increase the lifetime of the WSNs while
receiving sensed data in a timely fashion [4]. Boukerche
et al. investigated a protocol named Ordering by Confirma-
tion (OBC) for event ordering in wireless sensor and actor
networks (WSANs) [6]. The OBC protocol can save more
energy and achieve lower latencies to meet the needs of
critical conditions monitoring applications [6]. An energy-
aware dynamic task allocation algorithm for sequential
tasks, with a goal of time-energy efficiency over MANETs,
was proposed by Lu et al. [11]. Miller et al. studied the
energy-latency-reliability trade-off for broadcast in multi-
hop WSNs by presenting a protocol called Probability-
Based Broadcast Forwarding (PBBF) [16]. Schurgers et al.
[25] proposed a new technique, called sparse topology and
energy management (STEM), which efficiently wakes up
nodes from a deep sleep state without the need for an ultra
low power radio. Consequently, the designer can trade the
energy efficiency of this sleep state for the latency
associated with waking up the node. Yu et al. [34] utilized
a data aggregation tree, that is, a multiple-source single-sink
communication paradigm, to represent packet flows under
a real-time scenario, where the data gathering must be
performed within a specified latency constraint and the
overall energy dissipation need to be minimized.

The aforementioned existing energy-delay-driven proto-
cols, however, mainly exploited wireless communication
techniques such as modulation scaling [34] and the hybrid
radio wakeup scheme [25] to achieve energy-delay efficiency
and are only dedicated for WSNs. Nonetheless, there are
some other types of networked embedded systems, such as
multimedia terminals and 3G cell phones, where energy
conservation and low delay need to be simultaneously
realized [13], [22]. Therefore, a more general energy-delay
efficiency scheme that can be applied to a wide range of
networked embedded systems is wanted. Furthermore, none
of the existing protocols considered collaborative applica-
tions where tasks have precedence constraints, whereas
collaborative applications with energy and low-delay
requirements are emerging in various networked em-
bedded systems [15], [28], [35]. Aside from that, the existing
energy-delay driven schemes normally assumed homoge-
neous embedded systems and are therefore not suitable for
heterogeneous embedded systems. As a consequence, the
need for a new energy-delay efficiency strategy that bridges
the gap between the existing protocols and the open problems
is greatly felt. In this paper, we propose a heuristic task
allocation strategy that reduces energy consumption while

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

generating short schedule lengths for collaborative applica-
tions running on heterogeneous networked embedded
systems. We assume the following:

1. Different processing nodes have distinct energy
consumption rates that are fixed.

2. Communication channels differ in terms of their
energy assumption rate.

3. All tasks in a collaborative application are non-
preemptable.

4. Processing nodes are in either an “active” state or an
“idle” state without employing the dynamic voltage
scaling (DVS) technique.

Note that the fourth assumption does not limit our
approach to embedded systems using variable voltage
processors since our allocation scheme can be easily
integrated with the DVS technique to provide further
energy savings.

3 SYSTEM MODELS

In this section, we describe mathematical models which
were built to represent a task allocation framework,
collaborative applications with precedence constraints, an
energy consumption model, and a heterogeneity model.

3.1 Networked Embedded Systems

A networked embedded system, in its most general form,
consists of a set, for example, P ¼ fp1; p2; . . . ; pmg, of
heterogeneous embedded computational nodes (hereafter
referred to as nodes or embedded nodes) connected by a
single-hop wired or wireless network. The networked
embedded system can be represented as a graph of nodes
and their point-to-point links. In the system, an embedded
node is modeled as a vertex. There exists a weighted edge
between two vertices if they can communicate with each
other. Each node in the system has an energy consumption
rate measured by Joules per unit of time. With respect to
energy conservation, each network link is characterized by
its energy consumption rate, which heavily relies on the
link’s transmission rate, which is modeled by the weight buv
of the edge between node pu and pv. An allocation matrix X
is an n�m binary matrix used to reflect a mapping of
n tasks to m embedded nodes. Element xiu in X is “1” if task
ti is assigned to node pu; otherwise, this is “0.” The
heterogeneity investigated in this study embraces multiple
meanings. First, the execution times of a task on different
embedded nodes may vary as the nodes might have
different processing capabilities. Second, a node that offers
task ti a shorter execution time does not necessarily provide
another task tj with a shortened execution time because
different nodes may have distinct processor architectures.
This implies that different nodes in a system are suitable for
different kinds of tasks. Third, the transmission rates of
links may be distinct. Last, the energy consumption rates of
the nodes may not necessarily be identical. For the sake of
simplicity, we assume that all nodes are fully connected
with a dedicated communication system. Each node
communicates with other nodes through message passing
and the communication time between two tasks assigned to
the same node is negligible.

3.2 Task Model

Applications with dependent tasks can be modeled by
DAGs [30]. Throughout this paper, a collaborative applica-
tion is specified as a DAG G ¼ ðT;EÞ, where T ¼
ft1; t2; . . . ; tng represents a set of nonpreemptable tasks
and E is a set of weighted and directed edges representing
communications among tasks (for example, ðti; tjÞ 2 E is a
message transmitted from task ti to tj). The precedence
constraints of the collaborative application are represented by
all edges in E. Note that our task model considers only one
message sent at the end of a task to its subsequent task(s). The
communication time spent in delivering a message ðti; tjÞ 2 E
from task ti on node pu to tj on pv is determined by sij=buv.
Here, sij is the data size of the message and buv is the
transmission rate of a link that connects pu and pv. The
execution time of task ti is modeled by a vector, that is,
ci ¼ c1

i ; c
2
i ; � � � ; cui ; � � � ; cmi

� �
, where cui represents the execution

time of ti on the uth embedded node.

Example 1. Fig. 1 illustrates an example task graph and an
example networked embedded system. The task graph
has 11 tasks and the processor graph has three
processors. The transmission rate and energy consump-
tion rate of the channel between processors p1 and p2 are
2 and 0.8, respectively. The energy consumption rate of
processor p1 is 12.6. The matrix of execution times for
each task on the three processors is illustrated in the
matrix in Fig. 1. For example, task t1 has an execution
time of 3.1, 4.3, and 1.9 s on processors p1, p2, and p3,
respectively.

3.3 Energy Consumption Model

Let eui be an energy dissipation caused by task ti running on
node pu. We denote the energy consumption rate of the
uth node when it is active by ECNactive

u and the energy
dissipation eui can be written as follows:

eui ¼ ECNactive
u � cui : ð1Þ

The energy consumption rate of a networked
embedded system is represented by a vector
ECNactive ¼ ECNactive

1 ; ECNactive
2 ; � � � ; ECNactive

m

� �
. Given a

collaborative application with task set T and an allocation
matrix X, the total energy consumed by all tasks of the
application is

enactive T ;X;ECNactive
� �

¼
Xn
i¼1

Xm
u¼1

xiu � eui

¼
Xn
i¼1

Xm
u¼1

xiu � ECNactive
u � cui

¼
Xm
u¼1

ECNactive
u �

Xn
i¼1

xiu � cui :

ð2Þ

We assume in (2) that no energy consumption is incurred
when nodes are sitting idle. However, this assumption is
not valid for real-world embedded systems. Before remov-
ing this assumption, we introduce a vector of energy
consumption rates for the nodes when their energy states
are idle, that is, ECNidle ¼ ðECNidle

1 ; ECNidle
2 ; � � � ; ECNidle

m Þ,
where ECNidle

u is an energy consumption rate of node pu
when it is inactive. Additionally, we define fi as the

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

complete time of task ti. Then, we obtain the analytical

formula for the energy consumed by the embedded nodes

when they are idle:

enidle T ;X;ECNidle
� �

¼
Xm
u¼1

ECNidle
u

� max
n

i¼1
fið Þ �

Xn
u¼1

xiu � cui

 !
;

ð3Þ

where maxni¼1 fið Þ is the schedule length and maxni¼1 fið Þ �Pn
i¼1 xiu � cui is the total idle time on node pu. Schedule

length is the length of a schedule generated by a task

allocation scheme for a collaborative application repre-

sented by a DAG. It is defined as the latest task completion

time among all tasks in a collaborative application.

Equation (3) is valid because the energy consumed by an

idle node is a product of the corresponding consumption

rate and the idle period.
Thus, the total energy consumption of the embedded

nodes is derived from (2) and (3) as

en T;X;ECNactive; ECNidle
� �
¼ enactiveðT;X;ECNactiveÞ þ enidleðT;X;ECNidleÞ:

ð4Þ

Similarly, let êij denote the energy consumption of a

message ðti; tjÞ 2 E. Supposing ti and tj are, respectively,

allocated to nodes pu and pv, we can express the energy

consumption êij as

êij ¼ ECLactiveuv buvð Þ � sij
buv

; ð5Þ

where ECLuv buvð Þ is the energy consumption rate of the link

between nodes pu and pv and sij=buv is the data transmission

time. Note that the energy consumption rate of a network

link depends on the transmission rate of the link. In our

model, we used the same energy-latency trade-off function

presented in [2]. Thus, the total energy consumed by ti and

the messages sent from its immediate predecessors when ti
is allocated on node pu can be calculated as follows:

teui ¼ eui þ
X

tj2IP ðtiÞ
êij; ð6Þ

where IP ðtiÞ is the set of ti’s immediate predecessors. The
definition of IP ðtiÞ can be found in Definition 2 in
Section 3.4.

The energy consumption rate of the network links can be
modeled by an m�m matrix ECLactive ¼ ðECLactiveuv Þ,
where ECLactiveuv is the energy consumption rate function
of the link between pu and pv. The energy consumption in a
link between pu and pv, denoted by elactiveuv , is calculated as a
cumulative energy consumption of all messages trans-
mitted on the link. The link’s energy consumption elactiveuv

can be derived from (5). Then, we have

elactiveuv T ;X;ECLactive
� �

¼
X

ðti;tjÞ2Luv
êij

¼
X

ðti;tjÞ2Luv
ECLactiveuv buvð Þ � sij

buv

¼
Xn
i¼1

Xn
j¼1;j6¼i
ðti ;tjÞ2Luv

xiu � xjvECLactiveuv buvð Þ � sij
buv

;

ð7Þ

where Luv is a set of messages transmitted over the link
between pu and pv and Luv can be defined as Luv ¼
8ðti; tjÞ 2 E; 1 � u; v � mjsij > 0 ^ xiu ¼ 1 ^ xjv ¼ 1
� �

.

It is assumed in (7) that all of the messages are
transmitted over the link at the same transmission rate,
which may not be true for realistic traffic patterns. Hence,
we relax the assumption by allowing different messages to
be transmitted at various rates, depending on an underlying
energy-aware message scheduling mechanism, which we
recently developed [2]. Let bijuv denote the transmission rate
at which the message ðti; tjÞ is delivered along the link
between pu and pv. Then, elactiveuv is modified as

elactiveuv T ;X;ECLð Þ ¼
Xn
i¼1

Xn
j¼1;j 6¼i
ðti ;tjÞ2Luv

xiu � xjv � ECLactiveuv bijuv
� �

� sij
bijuv

:

ð8Þ

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

Fig. 1. Example task and networked embedded system. ECNu is the energy consumption rate of node pu and ECLuv is the energy consumption of a

link between nodes pu and pv.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

The energy consumption of links, that is,

elactiveðT;X;ECLactiveÞ, in the networked embedded system

is derived from (8). To be specific, elactiveðT;X;ECLactiveÞ is

equivalent to the summation of all the link’s energy

consumption. Thus, elactiveðT;X;ECLactiveÞ can be ex-

pressed as

elactive T ;X;ECLactive
� �

¼
Xm
u¼1

Xm
v¼1;v 6¼u

elactiveuv T ;X;ECLactiveuv

� �

¼
Xn
i¼1

Xn
j¼1;j6¼i
ðti ;tjÞ2Luv

Xm
u¼1

Xm
v¼1;v6¼u

xiu � xjv � ECLactiveuv bijuv
� �

� sij
bijuv

:

ð9Þ

Again, we assume in (9) that no energy consumption is

incurred when a link has no message to transmit. We relax

this assumption by considering energy consumption when

a link is idle during an application’s execution. The energy

consumption rate of a link sitting idle is denoted by ECLidlej

and we obtain the energy consumed by the link when it is

inactive as follows:

elidleuv T ;X;ECLidle
� �

¼ ECLidleuv � max
n

i
fið Þ �

Xn
i¼1

Xn
j¼1;j6¼i;ðti;tjÞ2Luv

xiu � xjv �
sij

bijuv

0
@

1
A; ð10Þ

where

max
n

i
fið Þ �

Xn
i¼1

Xn
j¼1;j6¼i
ðti ;tjÞ2Luv

xiu � xjv �
sij

bijuv

is the total idle time over the link and elidleuv is computed

as a product of the consumption rate and the idle period

of the link.
The energy consumption of all the links during their idle

periods is expressed as

elidle T ;X;ECLð Þ

¼
Xm
u¼1

Xm
v¼1;v 6¼u

ECLidleuv max
n

i
fið Þ �

Xn
i¼1

Xn
j¼1;j6¼i
ðti ;tjÞ2Luv

xiu � xjv �
sij

bijuv

0
B@

1
CA:
ð11Þ

The total energy consumption of the network links is

derived from (8) and (10) as follows:

el T ;X;ECLactive; ECLidle
� �
¼ elactiveðT;X;ECLactiveÞ þ elidleðT;X;ECLidleÞ:

ð12Þ

Based on (4) and (11), we can calculate the energy

dissipation experienced by a collaborative application with

task set T and allocation matrix X. Given the energy

consumption rate vectors ECNactive, ECNidle, ECLactive, and

ECLidle, the energy consumption of the networked em-

bedded system can be expressed as

eðT;X;ECNactive; ECNidle; ECLactive; ECLidleÞ
¼ enðT;X;ECNactive; ECNidle þ elðT;X;ECLactive; ECLidleÞ:

ð13Þ

3.4 Heterogeneity Model

In a heterogeneous embedded system, the computational
times of a particular task on different nodes are distinctive,
which is referred to as computational heterogeneity. In
addition, the energy consumption incurred by the task on
different nodes is diverse as different nodes provide
distinctive energy consumption rates. We name this energy
consumption rate heterogeneity. We believe that both the
computational and energy consumption rate heterogene-
ities are essential characteristics of heterogeneous em-
bedded systems. Therefore, task allocation algorithms for
heterogeneous embedded systems need to take the two
heterogeneities into account when making allocation
decisions. The impacts of these two heterogeneities on
system performance and energy conservation will be
investigated in Section 5.5.

The computational weight of task ti on node pu (for
example, cwui) is defined as the ratio between its execution
time on pu and that on the fastest node for ti in the system.
Hence, we have cwui ¼ cui =minmk¼1fcki g. The computational
heterogeneity of task ti, referred to as HTCi , can be
quantitatively measured by the standard deviation of the
computational weights. Formally, HTCi is expressed as

HTCi ¼
ffi
1

m

Xm
u¼1

cwavgi � cwui
� �2

s
;where cwavgi ¼

Xm
u¼1

cwui

 !
=m:

ð14Þ

The computational heterogeneity of a task set T can be
computed as follows:

HTC ¼ 1

jT j
X
ti2T

HTCi : ð15Þ

Similarly, the heterogeneity of energy consumption rates
of nodes is expressed as follows:

HTECN ¼
ffi
1

m

Xm
u¼1

ECNactive
avg � ECNactive

u

� �2
s

; ð16Þ

where ECNactive
avg ¼ 1

m

Pm
u¼1 ECN

active
u .

Equations (14) and (16) will be used to calculate the
degrees of computational heterogeneity and energy con-
sumption rate heterogeneity in Section 5.1 (see Table 1).

4 THE BEATA ALGORITHM

4.1 Energy-Adaptive Window

The BEATA algorithm strives to minimize
eðT;X;ECNactive; ECNidle; ECLactive; ECLidleÞ expressed by
(13), which indicates that there are two means of conserving
energy for networked embedded systems. The first item on
the right-hand side of (13) is the total energy consumed by the
tasks of a collaborative application and, therefore, it is
imperative for the BEATA algorithm to allocate each task in
the application to a node that can lead to the least energy
consumption. The second item on the right-hand side of (13)

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 5

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

is the total energy consumption caused by message transmis-
sions. It is suggested that BEATA needs to judiciously
consider message energy dissipations while allocating tasks
on the embedded nodes. Importantly, if we merely address
the issue of energy conservation without considering
schedule lengths, there is a strong likelihood that the
allocation algorithm will yield a long and unacceptable
schedule length for the collaborative application.

To make the best trade-off between energy savings and
schedule lengths, we employ an EAW, within which a
node is chosen for each task in such a way as to offer
lower energy consumption and earlier finish time of the
task. The example shown in Fig. 2 delineates the process
of using the EAW (that is, EAW ¼ 4) to achieve a good
trade-off between energy conservation and make-span
time. Supposing there is a networked embedded system
P ¼ fp1; p2; . . . ; p8g, Fig. 2a shows task ti’s finish time fuðtiÞ
and the total energy consumption teui (including the
message energy consumption, if applicable) provided by
each node in the system. Step 6 (see Fig. 3) of the BEATA
algorithm sorts all of the nodes in the finish time of ti in
nondecreasing order (Fig. 2b). Since the size of the EAW is
set to 4 ðEAW ¼ 4Þ, BEATA only chooses the node whose
energy savings is the most significant among the first four
candidate nodes (Fig. 2b). Therefore, node p8 will be
selected for task ti in this case. It is easy to understand
that enlarging the EAW could result in more energy
conservation, but a worse performance in delay as the
make-span time will accordingly increase. As such, EAW is
essentially an energy-delay handle from which a user can
tune the trade-off between energy savings and low delay. In
other words, by providing the handle, BEATA turns out to
be a tunable energy-delay efficiency scheme that can be
applied in various environments where users have their
special requirements in energy savings and responsiveness.

4.2 Algorithm Description

The BEATA algorithm (see Fig. 3) is conducive to
increasing the heterogeneous embedded nodes’ lifetimes
while maintaining high performance in terms of make-span
time for collaborative applications running on networked
embedded systems. In other words, BEATA can increase
the embedded nodes’ lifetimes by dramatically reducing
energy dissipation (see Step 13). Before minimizing the
energy consumption of task ti, BEATA organizes all the
nodes in nondecreasing order in terms of ti’s finish time
(see (20)). Step 8 determines the energy consumption
incurred by the task on an embedded node, while Steps 9
and 10 calculate the energy consumed by all the messages
received by the task from its predecessors. Among all the

candidate nodes listed in the EAW, Step 13 chooses the
most appropriate node that yields the minimal energy
dissipation for the task and its corresponding messages,
thereby conserving energy without excessive performance
deterioration. Then, Step 14 allocates the task to the best
candidate node. After the allocation of the task is
accomplished, Step 15 updates the schedule of the node to
which the task is allocated.

Two important parameters, the earliest start time and
finish time on a node, are used in the above algorithm. We
denote the earliest start time and finish time of task ti on
node pu by estuðtiÞ and fuðtiÞ, respectively. In what follows,
we present derivations that lead to the final expressions for
these two parameters. The ti can start execution on a node
pu if and only if data arrives from all of its immediate
parents in order to satisfy precedence constraints. Suppose
task ti has only one immediate predecessor task tj. The
earliest available time of task ti on node pu, denoted as
eatuðtj; tiÞ, is defined as the data arrival time of ti on pu. It
relies on 1) the finish time fj of tj, 2) the message start time
mstðtj; tiÞ, and 3) the transmission time sji=bvu for the
message sent from tj to ti, where pv is the processor to
which task tj has been allocated. It is assumed that, if both
tasks are allocated to the same embedded node, the
transmission time is negligible. Thus, eatuðtj; tiÞ is ex-
pressed as

eatuðtj; tiÞ ¼
fj; if pu ¼ pv;
mstðtj; tiÞ þ sji

	
bvu; otherwise:

ð17Þ

The earliest available time of ti, which is denoted by
eatuðtiÞ, is the maximum of eatuðtj; tiÞ among all of its
immediate predecessors. Considering all immediate pre-
decessors of ti, we can obtain eatuðtiÞ as

eatuðtiÞ ¼ max
ðtj;tiÞ2E

eatuðtj; tiÞ
� �

: ð18Þ

Now, ti can start execution on pu after its earliest
available time eatuðtiÞ, either at the ready time of the node
pRu (the finish time of the last task scheduled on pu) or at a
time earlier than pRu if a suitable scheduling hole (the idle
time slot existing in a node’s schedule because of the
nonavailability of data earlier) is available on pu. The
definition of a suitable scheduling hole is given as follows:

Definition 1. Given a set of r tasks, ft1; t2; . . . ; trg, scheduled on
node pu, the idle time slot (scheduling hole) Hk (between tkþ1

and tk, with HS
k and HF

k being its start time and finish time,
respectively) is suitable for task ti if

HF
k �maxfeatuðtiÞ; HS

k g � cui ;

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

Fig. 2. Example of an energy-adaptive window.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

where HS
0 ¼ 0, HF

0 ¼ S1;u, HS
r ¼ Fr;u, and HF

r ¼ 1 for
0 � k � r, and Sd;u and Fd;u are the start time and finish time
of task td ð1 � d � rÞ on pu.

Thus, the earliest start time of ti on pu is given by (19):

estuðtiÞ ¼ maxfeatuðtiÞ;minfpRu ;HS
k gg: ð19Þ

With the value of estuðtiÞ in place, we can obtain the
finish time of ti on pu by using (20). The finish time is equal
to the summation of the earliest start time estuðtiÞ and ti’s
execution time on pu:

fuðtiÞ ¼ estuðtiÞ þ cui : ð20Þ

Hence, the earliest finish time of ti in the system is given
by (21):

eft ðtiÞ ¼ min
pu2P
ffuðtiÞg: ð21Þ

4.3 Optimality of the BEATA Algorithm

Before proceeding with the qualitative comparisons among
our algorithm, an existing algorithm, and a baseline
scheme, we demonstrate the time complexity of the BEATA
algorithm and prove some optimality guarantees of BEATA
in schedule length and energy consumption.

Theorem 1. Given a networked embedded system P ¼
fp1; p2; . . . ; pmg and a collaborative application represented
by a task graph G ¼ ðT;EÞ, the time complexity of BEATA is
Oðnmlgmþ nkqÞ þOðnþ jEjÞ, where n is the number of
tasks, m is the number of embedded nodes in the system, k is
the EAW size, q is the maximum indegree of G, and jEj is the
number of edges in G.

Proof. The time complexity of a topological sort of the
graph G is OðjT j þ jEjÞ (see Step 0), where jT j is the
number of vertices in G , and jEj is the number of edges
in G. It takes OðmÞ time to compute the earliest start
times and earliest finish times for a task on all of the
nodes (see Steps 3 and 4). The time complexity of sorting
the earliest finish times is OðmlgmÞ since we only have

m nodes (see Step 6). To determine the most appropriate
node that offers the minimal energy consumption of a
task, the time complexity is OðkqÞ (see Steps 7-12). Other
steps simply take Oð1Þ time. Hence, the time complexity
of the BEATA algorithm is Oðnþ jEjÞ þOðnÞðOðmÞ
þOðmlgmÞ þOðkqÞÞ ¼ Oðnmlgmþ nkqÞ þOðnþ jEjÞ. tu

Theorem 1 indicates that the time complexity of the
BEATA algorithm is typically low. For example, in our
experiments, the values of n and m are set to about 300 and
64, the values of k and q are around 4 and 2, and the value of
jEj is in the range [54, 543], which should take less than
hundreds of microseconds to complete the BEATA algo-
rithm in modern processors. An implication of Theorem 1 is
that BEATA has the potential of being extended to deal with
dynamic scheduling because of its low complexity.

Lemmas 1 and 2 are helpful in the proofs of Theorems 2
and 3, which signify that BEATA has good performance in
terms of the finish times of collaborative tasks in networked
embedded systems.

Lemma 1. Given a task ti, a networked embedded system P , and

a topological sort Q of a collaborative application G, it is

impossible for BEATA to further reduce estuðtiÞ, which is the

earliest start time of ti on any node pu in P .

Proof. Recall that, given task ti and node pu in the
system, the earliest start time of ti on pu is
calculated by estuðtiÞ ¼ maxfeatuðtiÞ;minfpRu ;HS

k gg
(see (19)). If eatuðtiÞ � minfpRu ;HS

k g, the proof of
Lemma 1 is immediate from (19). In cases where
eatuðtiÞ < minfpRu ;HS

k g, the BEATA algorithm scans the
idle time slots on pu, followed by choosing the first
suitable scheduling hole (see Definition 1) to accommo-
date ti. If no suitable scheduling hole is found, BEATA
schedules ti to start at the ready time pRu of node pu. Thus,
it is proven that the task is unable to start its execution
earlier than estuðtiÞ, given the above two scenarios.
Hence, we proved that the earliest start time of ti on any
node pu in P can no longer be improved. tu

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 7

Fig. 3. The BEATA task allocation algorithm.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Lemma 2. Given a task ti, a networked embedded system P , and
a topological sort Q of a collaborative application G, it is
impossible for BEATA to further reduce fuðtiÞ, which is the
finish time of ti on any node pu in P .

Proof. The proof of Lemma 2 is immediate from (20) and
Lemma 1. Recall that the finish time of ti is equal to the
summation of the earliest start time estuðtiÞ and ti’s
execution time cui on pu (see (20)). The summation of
estuðtiÞ and cui is minimized by BEATA because estuðtiÞ
cannot be further reduced (see Lemma 1) and cui is a
constant. This completes the proof of Lemma 2. tu

In the following, we show that BEATA is capable of
minimizing schedule lengths under the condition that the
EAW is equal to 1.

Theorem 2. Given a networked embedded system
P ¼ fp1; p2; . . . ; pmg, a collaborative application G ¼ ðT;EÞ,
and a topological sort Q of G, when the size of EAW is set to 1
(that is, EAW ¼ 1), for each task in T , the BEATA algorithm
assigns it on a node that offers the task the minimum possible
finish time.

Proof. Without loss of generality, let us consider a task ti in
a scenario where the value of EAW is set to 1. Now, we
need to prove the theorem by demonstrating that the
finish time of ti on pv given by BEATA cannot be further
improved. First, Lemma 1 proves that the earliest start
time of ti on any node pu in the system is minimized.
Next, Lemma 2 proves that the finish time of ti on any
node pu in the system cannot be further reduced. Last,
we need to show that the earliest finish time of ti in the
entire system cannot be further improved. The BEATA
algorithm sorts all of the nodes in nondecreasing order of
the finish times of ti (see Step 6). As a consequence, the
first node pv in the list is the one that provides the earliest
finish time for ti in the entire system. It is proven that, if
the value of EAW is 1, only pv (see Step 7) is allowed to
enter into the loop from Steps 7 to 12. This means that
task ti is allocated to the node that offers the earliest
finish time for the task in the system. In addition, the
earliest finish time can be computed by (21), which
guarantees that the earliest finish time of ti is the
minimum among all m possible finish times of ti in the
system, that is, the earliest finish time of ti in the entire
system cannot be further reduced. Hence, the proof
holds. tu

Note that Theorem 2 only proves that, for each task in T ,
the BEATA algorithm assigns it on a node that offers the
task the minimum possible finish time under a given P , G,
and Q. It has no implication that the make span of the final
schedule of the entire DAG G generated by BEATA is
minimized. In other words, the minimum finish time for
each task in T cannot guarantee a schedule with minimal
length because the optimal scheduling of tasks of a DAG
onto a set of processors is a strong NP-hard problem [24].
To prove the optimality of BEATA with respect to energy
savings, we first prove the following lemmas. Lemma 3 and
Lemma 4 prove that BEATA optimizes the energy con-
sumption of each task and its corresponding messages.
Theorem 3 shows a way of computing the energy

dissipation of a collaborative application. In our experi-

ments (see Section 5), the energy consumed by idle

resources is negligible and, hereafter, we ignore the energy

dissipation of resources when they are sitting idle.

Definition 2. Let IP ðtiÞ be the set of ti’s immediate predecessors

and, thus, we have IP ðtiÞ ¼ tk 2 T ðtk; tiÞ 2 Ejf g. Let IMðtiÞ
be the set of messages directly transmitted from ti’s immediate

predecessors. An element tk in IP ðtiÞ implies the existence of a

message transmitted from ti’s immediate predecessor tk.

Lemma 3. The energy consumption of task ti and the messages

transmitted from ti’s immediate predecessors is equal to

Xm
u¼1

xij � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
:

Proof. If task ti is allocated to pu, the energy dissipation of ti
can be expressed by ECNactive

u � cui (see (1)). Given an

allocation matrix X and an embedded system P , we

compute the energy consumption of ti in the system as

Xm
u¼1

xiu � ECNactive
u � cui

� �
: ð22Þ

We derive from (5) that the energy consumption of the
message ðtk; tiÞ 2 E is equal to

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� �
:

Therefore, the energy dissipation of all the messages

transmitted from ti’s immediate predecessors is

X
tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
; ð23Þ

which is the summation of the energy consumed by

messages in the set IMðtiÞ. As a consequence, the energy

consumption of ti and the messages transmitted from ti’s

immediate predecessors is derived from (22) and (23) as

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
;

ð24Þ

which completes the proof of Lemma 3. tu

Lemma 4. We consider a task (for example, ti) in a networked

embedded system P , where the number of nodes is m and m is

the maximal possible value for the EAW. If the value of EAW

is set to m, the BEATA algorithm optimizes the energy

consumption of task ti and the messages transmitted from

ti’s immediate predecessors. More formally, if the value of

EAW is set to m, then BEATA is able to generate an allocation

matrix X that minimizes the value of the following:

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
:

Proof. To prove the correctness of Lemma 4, we have to

show that, if the value of EAW is set to m, the BEATA

algorithm minimizes the energy consumption of ti and

the messages transmitted from ti’s immediate predeces-

sors. First, BEATA executes the loop between Steps 7 and

12 for all of the m nodes in the system (see Steps 7-12)

since the value of EAW is m. For each node pv in P , the

energy consumed by ti and the messages transmitted

from ti’s immediate predecessors can be calculated by

applying (1) and (5). Thus, the energy dissipation caused

by ti and its corresponding messages can be written as

ECNactive
v � cvi þ

X
tk2IP ðtiÞ

Xm
u¼1

xku � ECLactiveuj ðbkiujÞ �
ski

bkiuj

 ! !
:

ð25Þ

Second, all of the items in (25) are fixed values and are

known a priori. As a consequence, the energy consump-

tion calculated by (25) is a constant from the perspective

of each node in the system. Last, from the candidate node

in the EAW, Step 13 chooses a node that offers the

smallest energy consumption for ti and the messages

sent from ti’s immediate predecessors. Step 14 assigns ti

to the node selected by Step 13, which means that the

energy consumption of ti and its corresponding mes-

sages is minimized by BEATA. Thus, BEATA minimizes

the value of (25). Therefore, it is proven that the BEATA

algorithm is capable of generating an allocation matrix X

in a judicious way to minimize the value of

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
:

This completes the proof of Lemma 4. tu

Theorem 3. The energy consumption induced by a collaborative

application with task set T and message set E is

Xn
i¼1

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !1A:
Proof. The proof is immediate from Lemma 3. The energy

consumption of ti and the messages in set IMðtiÞ is

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !
:

The energy dissipation of the application with task set T

and message set E is the cumulative energy of all the

tasks in T and all of the messages in E. The energy

consumption of all of the tasks in T is
Pn

i¼1

Pm
u¼1 xiu �

ECNactive
u � cui (see 2), whereas the energy consumption

induced by all the messages in E is derived from (23) as

Xn
i¼1

X
tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !0
@

1
A:

Consequently, the energy consumption induced by the

collaborative application is equal to

Xn
i¼1

Xm
u¼1

xiu � ECNactive
u � cui

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !1A:
ut

Now, we are positioned to prove the optimality of

BEATA with respect to energy conservation.

Theorem 4. Given a networked embedded system P ¼
fp1; p2; . . . ; pmg and a collaborative application G ¼ ðT;EÞ,
where m is the number of the node and the maximal possible

value of the EAW. If the value of EAW is set to m, then the

BEATA algorithm optimizes the energy consumption ofG inP .

Proof. The proof of this theorem is immediate from Lemma 4

and Theorem 3. Lemma 4 proves that, if the value of

EAW is set to m, BEATA minimizes the value of

Xm
j¼1

xij � ECNactive
j � cji

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !

for each task ti. Theorem 3 shows that the energy

consumption induced by a collaborative application with

T and E is

Xn
i¼1

Xm
j¼1

xij � ECNactive
j � cji

� �

þ
X

tk2IP ðtiÞ

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !1A:
Hence, if the value of EAW is set to m, the BEATA

algorithm can minimize the value of

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 9

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Xn
i¼1

Xm
j¼1

xij � ECNactive
j � cji

� �

þ
X

tk2IP ðtiÞi

Xm
u¼1

Xm
v¼1

xku � xiv � ECLactiveuv ðbkiuvÞ �
ski
bkiuv

� � !1A;
which is the energy consumption caused by the
application. tu

4.4 Existing and Baseline Algorithms

In this section, we qualitatively compare BEATA with an
existing algorithm and a baseline algorithm, namely, the
LIST scheduling scheme and the Greedy Energy-Aware
Task Allocation (GEATA) algorithm. The LIST and GEATA
algorithms are briefly described as follows:

1. LIST. The LIST algorithm is a well-known heuristic
for DAG scheduling in heterogeneous systems [10],
[21]. For each task allocation, LIST chooses a node
that can offer the task the earliest finish time,
considering both computation and communication
times. The goal of LIST is to generate a schedule for a
DAG with the shortest schedule length.

2. GEATA. For comparison purposes, we also devel-
oped a baseline scheduling algorithm GEATA,
which is a variant of the BEATA algorithm. For
each task allocation, GEATA selects a node that can
yield the least energy consumption induced by the
task and its corresponding messages. The GEATA
algorithm aims at generating a schedule that
provides the least total energy consumption.

Both LIST and GEATA employ the same topological sort
as BEATA does at Step 0 in Fig. 3. In light of the description
of BEATA (see Fig. 3) and the two theorems (Theorems 2
and 4) proven in Section 4.3, we can see that LIST and
GEATA are two variants of BEATA. More precisely, two
observations can easily be made. First, when the EAW size
is set to 1 (that is, EAW ¼ 1), the BEATA algorithm
degrades to the LIST algorithm. Second, when the EAW
size is set to m (that is, EAW ¼ m), the BEATA algorithm
degrades to the GEATA algorithm. The correctness of these
two observations is experimentally validated by the
empirical results presented in Section 5.4.

5 PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the proposed
energy-latency-driven task allocation scheme. To demon-
strate the strength of BEATA, we quantitatively compare it
with LIST and GEATA, the descriptions of which can be
found in Section 4.4. The purpose of comparing BEATA with

LIST is to evaluate the performance improvements over an
existing algorithm without considering energy conservation.
The goal of comparing BEATA with GEATA is to experi-
mentally reveal that BEATA can explore trade-offs between
energy savings and performance. In addition, the numerical
results presented in Section 5.4 validate the correctness of
Theorems 5 and 6 (see Section 4.4). Part of the preliminary
results in Sections 5.2 and 5.4 were presented in [31].

5.1 Simulation Setup

Before presenting our empirical results, we present the
simulation model as follows: Table 1 summarizes the
configuration parameters of the simulated heterogeneous
embedded systems used in our experiments. The para-
meters of nodes in the heterogeneous embedded systems
are chosen to resemble real-world processors like the Intel
StrongARM 1100. The relationship between energy rate and
transmission rate is 100 mW at 100 Kbps, which means that
the time and energy cost for transmitting 1 bit are around 10
�s and 1 �Joule [2]. All synthetic parallel jobs used from
Sections 5.2 to 5.5 were created by TGFF [7], which is a
randomized task graph generator. The task graph used in
Section 5.6 is based on a digital signal processing system
detailed in [29].

Although the number of tasks, number of nodes, values
of outdegree, and task execution time are synthetically
generated, we examined the impacts of these important
workload parameters on system performance by controlling
the parameters. The performance metrics by which we
evaluate the system performance include the following:

. Make span. This is the latest task completion time in
the task set represented by a DAG.

. Energy consumption. This is the total energy con-
sumed by the task set, including the computation
energy consumption and communication energy
consumption (see (12)).

. Utilization standard deviation (USD). This is the
standard deviation of nodes utilization in the
simulated heterogeneous embedded systems.

. Energy standard deviation (ESD). This is the standard
deviation of the energy consumption of nodes in the
simulated heterogeneous embedded systems.

5.2 Overall Performance Comparisons

The goal of conducting this experiment is 1) to compare the
proposed BEATA algorithm against the well-known LIST
algorithm and the baseline heuristic GEATA and 2) to
understand the sensitivity of the three algorithms to the
number of tasks in a collaborative application. We tested six
applications represented in the form of task graphs, with the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

TABLE 1
Characteristics of System Parameters

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

number of tasks varying from 50 to 500 with precedence
constraints.

We observe, based on Fig. 4a, that BEATA and LIST
exhibit very similar performance in terms of make span,
whereas BEATA noticeably outperforms the GEATA algo-
rithm. This is because BEATA considers both energy
consumption and make-span time when allocating each
task onto a computing node, whereas GEATA only takes
energy consumption into account. An interesting observa-
tion is that BEATA even generates a shorter schedule than
LIST when the number of tasks is 300. The “anomaly” can
be explained by the fact that the LIST algorithm cannot
guarantee the shortest schedule in a heterogeneous system
due to the lack of the information about tasks that are not
yet scheduled and the varying execution times for each task

on different nodes. Compared with LIST, BEATA, on

average, only increases the make span by 2.9 percent but

saves energy by 12.1 percent. Fig. 4b reveals that BEATA

and GEATA consistently perform better than LIST in terms

of energy consumption. In particular, GEATA achieves an

improvement, on average, of 19.3 percent.
To understand computation workload distribution and

energy dissipation among all the nodes, we measured the

USD and ESD in Figs. 4c and 4d, respectively. We observe,

based on Fig. 4c, that the computation workload is evenly

distributed in the three examined algorithms. In terms of

the even distribution of energy dissipation among all the

nodes, GEATA is obviously inferior to the other two

algorithms (see Fig. 4d).

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 11

Fig. 4. Performance impact of the number of tasks.

Fig. 5. Performance impact of the number of nodes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

5.3 Scalability

This experiment is intended to investigate the scalability of
the BEATA algorithm. We scaled the number of nodes in
the system from 16 to 128. The task graph used in this
experiment is comprised of 300 tasks. Fig. 5 plots the
performance of the three algorithms as functions of the
number of nodes.

The results show that BEATA exhibits good scalability.
To be specific, Fig. 5 shows that the three algorithms deliver
increasing performance in both make span and energy
consumption when the number of nodes increases. The
results are expected because increasing the number of
nodes provides more opportunities for tasks and messages
to shorten the finish times and reduce the energy consump-
tion. A second important observation is that BEATA
outperforms LIST in terms of both make span and energy
savings in cases where the number of nodes is larger than
64. The implication of this observation is that BEATA is
beneficial for large-scale embedded systems, where perfor-
mance and energy conservation are two objectives to be
addressed. In terms of USD and ESD, all three algorithms
achieve good performance when the system size is enlarged
(Figs. 5c and 5d).

5.4 Sensitivity to Size of Energy-Adaptive Window

To verify the performance impact of EAW, we evaluate the
performance as functions of the size of EAW. Since LIST and
GEATA do not have EAWs, their performance in all metrics is
kept constant. The results plotted in Fig. 6 validate the
relationships among the three algorithms proved in Sec-
tion 4.4. When the EAW is set to 1, BEATA gracefully
degrades to LIST. On the other hand, if the EAW is increased
to 16, which is the total number of nodes in the system, then
BEATA degrades to GEATA. We observe, based on Fig. 6, that
BEATA achieves the best trade-offs between make span and

energy consumption when the size of EAW falls in the range
between 3 and 5. The EAW size in this range enables BEATA
to achieve almost the same performance in make span as that
of LIST while conserving energy by up to 10.4 percent. We
attribute the performance improvements of BEATA over
LIST and GEATA to the fact that BEATA is an energy-
adaptive scheme that judiciously assigns tasks to nodes by
considering both execution times and energy savings. Note
that the choice of the optimal size of EAW is application
dependent as different applications have distinct character-
istics such as computational heterogeneities and computa-
tion-to-communication ratios. Thus, for a particular
collaborative application, one can use a binary search
algorithm to quickly discover an appropriate value of EAW
in the range from 1 to the total number of nodes m.

5.5 Impacts of Heterogeneities

In this experiment, we investigate the impacts of the two
heterogeneities (see Section 3.4) on system performance. To
be specific, we evaluate the performance of the three
algorithms in cases where 1) the energy consumption rate
heterogeneity is kept constant while the computational
heterogeneity varies (see Fig. 7) and 2) the computational
heterogeneity is fixed while the energy consumption rate
heterogeneity is increased (see Fig. 8).

Fig. 7a demonstrably shows that BEATA can maintain a
similar performance to that of LIST in terms of make span
when the heterogeneity degree of energy consumption rate
increases. Furthermore, Fig. 7a reveals that the make-span
performance of BEATA and LIST is insensitive to the
heterogeneity degree of energy. Unlike BEATA and LIST,
the make span of GEATA dramatically goes up with the
increasing heterogeneity degree of energy. Fig. 7b intui-
tively shows that BEATA consistently delivers better energy
performance than LIST.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

Fig. 6. Performance impact of the size of the energy-adaptive window.

Fig. 7. Performance impact of computational heterogeneity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 8 shows that BEATA is almost tied with LIST in
make span and is obviously superior to LIST in energy
consumption. In energy consumption, the performance of
BEATA is close to that of GEATA. The implication is that
BEATA can show its strength in an embedded system
where its computational heterogeneity varies.

5.6 Evaluation in a Real Application

To validate the results from the synthetic collaborative
applications, we evaluate in this experiment the BEATA
algorithm by using a real system, that is, a digital signal
processing system [28], [29].

The DSP system processes sonar data with five inde-
pendent threads, each driven by its own sensors [29]. The
entire system can be represented as a DAG composed of
five sub-DAGs, with a total of 119 tasks. The execution time
of tasks varies from 0.28 to 1728 ms and the data size of
messages changes from 1 to 32 Kbytes. The detailed
information pertinent to the DSP application can be found
in [28], [29]. We conducted two groups of experiments. The
first group of experiments (see Fig. 9) is focused on the size
of EAW, while the second group (see Fig. 10) is intended to
test the scalability of BEATA in the context of a real-world
application. The performance patterns plotted in Fig. 9 are
similar to those reported in Section 5.4, thereby verifying

that BEATA can gain performance improvements in make
span and energy savings for a real application. Fig. 10
shows that, in the case of DSP application, the three
algorithms can scale well to large numbers of nodes. The
results in Figs. 9 and 10 can be envisioned as a strong
validation for the experimental results based on synthetic
applications. The important conclusion drawn from these
groups of experiments is that the BEATA algorithm can be
successfully deployed in heterogeneous embedded systems
to save on energy consumption of real-world collaborative
applications.

6 CONCLUSIONS

In this paper, we address the issue of allocating tasks of

collaborative applications in heterogeneous embedded

systems, with an objective of energy-delay efficiency.

BEATA, which is a tunable heuristic task allocation

strategy, is developed to accomplish a variety of energy-

delay trade-offs required by different application environ-

ments. Compared with traditional energy-delay-driven

protocols for WSNs, BEATA has several desired features.

First, it is a polynomial-time heuristic task allocation

strategy, which is easier to implement without any extra

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 13

Fig. 9. Performance impact of the size of the energy-adaptive window in DSP.

Fig. 8. Performance impact of energy consumption rate heterogeneity.

Fig. 10. Performance impact of the number of nodes in DSP.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

hardware cost. Second, it is a more general scheme that can

be applied in various networked embedded systems. Next,

it considered precedence constraints in collaborative appli-

cations, which are emerging in a range of networked

embedded systems. Last, it targeted heterogeneous net-

worked embedded systems, which are more common and

complicated than their homogeneous peers. We conducted

extensive experiments by using a real-world application

and synthetic benchmarks. The experimental results show

that BEATA significantly improves performance in terms of

energy dissipation and make-span time over two baseline

allocation schemes. Compared with LIST, BEATA achieves

improvement in energy savings, on average, of 12.1 percent,

with only a 2.9 percent increase in make span. Compared

with GEATA, BEATA reduces the make span by an average

of 38.9 percent.

Future studies in this research can be performed in the

following directions: First, we will extend our scheme to

multidimensional computing resources from which energy

savings can be achieved. For now, we simply consider CPU

time and network communication time. Memory access and

I/O activities will be considered in the future. Second, we

intend to enable the BEATA scheme to deal with real-time

collaborative applications, where the hard deadlines must

be guaranteed.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation Computing Processes and Artifacts (CISE-CCF)

Grant 0742187. The authors wish to thank the anonymous

reviewers for their helpful comments.

REFERENCES

[1] K. Akkaya and M. Younis, “An Energy-Aware QoS Routing
Protocol for Wireless Sensor Networks,” Proc. 23rd Int’l Conf.
Distributed Computing Systems, pp. 710-715, 2003.

[2] M. Alghamdi, T. Xie, and X. Qin, “PARM: A Power-Aware
Message Scheduling Algorithm for Real-Time Wireless Net-
works,” Proc. First ACM Workshop Wireless Multimedia Networking
and Performance Modeling, pp. 86-92, 2005.

[3] W. Alsalih, S. Akl, and H. Hassancin, “Energy-Aware Task
Scheduling: Towards Enabling Mobile Computing over Manets,”
Proc. 19th IEEE Int’l Parallel and Distributed Processing Symp., Apr.
2005.

[4] H.M. Ammari and S.K. Das, “Trade-Off between Energy Savings
and Source-to-Sink Delay in Data Dissemination for Wireless
Sensor Networks,” Proc. Eighth ACM/IEEE Int’l Symp. Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pp. 126-133,
2005.

[5] S. Bansal, P. Kumar, and K. Singh, “An Improved Duplication
Strategy for Scheduling Precedence Constrained Graphs in
Multiprocessor Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, pp. 533-544, 2003.

[6] A. Boukerche, F.H.S. Silva, R.B. Araujo, and R.W.N. Pazzi, “A
Low-Latency and Energy-Aware Event Ordering Algorithm for
Wireless Actor and Sensor Networks,” Proc. Eighth ACM/IEEE
Int’l Symp. Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pp. 111-117, 2005.

[7] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task Graphs for
Free,” Proc. Sixth Int’l Workshop Hardware/Software Codesign, pp. 97-
101, 1998.

[8] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the World with Wireless Sensor Networks,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing, pp. 2033-2036, 2001.

[9] H.S. Kim, T.F. Abdelzaher, and W.H. Kwon, “Dynamic Delay-
Constrained Minimum-Energy Dissemination in Wireless Sensor
Networks,” ACM Trans. Embedded Computing Systems, vol. 4,
pp. 679-706, 2005.

[10] Y.-K. Kwok and I. Ahmad, “Benchmarking the Task Graph
Scheduling Algorithms,” Proc. 12th Int’l Parallel Processing Symp.,
pp. 531-537, 1998.

[11] X. Lu, H. Hassanein, and S. Akl, “Energy-Aware Dynamic Task
Allocation in Mobile Ad Hoc Networks,” Proc. Int’l Conf. Wireless
Networks, Comm. and Mobile Computing, pp. 534-539, 2005.

[12] J. Luo and N.K. Jha, “Power-Conscious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed Real-
Time Embedded Systems,” Proc. IEEE/ACM Int’l Conf. Computer
Aided Design, pp. 357-364, 2000.

[13] S. Malik, M. Martonosi, and Y.S. Li, “Static Timing Analysis of
Embedded Software,” Proc. ACM Design Automation Conf.,
pp. 147-152, 1997.

[14] C.X. Mavromoustakis and H.D. Karatza, “Handling Delay
Sensitive Contents Using Adaptive Traffic-Based Control Method
for Minimizing Energy Consumption in Wireless Devices,” Proc.
38th Ann. ACM Symp. Simulation, pp. 295-302, 2005.

[15] C. Meesookho, S. Narayanan, and C.S. Raghavendra, “Collabora-
tive Classification Applications in Sensor Networks,” Proc. Second
IEEE Sensor Array and Multichannel Signal Processing Workshop,
pp. 370-374, 2002.

[16] M.J. Miller, C. Sengul, and I. Gupta, “Exploring the Energy-
Latency Trade-Off for Broadcasts in Energy-Saving Sensor Net-
works,” Proc. 25th IEEE Int’l Conf. Distributed Computing Systems,
pp. 17-26, 2005.

[17] S. Mohanty and V.K. Prasanna, “A Hierarchical Approach for
Energy Efficient Application Design Using Heterogeneous Em-
bedded Systems,” Proc. Int’l Conf. Compilers, Architecture and
Synthesis for Embedded Systems, pp. 243-254, 2003.

[18] A.B. Olsen, F.H.P. Fitzek, and P. Koch, “Energy Aware Comput-
ing in Cooperative Wireless Networks,” Proc. Int’l Conf. Wireless
Networks, Comm. and Mobile Computing, pp. 16-21, 2005.

[19] S. Park, V. Raghunathan, and M.B. Srivastava, “Energy Efficiency
and Fairness Tradeoffs in Multi-Resource Multi-Tasking Em-
bedded Systems,” Proc. ACM Int’l Symp. Low Power Electronics and
Design, pp. 469-474, 2003.

[20] V. Paruchuri, A. Durresi, and L. Barolli, “Energy-Aware Routing
Protocol for Heterogeneous Wireless Sensor Networks,” Proc. 16th
Int’l Workshop Database and Expert Systems Applications, pp. 133-
137, 2005.

[21] A. R�adulescu and A.J.C. Gemund, “On the Complexity of List
Scheduling Algorithms for Distributed-Memory Systems,” Proc.
13th Int’l Conf. Supercomputing, pp. 68-75, 1999.

[22] V. Raghunathan, C.L. Pereira, M.B. Srivastava, and R.K. Gupta,
“Energy-Aware Wireless Systems with Adaptive Power-Fidelity
Tradeoffs,” IEEE Trans. Very Large Scale Integration Systems, vol. 13,
pp. 211-225, 2005.

[23] V. Raghunathan, C. Schurgers, P. Sung, and M.B. Srivastava,
“Energy-Aware Wireless Microsensor Networks,” IEEE Signal
Processing Magazine, vol. 19, pp. 40-50, 2002.

[24] S. Ranaweera and D.P. Agrawal, “A Task-Duplication-Based
Scheduling Algorithm for Heterogeneous Systems,” Proc. 14th
IEEE Int’l Parallel and Distributed Processing Symp., pp. 445-450,
2000.

[25] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava,
“Optimizing Sensor Networks in the Energy-Latency-Density
Design Space,” IEEE Trans. Mobile Computing, vol. 1, pp. 70-80,
2002.

[26] Z. Shao, “High Performance, Low Power and Secure Embedded
Systems,” PhD dissertation, Dept. of Computer Science, Univ. of
Texas, Dallas, 2005.

[27] T. Simunic, L. Benini, G.D. Micheli, and M. Hans, “Source Code
Optimization and Profiling of Energy Consumption in Embedded
Systems,” Proc. 13th Int’l Symp. System Synthesis, pp. 193-198, 2000.

[28] M. Singh and V.K. Prasanna, “A Hierarchical Model for
Distributed Collaborative Computation in Wireless Sensor Net-
works,” Proc. 17th IEEE Int’l Parallel and Distributed Processing
Symp., 2003.

[29] C.M. Woodside and G.G. Monforton, “Fast Allocation of Processes
in Distributed and Parallel Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 4, pp. 164-174, 1993.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[30] T. Xie and X. Qin, “A New Allocation Scheme for Parallel
Applications with Deadline and Security Constraints on Clusters,”
Proc. Seventh IEEE Int’l Conf. Cluster Computing, 2005.

[31] T. Xie, X. Qin, and M. Nijim, “Solving Energy-Latency Dilemma:
Task Allocation for Parallel Applications in Heterogeneous
Embedded Systems,” Proc. 35th Int’l Conf. Parallel Processing,
pp. 12-22, 2006.

[32] M. Younis, M. Youssef, and K. Arisha, “Energy-Aware Routing in
Cluster-Based Sensor Networks,” Proc. 10th IEEE Int’l Symp.
Modeling, Analysis and Simulation of Computer and Telecomm.
Systems, pp. 129-136, 2002.

[33] M. Youssef, M. Younis, and K. Arisha, “A Constrained Shortest-
Path Energy-Aware Routing Algorithm for Wireless Sensor
Networks,” Proc. IEEE Wireless Comm. and Networks Conf.,
pp. 794-799, 2002.

[34] Y. Yu, B. Krishnamachari, and V.K. Prasanna, “Energy-Latency
Tradeoffs for Data Gathering in Wireless Sensor Networks,” Proc.
IEEE INFOCOM ’04, pp. 244-255, 2004.

[35] Y. Yu and V.K. Prasanna, “Energy-Balanced Task Allocation for
Collaborative Processing in Wireless Sensor Networks,” Mobile
Networks and Applications, vol. 10, pp. 115-131, 2005.

[36] D. Zhu, R. Melhem, and D. Mossé, “The Effects of Energy
Management on Reliability in Real-Time Embedded Systems,”
Proc. IEEE/ACM Int’l Conf. Computer-Aided Design, pp. 35-40, 2004.

Tao Xie received the BSc and MSc degrees
from Hefei University of Technology, China, in
1991 and 2000, respectively, and the PhD
degree in computer science from the New
Mexico Institute of Mining and Technology in
2006. He is currently an assistant professor in
the Department of Computer Science at San
Diego State University, California. His research
interests include security-aware scheduling,
high-performance computing, cluster and grid

computing, parallel and distributed systems, real-time/embedded
systems, and information security. He is a member of the IEEE and
the IEEE Computer Society.

Xiao Qin received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, China, in 1996 and
1999, respectively, and the PhD degree in
computer science from the University of Nebras-
ka, Lincoln, in 2004. He is a currently an
assistant professor of computer science at
Auburn University. Prior to joining Auburn Uni-
versity in 2007, he was with the New Mexico
Institute of Mining and Technology for three

years. He has been on the program committees of various international
conferences, including IEEE Cluster, IPCCC, and ICPP. From 2000 to
2001, he was a subject area editor of the IEEE Distributed Systems
Online. His research interests include parallel and distributed systems,
real-time computing, storage systems, and fault tolerance. He is a
member of the IEEE and the IEEE Computer Society. He received a US
National Science Foundation Computing Processes and Artifacts (CPA)
Award in 2007.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIE AND QIN: AN ENERGY-DELAY TUNABLE TASK ALLOCATION STRATEGY FOR COLLABORATIVE APPLICATIONS IN NETWORKED... 15

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

