
ES-MPICH2: A Message Passing
Interface with Enhanced Security

Xiaojun Ruan, Member, IEEE, Qing Yang, Member, IEEE, Mohammed I. Alghamdi,

Shu Yin, Student Member, IEEE, and Xiao Qin, Senior Member, IEEE

Abstract—An increasing number of commodity clusters are connected to each other by public networks, which have become a

potential threat to security sensitive parallel applications running on the clusters. To address this security issue, we developed a

Message Passing Interface (MPI) implementation to preserve confidentiality of messages communicated among nodes of clusters in

an unsecured network. We focus on MPI rather than other protocols, because MPI is one of the most popular communication protocols

for parallel computing on clusters. Our MPI implementation—called ES-MPICH2—was built based on MPICH2 developed by the

Argonne National Laboratory. Like MPICH2, ES-MPICH2 aims at supporting a large variety of computation and communication

platforms like commodity clusters and high-speed networks. We integrated encryption and decryption algorithms into the MPICH2

library with the standard MPI interface and; thus, data confidentiality of MPI applications can be readily preserved without a need to

change the source codes of the MPI applications. MPI-application programmers can fully configure any confidentiality services in

MPICHI2, because a secured configuration file in ES-MPICH2 offers the programmers flexibility in choosing any cryptographic

schemes and keys seamlessly incorporated in ES-MPICH2. We used the Sandia Micro Benchmark and Intel MPI Benchmark suites to

evaluate and compare the performance of ES-MPICH2 with the original MPICH2 version. Our experiments show that overhead

incurred by the confidentiality services in ES-MPICH2 is marginal for small messages. The security overhead in ES-MPICH2 becomes

more pronounced with larger messages. Our results also show that security overhead can be significantly reduced in ES-MPICH2 by

high-performance clusters. The executable binaries and source code of the ES-MPICH2 implementation are freely available at http://

www.eng.auburn.edu/~xqin/software/es-mpich2/.

Index Terms—Parallel computing, computer security, message passing interface, encryption.

Ç

1 INTRODUCTION

1.1 Motivation

DUE to the fast development of the internet, an increasing
number of universities and companies are connecting

their cluster computing systems to public networks to
provide high accessibility. Those clusters connecting to the
internet can be accessed by anyone from anywhere. For
example, computing nodes in a distributed cluster system
proposed by Sun Microsystems are geographically deployed
in various computing sites. Information processed in a
distributed cluster is shared among a group of distributed
tasks or users by the virtue of message passing protocols
(e.g., message passing interface—MPI) or confidential data
transmitted to and from cluster computing nodes.

Preserving data confidentiality in a message passing
environment over an untrusted network is critical for a wide
spectrum of security-aware MPI applications, because

unauthorized access to the security-sensitive messages by
untrusted processes can lead to serious security breaches.
Hence, it is imperative to protect confidentiality of messages
exchanged among a group of trusted processes.

It is a nontrivial and challenging problem to offer
confidentiality services for large-scale distributed clusters,
because there is an open accessible nature of the open
networks. To address this issue, we enhanced the security
of the MPI protocol by encrypting and decrypting messages
sent and received among computing nodes.

In this study, we focus on MPI rather than other
protocols, because MPI is one of the most popular
communication protocols for cluster computing environ-
ments. Numerous scientific and commercial applications
running on clusters were developed using the MPI protocol.
Among a variety of MPI implementations, we picked
MPICH2 developed by the Argonne National Laboratory.
The design goal of MPICH2—a widely used MPI imple-
mentation—is to combine portability with high perfor-
mance [14]. We integrated encryption algorithms into the
MPICH2 library. Thus, data confidentiality of MPI applica-
tions can be readily preserved without a need to change the
source codes of the MPI applications. Data communications
of a conventional MPI program can be secured without
converting the program into the corresponding secure
version, since we provide a security enhanced MPI-library
with the standard MPI interface.

1.2 Possible Approaches

There are three possible approaches to improving security of
MPI applications. In first approach, application programmers

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012 361

. X. Ruan is with the Department of Computer Science, West Chester
University of Pennsylvania, PA 19383. E-mail: xruan@wcupa.edu.

. Q. Yang is with the Department of Computer Science, Montana State
University, MT 59717. E-mail: qing.yang@cs.montana.edu.

. M.I. Alghamdi is with the Department of Computer Science, Al-Baha
University, Al-Baha City, Kingdom of Saudi Arabia.
E-mail: mialmushilah@bu.edu.sa.

. S. Yin and X. Qin are with the Department of Computer Science and
Software Engineering, Auburn University, Auburn, AL 36849-5347.
E-mail: {szy0004, xqin}@auburn.edu.

Manuscript received 27 Sept. 2010; revised 22 Aug. 2011; accepted 14 Dec.
2011; published online 11 Jan. 2012.
Recommended for acceptance by M. Singhal.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2010-09-0167.
Digital Object Identifier no. 10.1109/TDSC.2012.9.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

can add source code to address the issue of message
confidentiality. For example, the programmers may rely on
external libraries (e.g., SEAL [26] and Nexus [11]) to
implement secure applications. Such an application-level
security approach not only makes the MPI applications error-
prone, but also reduces the portability and flexibility of the
MPI applications. In the second approach, the MPI interface
can be extended in the way that new security-aware APIs are
designed and implemented (see, for example, MPISec I/O
[22]). This MPI-interface-level solution enables programmers
to write secure MPI applications with minimal changes to the
interface. Although the second approach is better than the
first one, this MPI-interface-level solution typically requires
an extra code to deal with data confidentiality. The third
approach—a channel-level solution—is proposed in this
study to address the drawbacks of the above two approaches.
Our channel-level solution aims at providing message
confidentiality in a communication channel that implements
the Channel Interface 3 (CH3) in MPICH2 (see Fig. 1).

1.3 Contributions

In what follows, we summarize the four major contributions
of this study.

. We implemented a standard MPI mechanism called
ES-MPICH2 to offer data confidentiality for secure
network communications in message passing envir-
onments. Our proposed security technique incorpo-
rated in the MPICH2 library can be very useful for
protecting data transmitted in open networks like
the Internet.

. The ES-MPICH2 mechanism allows application
programmers to easily write secure MPI applica-
tions without additional code for data-confidenti-
ality protection. We seek a channel-level solution in
which encryption and decryption functions are
included into the MPICH2 library. Our ES-MPICH2
maintains a standard MPI interface to exchange
messages while preserving data confidentiality.

. The implemented ES-MPICH2 framework provides a
secured configuration file that enables application
programmers to selectively choose any cryptographic
algorithm and symmetric-key in ES-MPICH2. This
feature makes it possible for programmers to easily
and fully control the security services incorporated in
the MPICHI2 library. To demonstrate this feature, we
implemented the AES and 3DES algorithms in ES-
MPICH2. We also show in this paper how to add
other cryptographic algorithms into the ES-MPICH2
framework.

. We have used ES-MPICH2 to perform a detailed
case study using the Sandia Micro Benchmarks and
the Intel MPI benchmarks. We focus on runtime
performance overhead introduced by the crypto-
graphic algorithms.

1.4 Roadmap

The paper is organized as follows: Section 2 demonstrates the
vulnerabilities of existing MPI implementations by describ-
ing a security threat model for clusters connected by public
networks. Section 3 not only provides a reason for focusing
on the confidentiality issue of MPICH2 rather than other MPI
implementations, but also gives an overview of the MPICH2
implementation. Section 4 presents the motivation of this
work by showing why secured MPI is an important issue
and also outlines the design of ES-MPICH2—the message
passing interface with enhanced security. Section 5 describes
the corresponding implementation details of ES-MPICH2.
Section 6 discusses some experimental results and compares
the performance of ES-MPICH2 with that of MPICH2.
Section 7 presents previous research related to our project.
Finally, Section 8 states the conclusions and future work of
this study.

2 THREAT MODEL

A geographically distributed cluster system is one in which
computing components at local cluster computing plat-
forms communicate and coordinate their actions by
passing messages through public networks like the Inter-
net. To improve the security of clusters connected to the
public networks, one may build a private network to
connect an array of local clusters to form a large scale
cluster. Building a private network, however, is not a cost-
effective way to secure distributed clusters. The Internet—a
very large distributed system—can be used to support
large-scale cluster computing. Being a public network, the
internet becomes a potential threat to distributed cluster
computing environments.

We first describe the confidentiality aspect of security in
clusters followed by three specific attack instances. We
believe new attacks are likely to emerge, but the confidenti-
ality aspect will remain unchanged. Confidentiality attacks
attempts to expose messages being transmitted among a set
of collaborating processes in a cluster. For example, if
attackers gain network administrator privilege, they can
intercept messages and export the messages to a database
file for further analysis. Even without legitimate privilege,
an attacker still can sniff and intercept all messages in a
cluster on the public network. Such attacks result in the
information leakage of messages passed among computing
nodes in geographically distributed clusters. Cryptography
and access control are widely applied to computer systems
to safeguard against confidentiality attacks.

We identify the following three confidentiality attacks on
MPI programs running on distributed clusters:

. Sniffing message traffic. Message traffic of an MPI
program can be sniffed. For example, when MPCH2
is deployed in a cluster connected by a Gigabit
Ethernet network, attackers can sniff plaintext
messages transmitted through the TCP socket.
Message sniffing can reveal security-sensitive data,
metadata, and information.

. Snooping on message buffer. In an MPI program, buffers
are employed to send and receive messages. Regard-
less of specific MPI implementations, message buffers
are created before the send and receive primitives are

362 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 1. Hierarchical Structure of MPICH2 [13].

invoked. Attackers who snoop into the message
buffers in memory can access data and information
without being given specific access privileges.

. Message traffic profiling. Message traffic profiling
attacks seek to use message type, time stamps,
message size, and other metadata to analyze
message exchange patterns and types of protocols
being used in message transmissions. For example,
an attacker can monitor the network connection of a
cluster running an MPI program. If a message has
been regularly transmitted, the attacker can spec-
ulate the importance of the message and intercept
the content of the message.

Confidentiality services can effectively counter the
aforementioned threats in MPI applications running on
clusters connected by a public network. In this research, we
encode messages using the Advanced Encryption Standard
(AES) and the Triple Data Encryption Standard (Triple-DES
or 3DES). It is worth nothing that 3DES is not considered for
any modern applications, we investigate 3DES in this study
because of two reasons. First, 3DES is still used in many
legacy application systems in the industry. Second, 3DES is
a good baseline solution used for the purpose of compar-
ison. In the case that attackers intercept messages in an MPI
program, they are unable to transform the ciphertext into
the original plaintext due to the lack of data encipherment
keys (DEK).

3 MPICH2 OVERVIEW

MPICH—one of the most popular MPI implementations—-
were developed at the Argonne National Laboratory [14].
The early MPICH version supports the MPI-1 standard.
MPICH2—a successor of MPICH—not only provides
support for the MPI-1 standard, but also facilitates the
new MPI-2 standard, which specifies functionalities like
one-sided communication, dynamic process management,
and MPI I/O [13]. Compared with the implementation of
MPICH, MPICH2 was completely redesigned and devel-
oped to achieve high performance, maximum flexibility,
and good portability.

Fig. 1 shows the hierarchical structure of the MPICH2
implementation, where there are four distinct layers of
interfaces to make the MPICH2 design portable and
flexible. The four layers, from top to bottom, are the
message passing interface 2 (MPI-2), the abstract device
interface (ADI3), the CH3, and the low-level interface.
ADI3—the third generation of the abstract device inter-
face—in the hierarchical structure (see Fig. 1) allows
MPICH2 to be easily ported from one platform to another.
Since it is nontrivial to implement ADI3 as a full-featured
abstract device interface with many functions, the CH3
layer simply implements a dozen functions in ADI3 [18].

As shown in Fig. 1, the TCP socket Channel, the shared
memory access (SHMEM) channel, and the remote direct
memory access (RDMA) channel are all implemented in the
layer of CH3 to facilitate the ease of porting MPICH2 on
various platforms. Note that each one of the aforemen-
tioned channels implements the CH3 interface for a
corresponding communication architecture like TCP sock-
ets, SHMEM, and RDMA. Unlike an ADI3 device, a channel
is easy to implement since one only has to implement a
dozen functions relevant for with the channel interface.

To address the issues of message snooping in the
message passing environments on clusters, we seek to
implement a standard MPI mechanism with confidentiality
services to counter snooping threats in MPI programs
running on a cluster connected an unsecured network.
More specifically, we aim to implement cryptographic
algorithms in the TCP socket channel in the CH3 layer of
MPICH2 (see Fig. 2 and Section 5 for details of how to
construct a cryptosystem in the channel layer).

4 THE DESIGN OF ES-MPICH2

4.1 Scope of ES-MPICH2

Confidentiality, integrity, availability, and authentication
are four important security issues to be addressed in
clusters connected by an unsecured public network. Rather
than addressing all the security aspects, we pay particular
attention to confidentiality services for messages passed
among computing nodes in an unsecured cluster.

Although preserving confidentiality is our primary con-
cern, an integrity checking service can be readily incorpo-
rated into our security framework by applying a public-key
cryptography scheme. In an MPI framework equipped with
the public-key scheme, sending nodes can encode messages
using their private keys. In the message receiving procedure,
any nodes can use public keys corresponding to the private
keys to decode messages. If one alters the messages, the
ciphertext cannot be deciphered correctly using public keys
corresponding to the private keys. Thus, the receiving nodes
can perform message integrity check without the secure
exchange of secret keys. Please refer to Section 5.6 for details
of how to add integrity checking services in our MPI
framework called ES-MPICH2.

4.2 Design Issues

The goal of the development of the ES-MPICH2 mechanism
is to enable application programmers to easily implement
secure enhanced MPI applications without additional code
for data-confidentiality protection. With ES-MPICH2 in
place, secure MPI application programmers are able to
flexibly choose a cryptographic algorithm, key size, and data
block size for each MPI application that needs data
confidentiality protection.

ES-MPICH2 offers message confidentiality in an MPI
programming environment by incorporating MPICH2 with
encryption and decryption algorithms. In the process of
designing ES-MPICH2, we integrated the AES and 3DES
algorithms into the MPICH2 library.

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 363

Fig. 2. Message passing implementation structure in MPICH2.

The ES-MPICH2 implementation has the following four
design goals:

. Message confidentiality: ES-MPICH2 aims to pre-
serve message confidentiality from unauthorized
accesses by untrusted processes. We leverage the
AES to protect the confidentiality of messages,
because AES is an encryption standard adopted by
the US government. For comparison purpose, we
also consider 3DES in the design of ES-MPICH2. AES
with 128-bit keys can provide adequate protection
for classified messages up to the SECRET level. The
implementation of AES in products intended to
protect national security systems and/or informa-
tion must be reviewed and certified by NSA prior to
their acquisition and use [1]. In this study, we
integrated data confidentiality services with
MPICH2 by implementing the cryptographic algo-
rithms in a CH3 channel.

. Complete transparency: Preserving message con-
fidentiality in MPICH2 is entirely transparent to
application programmers. Such confidentiality
transparency is feasible and the reason is two-fold.
First, the encryption and decryption processes can
be built in the MPICH2 library at the channel
transmission layer. Second, we maintain the same
interface as the APIs of the MPICH2 implementa-
tion. Therefore, it is not necessary to modify MPI
programs to adapt ES-MPICH2.

. Compatibility and portability: Ideally, ES-MPICH2
needs to be easily ported from one platform to
another with no addition to the application source
code. ES-MPICH2 is an extension of MPICH2 and;
thus, ES-MPICH2 should have the same level of
portability as MPICH2. However, it is challenging to
achieve high portability in ES-MPICH2, because we
have to implement a cryptographic subsystem in
each channel in the CH3 layer in MPICH2.

. Extensibility: ES-MPICH2 must allow application
programmers to selectively choose any cipher tech-
niques and keys incorporated in MPICH2. This
design goal makes it possible for programmers to
flexibly select any cryptographic algorithm imple-
mented in ES-MPICHI2. Although we implemented
AES and 3DES in the channel layer of MPICH2, we
will show in the next section how to add other
cryptographic algorithms (e.g., Elliptic Curve Cryp-
tography (ECC), [2]) to the ES-MPICH2 environment.

5 IMPLEMENTATION DETAILS

During the implementation of ES-MPICH2, we addressed
the following five development questions:

1. Among the multiple layers in the hierarchical
structure of MPICH2, in which layer should we
implement cryptographic algorithms?

2. Which cryptosystem should we choose to implement?
3. How to implement secure key management?
4. How to use the implemented ES-MPICH2?
5. How to add integrity checking services to ES-

MPICH2?

5.1 Ciphers in the Channel Layer

Fig. 2 outlines the message passing implementation
structure in the original version of MPICH2. In such a
hierarchical structure of MPICH2, messages are passed
from a sending process to a receiving process through the
abstract device interface, the CH3, and the TCP socket
channel. Cryptographic subsystems may be implemented in
one of the three layers (i.e., ADI3, CH3, or the TCP socket
channel). To achieve the design goal of a complete
transparency, we chose to implement cryptographic algo-
rithms in the TCP socket channel. Compared with ADI3 and
CH3, the TCP socket channel is the lowest layer of the
MPICH2 hierarchy. Implementing cryptosystems in the
lowest layer can preserve message confidentiality in any
conventional MPI program without adding extra code to
protect messages. Fig. 3 depicts the implementation
structure of ES-MPICH2, where a cryptosystem is imple-
mented in the TCP socket layer. Thus, messages are
encrypted and decrypted in the TCP socket channel rather
than the ADI3 and CH3 layers.

Fig. 4 shows that the encryption and decryption func-
tions in ES-MPICH2 interact with the TCP socket to provide
message confidentiality protection in the TCP socket layer.
Before a message is delivered through the TCP socket
channel, data contained in the message are encrypted by a
certain cryptographic algorithm like AES and 3DES. Upon
the arrival of an encrypted message in a receiving node, the
node invokes the corresponding decryption function to
decrypt the message. Fig. 4 demonstrates that ES-MPICH2
maintains the same application programming interface or
API as that of MPICH2 by implementing the encryption and
decryption algorithms in the TCP socket level. The con-
fidentiality services of ES-MPICH2 were implemented in
the MPICH2 libraries, thereby being totally transparent to
MPI application programmers.

5.2 Block Ciphers

We have no intention of reinventing a cryptographic
library, because it is very costly to guarantee that the
security of your own implementation is higher than that of
existing tested and audited security libraries. In the ES-
MPICH2 framework, we adopted the implementation of the
AES and 3DES cryptographic algorithms offered by the
PolarSSL library in MPICH2 version 1.0.7. PolarSSL is an
open-source cryptographic library written in C. We focus
on block ciphers in the implementation of ES-MPICH2,
because a block cipher transforms a fixed-length block of
plaintext into a block of ciphertext of the same length. If the

364 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 3. Message passing implementation structure in ES-MPICH2 with
encryption and decryption processes. A cryptosystem is implemented in
the TCP socket layer to achieve the design goal of complete
transparency.

case where ciphertext and plaintext are different in length,
MPI applications have to be aware of such a difference in
order to correctly decode ciphers. Keeping in mind that
securely passing messages should be transparent to MPI
application programmers, we advocate the use of block
ciphers rather than non-block-ciphers that force program-
mers to be aware of the lengths of plaintext and ciphertext.

5.3 Key Management

The goal of key management is to dynamically establish
secure message-passing channels by distributing crypto-
graphic keys. ES-MPICH2 maintains two types of keys—data
encipherment keys (a.k.a., session keys) and interchange
keys. In the MPI initialization phase of each MPI application,
a data encipherment key is created and shared among all the
communicating processes.

Fig. 5 presents the key management infrastructure in ES-
MPICH2. Public key cryptography employed in ES-MPICH2
relies on interchange keys (i.e., public and private keys) to
securely exchange session keys in an unsecured network.
More specifically, when a master node attempts to share new
session keys with other slave nodes, the master node uses
the slave nodes’ public keys to encrypt the session keys. The
slave nodes make use of their private keys to decipher
messages containing the session keys. Then, the master node
and slave nodes can securely communicate using the MPI
framework. Interchange keys also can be stored on physical
devices like smart card and ROM [7], [9], [20].

5.4 Socket Programming

In socket programming, there is a buffer containing data
sent and received through the TCP socket channel. Fig. 6
demonstrates the encryption and decryption process in ES-
MPICH2. ES-MPICH2 encrypt the plaintext in the buffer of
the sending node then decrypt it on the receiving node.
Because the plaintext and ciphertext are identical in length
in block cipher algorithms, the sizes of the buffers in both
the sending and receiving nodes remain unchanged after
the encryption and decryption processes.

5.5 Usage

The security features of ES-MPICH2 can be configured
without modifying any MPI application source code. To
securely pass messages using ES-MPCH2, the following
configurations must be set before an MPI initialization.
First, a security option should be enabled or disabled.
Second, one has to select a specific cryptographic algorithm
implemented in ES-MPICH2. Third, exchange keys must be
securely stored in a configuration file or a physical device in
each node (see Section 5.3 for details on the key manage-
ment issue.) Then, users can run their MPI programs in the
same way as they should run the programs in MPICH2.
Thus, if an MPI program can be executed in MPICH2, one
can also run the MPI program in ES-MPICH2 without
modifying the source code of the program.

5.6 Incorporating Integrity Services in ES-MPICH2

In addition to confidentiality services, integrity checking
services can be seamlessly incorporated into the ES-
MPICH2 framework. In what follows, we address the
implementation issue of how to integrate integrity checking
services in ES-MPICH2.

Spreading feature of block encryption algorithms.
Block encryption algorithms have a spreading feature
which means if even 1 bit is changed in ciphertext, the
decrypted text will be completely different from the original
plaintext. Altered messages causing fatal errors cannot be
interpreted. Although using the spreading feature is not a
reliable solution, the spreading feature does provide an
integrity checking method. Since both AES and 3DES are
block encryption algorithms, ES-MPICH2 may rely on the
spreading feature to perform integrity checking.

Public key. An integrity service tailed for small messages
can be added into ES-MPICH2 using a public-key encryp-
tion scheme, in which sending nodes encode messages using

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 365

Fig. 5. Key management in ES-MPICH2. Public key cryptography
employed in ES-MPICH2 relies on interchange keys (i.e., public and
private keys) to exchange data encipherment keys in a secure way.

Fig. 6. ES-MPICH2 socket details.

Fig. 4. The interface between the encryption/decryption processes and
the TCP socket. ES-MPICH2 maintains the same API as that of
MPICH2.

private keys whereas receiving nodes use the corresponding
public keys to decipher the ciphertext. Before a node
delivers an encrypted message in ES-MPICH2, the node
encrypts the message using the private key of the sending
node. To check the integrity of the cipher message, a
receiving node simply needs to decode the cipher message
by applying the public key of the sending node.

Hash functions. When it comes to large messages, hash
functions are widely used in integrity checking and digital
signatures. MD5, SHA-1, and SHA-2 can be implemented to
check the integrity of encrypted messages in ES-MPICH2.
The hash is a cryptographic checksum or message integrity
code that sending and receiving nodes must compute to
verify messages. Specifically, a sending node uses a hash
function to compute a checksum for a large message. The
checksum is shorter than the original message. Then, the
sending node signs the hash value with a shared key. In
doing so, the integrity of the large message can be checked
in an efficient way.

People use hash and then sign the hash with the key, the
size of hash being much shorter than the message.

6 EXPERIMENTAL EVALUATION

To evaluate the features and performance of ES-MPICH2,
we implemented ES-MPICH2 and deployed it on two
clusters with different configurations. The first cluster has
six nodes of 2.2 GHz Intel Celeron processors with 2 GB
memory. The second cluster contains 10 nodes. The master
node has a 3.0 GHz Intel Pentium Core 2 Duo processor
with 1 GB memory, whereas the nine slave nodes have
333 MHz Intel Pentium II processors with 64 MB memory.
The six nodes in the first cluster are connected by a 1 Gbps
Ethernet LAN. The 10 nodes in the second cluster are
connected by a 100 Mbps Ethernet LAN. Apparently, the
overall performance of the first cluster is higher than that of
the second cluster.

We use a fast cluster (i.e., the first one) and a slow (i.e.,
the second one) cluster to conduct experiments, because one
of the goals is to illustrate the impact of computing capacity
of clusters on the performance of ES-MPICH2.

6.1 A 6-Node Cluster of Intel Celeron Processors

6.1.1 Experimental Testbed

Let us first evaluate the performance of both MPICH2 and
ES-MPICH2 on a 6-node cluster. Table 1 reports the
configuration of the first cluster with six identical comput-
ing nodes of Intel Celeron processors. The operating system
used in the six nodes is Ubuntu 9.04 Jaunty Jackalope. The
computing nodes are connected by a 1 Gbps network. All
the slave nodes share a disk on the master node through the

network file system (NFS) [25]. The MPI library used in the

6-node cluster is MPICH2 version 1.0.7. We run the Sandia

Micro Benchmarks and the Intel MPI Benchmarks to

evaluate and compare the performance of MPICH2 and

ES-MPICH2. When we test ES-MPICH2 in each experiment,

we set the cryptographic service to AES and 3DES,

respectively. The length of data encipherment keys gener-

ated and distributed in ES-MPICH2 is 192-bit.

6.1.2 SMB: Sandia Micro Benchmark

The Sandia National Laboratory developed the Sandia

Micro Benchmark Suite (a.k.a., SMB) to evaluate and test

high-performance network interfaces and protocols. Table 2

described the four performance metrics used in the SMB

benchmark suite. These metrics include total execution time

(i.e., iter_t), CPU execution time for iterations (i.e., work_t),

message passing overhead (i.e., overhead_t), and message

transfer time calculation threshold (i.e., threshold or base_t).

The detailed information on these metrics can be found at

http://www.cs.sandia.gov/smb. Please note that the mes-

sage passing overhead can be derived by subtracting the

CPU execution time from the total execution time. Each

benchmark has 1,000 iterations.
Fig. 7 shows the total execution time of the SMB

benchmark running on the original MPI implementation

(i.e., MPICH2) as well as AES-based ES-MIPCH2 and 3DES-

based ES-MPICH2. We observe from this figure that when

the message size is small (e.g., 1 KB), the performance of ES-

MPICH2 is very close to that of MPICH2. For example, the

encryption modules in ES-MPICH2 only modestly increase

the execution time by less than two percent. These results

indicate that ES-MPICH2 can preserve confidentiality of

small messages with negligible overhead.

366 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

TABLE 1
The Configuration of a 6-Node Cluster

of Intel Celeron Processors

TABLE 2
Performance Metrics Used in the
Sandia Micro Benchmark Suite

Fig. 7. Sandia Micro Benchmark iter_time.

Figs. 8a, 8b, 8c, and 8d show the total execution time, CPU
time, overhead, and threshold of MPICH2 and ES-MPICH2
when the message size is set to 2, 16, 128, 512, and 1,024 KB,
respectively. The results plotted in Fig. 8a show that AES-
based ES-MPICH2 and MPICH2 have similar performance
in the case of small messages. For example, the AES module
in ES-MPICH2 increases the execution times of iter t and
work t by 5.9 and 1.2 percent, respectively. However, when
3DES is employed in ES-MPICH2, the security overhead of
ES-MPICH2 becomes noticeable even for small messages.
For example, let us consider a case where the message size is
2 KB. Compare with the 3DES module, the AES module can
reduce the execution times of iter t and base t by approxi-
mately 56 and 45 percent, respectively. Figs. 8b, 8c, and 8d
illustrate that both AES and 3DES in ES-MPICH2 introduce
much overhead that makes ES-MPICH2 performs worse
than MPICH2—the original MPI implementation. Security
overhead in ES-MPICH2 becomes more pronounced with
increasing message size. Since AES has better performance
than 3DES, AES-based ES-MPICH2 is superior to 3DES-
based ES-MPICH2. We recommend the following two
approaches to lowering overhead caused by encryption
and decryption modules in ES-MPICH2. First, one can
reduce the security overhead in ES-MPICH2 by enhancing
the performance of block cipher algorithms. Second, multi-
core processors can boost efficiency of the encryption and
decryption modules, thereby benefiting the performance of
ES-MPICH2.

6.1.3 IMB: Intel MPI Benchmarks

The Intel MPI benchmark suite or IMB was developed for
testing and evaluating implementations of both MPI-1 [8]
and MPI-2 [12] standards. IMB contains approximately
10,000 lines of code to measure the performance of
important MPI functions [5], [24]. We have evaluated the
performance of ES-MPICH2 and the original MPICH2 by
running the benchmarks on the 6-node cluster. Table 3 lists
all the Intel benchmarks used to measure the performance
of ES-MPI2 and MPICH2. The benchmarks in IMB-MPI1
can be categorized in three groups: single transfer, parallel
transfer, and collective benchmarks. Single transfer bench-
marks are focusing on a single message transferred between
two communicating processes. Unlike single transfer bench-
marks, parallel transfer benchmarks aim at testing patterns
and activities in a group of communicating processes with
concurrent actions. Collective benchmarks are implemented
to test higher level collective functions, which involve
processors within a defined communicator group. Please
refer to http://software.intel.com/en-us/articles/intel-
mpi-benchmarks for more information concerning IMB.

Figs. 9a and 9b show the performance of PingPong and
PingPing—two single transfer benchmarks in IMB. Since
single transfer benchmarks are used to test a pair of two
active processes, we run PingPong and PingPing on two
nodes of the 6-node cluster. The total execution times of
PingPong and PingPing go up when the message size

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 367

Fig. 8. Sandia Micro Benchmark, Iteration Time, Work Time, Overhead Time, and Base Time on different message size from 6-node cluster of Intel
Celeron.

increases because larger messages give rise to higher

encryption and decryption overheads. Compared with

MPICH2, the execution times of AES-based and 3DES-

based ES-MPICH2 are more sensitive to message size.
Now we analyze the performance of Sendrecv and

Exchange—two parallel transfer benchmarks in IMB—

running on ES-MPICH2 and MPICH2 on the 6-node cluster.

Sendrecv, in which the main purpose is to test the

MPI_Sendrecv function, consists of processes forming a

periodic communication chain. Similarly, Exchange is a
benchmark focusing on the evaluation of the MPI_ISend,
MPI_Waitall, and MPI_Recv functions. Unlike the afore-
mentioned single transfer benchmarks, message passing
operations in these two parallel benchmarks are performed
in parallel.

Fig. 9c plots the performance results of the SendRecv
benchmark on the cluster, where each node receives data
from its left neighbor and then sends data to its right
neighbor. The total execution time of the SendRecv bench-
mark does not noticeably change when we vary the number
of computing nodes in the cluster. We attribute this trend to
the factor that message passing in multiple nodes are
carried out in parallel rather than serially. Thus, increasing
the number of nodes does not affect SendRecv’s total
execution time. With respect to parallel transfers, the
performance of AES-based and 3DES-based MPICH2 is
close to that of the original version of MIPCH2 when
message size is relatively small. When it comes to large
messages, AES-based ES-MPICH2 has better parallel
transfer performance than 3DES-based MPICH2.

Fig. 9d depicts the total execution time of the Exchange
benchmark. Comparing Fig. 9d with Fig. 9c, we realize that
regardless of the MPI implementations, the execution time
of the Exchange benchmark is longer than that of the
SendRecv benchmark under the condition of same message
size. This is mainly because in Exchange each node transfer
data to both left and right neighbors in the communication

368 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

TABLE 3
Intel MPI Benchmarks

Fig. 9. Intel MPI Benchmarks, PingPong, and PingPing are Single Transfer Benchmarks, SendRecv and Exchange are Parallel Benchmarks
on 6-node cluster of Intel Celeron.

chain. Thus, communication time in Exchange is larger than
that in SendRecv. As a result, the total execution time of
Exchange is approximately two times higher than that of
Sendrecv when message size is large.

Let us vary message size and evaluate the performance of
collective benchmarks. We run the benchmark 10 times on
each MPI implementation and report the average execution
times. Figs. 10a and 10b show the performance of the first
group of nine collective benchmarks. We observe from these
figures that the total execution time of each collective
benchmark continually increases with increasing message
size. MPICH2 has better performance than AES-based and
3DES-based ES-MPICH2 across all the collective bench-
marks, because the confidentiality is preserved at the cost of
message passing performance. Figs. 11a and 11b plot the
execution times of the second group of three benchmarks.
The performance results of the second benchmark group are
consistent with those of the first benchmark group reported
in Figs. 10a and 10b.

Fig. 12 shows the results of the Window benchmark,
which aims to test MPI-2 functions like MPI_Win_create,
MPI_Win_fence, and MPI_Win_free. In this benchmark, a
window size message is transferred to each node, which in
turn creates a window using a specified size. Fig. 12
indicates that the execution time of the benchmark is not
sensitive to message size. The results confirm that AES-
based ES-MPICH2 improves the security of the Window
benchmark on MPICH2 with marginal overhead.

6.2 A 10-Node Cluster of Intel Pentium II Processors

6.2.1 Experimental Testbed

Now we evaluate the performance of MPICH2 and ES-
MPICH2 on a 10-node cluster of Intel Pentium II processors.

The cluster configuration is summarized in Table 4. The

operating system running on this cluster is Fedora Core

release 4 (Stentz). Although the processors of the nine slave

nodes are 333 MHz Intel Pentium II, the master node

contains a 3.0 GHz Intel Pentium Core 2 Duo processor,

which is almost 10 times faster than the processors in the

slave nodes. Each slave node has only 64 MB memory,

whereas the master node has 1 GB memory. All the 10 nodes

are connected by a 100 Mbps Ethernet network. Like the first

cluster, all nodes in the 10-node cluster share disk space on

the master node through the network file system.

6.2.2 SMB: Sandia Micro Benchmark

Figs. 13a, 13b, and 13c reveal the total execution time, CPU

time, overhead, and threshold of MPICH2 and ES-MPICH2

when the message size is set to 1, 16, and 32 KB,

respectively. The results show that the performance of

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 369

Fig. 10. Intel MPI Benchmarks, Collective Benchmarks, Group A, a group of benchmarks from Collective on 6-node Cluster of Intel Celeron.

Fig. 11. Intel MPI Benchmarks, Collective Benchmarks, Group B, a group of benchmarks from Collective on 6-node Cluster of Intel Celeron.

Fig. 12. Intel Micro Benchmark Window six nodes.

AES-based and 3DES-based ES-MPICH2 is noticeably worse
than that of MPICH2, because the encryption and decryp-
tion modules in ES-MPICH2 spend significant amount of
time in encrypting and decrypting messages issued from the
benchmarks. This trend is true even when messages are
small (e.g., see Fig. 13a where message size is 1 KB).

Comparing Fig. 13a and Fig. 8a, we draw the following
three observations. First, the first 6-node cluster is
significantly faster than the second 10-node cluster.
Although the 10-node cluster has more computing nodes
than the second one, the nodes of the 10-node cluster have
lower computing capacity than those in the 6-node cluster.
This is because the hardware configuration of the 10-node
cluster is worse than that of the 6-node cluster. In other
words, the processors in the 10-node cluster are Pentium II
CPUs; the 6-node cluster relies on Intel Celeron 450 to run
the benchmarks. Second, compared with the 10-node slow
cluster, the 6-node fast cluster allows the iter_t and the
work_t benchmarks to spend smaller time periods dealing
with the security modules in MPICH2. For example, on
the 6-node fast cluster, iter_t and work_t spend approxi-
mately 7.1 and 3.2 percent of the benchmarks’ total
execution times in the AES-based security modules (See
Fig. 8a). On the 10-node slow cluster, the AES modules
account for about 35.5 and 39.3 percent of these two
benchmarks’ total execution times(See Fig. 13a). Third, the
performance of AES-based MPICH2 on the first cluster is
very close to that of MPICH2 when message size is
smaller than 2 KB.

The above observations indicate that given message-
intensive MPI applications, one can improve the processor
computing capacity of a cluster to substantially reduce the
portion of time (out of the applications’ total execution
time) spent in processing security modules in ES-MPICH2.

6.2.3 IMB: Intel MPI Benchmarks

Figs. 14a, 14b, 14c, and 14d depict the performance of the
PingPong, PingPing, SendRecv, and Exchange benchmarks
in IMB. The total execution times of the four IMB bench-
marks increases with increasing message size. Compared
with MPICH2, the execution time of ES-MPICH2 is more
sensitive to message size. More importantly, Figs. 14a, 14b,
14c, and 14d demonstrate that when ES-MPICH2 is
deployed on a slow cluster, ES-MPICH2 preserves message
confidentiality by substantially degrading the performance
of the original MPICH2. By comparing the Intel benchmark
performance on both the 6-node cluster (see Figs. 9a, 9b, 9c,
and 9d and 10-node clusters (see Figs. 14a, 14b, 14c, and
14d)), we observe that the performance gap between
MPICH2 and ES-MPICH2 on the fast cluster is much
smaller than the performance gap on the slow cluster. An
implication of this observation is that security overhead in
ES-MPICH2 can be significantly reduced by deploying ES-
MPICH2 in a high-end cluster.

7 RELATED WORK

Message passing interface. The Message Passing Interface
standard (MPI) is a message passing library standard used
for the development of message-passing parallel programs
[14]. The goal of MPI is to facilitate an efficient, portable, and
flexible standard for parallel programs using message
passing. MPICH2—developed by the Argonne National
Laboratory—is one of the most popular and widely
deployed MPI implementations in cluster computing envir-
onments. MPICH2 provides an implementation of the MPI
standard while supporting a large variety of computation
and communication platforms like commodity clusters,
high-performance computing systems, and high-speed net-
works [13].

As early as 1997, Brightwell et al. from the Sandia
National Laboratory insightfully pointed out barriers to
creating a secure MPI framework [3]. The barriers include
control and data in addition to cryptographic issues. In a
secure MPI, both control and data messages must be
protected from unauthorized access of attackers and
malicious users. Although there is a wide range of
implementations of the MPI and MPI-2 standards (e.g.,
MPICH and MPICH2 are two freely available implementa-
tions from the Argonne National Laboratory), there is a lack

370 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 13. Sandia Micro Benchmarks on the 10-node cluster of Intel Pentium II.

TABLE 4
The Configuration of a 10-Node Cluster

of Intel Pentium II Processors

of secure MPI frameworks developed for large-scale
clusters distributed across wide area networks.

Data confidentiality in MPI-I/O. Prabhakar et al.
designed and implemented a secure interface called MPISec
I/O for the MPI-I/O framework [22]. MPISec I/O preserves
the advantages of both parallel I/O and data confidentiality
without significantly impacting performance of MPI appli-
cations. It is flexible for MPI programmers to manually set
encryption rules in MPISec I/O. Data can be encrypted and
written onto disks in MPISec I/O, then encrypted data can
be read from the disks before being decrypted. There are
two interesting features of MPISec I/O. First, MPISec I/O
programmers need to carefully set up encryption and
decryption rules in their MPI programs. Otherwise, some
data may be either stored on disks without encryption or
read without decryption and as a result, the MPI programs
are unable to function properly until the rules are set in a
correct way. Second, MPISec is not completely compatible
with nonsecure MPI libraries. In other words, preserving
data confidentiality in MPISec I/O is not transparent to MPI
application programmers. One has to modify the source
code of conventional MPI programs to improve security of
the MPI programs. Apart from updating the source code of
the MPI programs before MPISec I/O can be used properly,
disk-resident data must be marked as encrypted or
unencrypted.

Block ciphers. The Data Encryption Standard (DES)
provides a relatively simple method of encryption. 3DES

encrypts data three times instead of one using the DES
standard [4]. 3DES is a block and symmetric cipher chosen
by the US National Bureau of Standards as an official
Federal Information Processing Standard in 1976. 3DES
increases the key size of DES to protect against brute force
attacks without relying on any new block cipher algorithm.
A hardware implementation of 3DES is significantly faster
than the best software implementations of 3DES [10] [15]. A
software implementation of 3DES was integrated in ES-
MPICH2. A hardware 3DES can substantially improve
performance of 3DES-based ES-MPICH2.

In November 2001, the symmetric block cipher Rijndael
was standardized by the National Institute of Standards
and Technology as the Advanced Encryption Standard [6].
AES—the successor of the Data Encryption Standard—has
been widely employed to prevent confidential data from
being disclosed by unauthorized attackers. AES can be used
in high-performance servers as well as small and mobile
consumer products. AES is the preferred cryptographic
algorithm to be implemented in ES-MPICH2, which was
built based on symmetric block ciphers. Although AES
introduces overhead due to additional security operations
in ES-MPICH2, the overhead caused by AES in ES-MPICH2
can be significantly reduced by AES hardware architectures
(see [19] for details of a highly regular and scalable AES
hardware architecture).

Security enhancement in clusters. There are several
research works focusing on the security enhancement in

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 371

Fig. 14. Intel MPI Benchmarks, PingPong, and PingPing are Single Transfer Benchmarks, SendRecv and Exchange are Parallel Benchmarks on 10-
node Cluster of Pentium II.

commodity clusters. For example, Lee and Kim developed a
security framework in the InfiniBand architecture (IBA)
[17]. For confidentiality and authentication, Lee and Kim
proposed the partition-level and QP-level secret key
management schemes. The security in IBA is improved
with minor modifications to the IBA specification. Ram-
surrun and Soyjaudah constructed a highly available
transparent Linux cluster security model, which offers a
new approach to enhancing cluster security [23]. Koenig et
al. implemented a tool that monitors processes across
computing nodes in a cluster [16]. The tool delivers real-
time alerts when there are immediate threats. Similarly,
Pourzandi et al. investigated the security issues of detecting
threats and hazards in distributed clusters [21]. The
aforementioned security solutions developed for clusters
are inadequate to directly support security-sensitive MPI
programs, because the existing security solutions generally
require application developers to implement security
functionality in their MPI programs.

8 CONCLUSIONS AND FUTURE WORK

To address the issue of providing confidentiality services
for large-scale clusters connected by an open unsecured
network, we aim at improving the security of the message
passing interface protocol by encrypting and decrypting
messages communicated among computing nodes. In this
study, we implemented the ES-MPICH2 framework, which
is based on MPICH2. ES-MPICH2 is a secure, compatible,
and portable implementation of the message passing
interface standard. Compared with the original version of
MPICH2, ES-MPICH2 preserves message confidentiality in
MPI applications by integrating encryption techniques like
AES and 3DES into the MPICH2 library.

In light of ES-MPICH2, programmers can easily write
secure MPI applications without an additional source code
for data-confidentiality protection in open public networks.
The security feature of ES-MPICH2 is entirely transparent
to MPI programmers because encryption and decryption
functions are implemented at the channel-level in the
MPICH2 library. MPI-application programmers can fully
configure any confidentiality services in MPICHI2, because
a secured configuration file in ES-MPICH2 offers the
programmers flexibility in choosing any cryptographic
schemes and keys seamlessly incorporated in ES-MPICH2.
Besides the implementation of AES and 3DES in ES-
MPICH2, other cryptographic algorithms can be readily
integrated in the ES-MPICH2 framework. We used the
Sandia Micro Benchmarks and the Intel MPI benchmarks to
evaluate and analyze the performance of MPICH2.

Confidentiality services in ES-MPICH2 do introduce
additional overhead because of security operations. In
the case of small messages, the overhead incurred by the
security services is marginal. The security overhead caused
by AES and 3DES becomes more pronounced in ES-MPICH2
with larger messages (e.g., the message size is larger than
256 KB). Our experimental results show that the security
overhead in ES-MPICH2 can be significantly reduced by
high-performance clusters. For example, the overhead
added by AES in ES-MPICH2 is reduced by more than half
when the 6-node cluster of Intel Celeron is used instead of

the 10-node cluster of Intel Pentium II. In addition to high-
end clusters, the following two solutions can be applied to
further reduced overhead caused by confidentiality services
in ES-MPICH2. First, AES/3DES hardware implementations
can lower security overhead in ES-MPICH2. Second,
security coprocessors can hide the overhead by allowing
the encryption and decryption processes to be executed in
parallel with the message passing processes.

We are currently investigating varies means of reducing
security overhead in ES-MPICH2. For example, we plan to
study if multicore processors can substantially lower the
overhead of confidentiality services in ES-MPICH2.

Another interesting direction for future work is to
consider several strong and efficient cryptographic algo-
rithms like the Elliptic Curve Cryptography in ES-MPICH2.
Since ECC is an efficient and fast cryptographic solution,
both the performance and the security of ES-MPICH2 are
likely to be improved by incorporating ECC.

A third promising direction for further work is to
integrate encryption and decryption algorithms in other
communication channels like SHMEM and InfiniBand in
MPICH2 because an increasing number of commodity
clusters are built using standalone and advanced networks
such as Infiniband and Myrinet.

The current version of ES-MPICH2 is focused on securing
the transmission control protocol (TCP) connections on the
internet, because we addressed the data confidentiality
issues on geographically distributed cluster computing
systems. In addition to the MPI library, other parallel
programming libraries will be investigated. Candidate
libraries include the shared memory access library and
the remote direct memory access library. We plan to provide
confidentiality services in the SHMEM and RDMA libraries.

Last but not least, we will quantitatively evaluate the
performance of integrity checking services that are incor-
porated into the ES-MPICH2 framework. The goal of
developing the integrity checking services is to reduce
overhead of the services in ES-MPICH2.

9 AVAILABILITY

The executable binaries and source code of ES-MPICH2 are
freely available, along with documentation and benchmarks
for experimentation, at http://www.eng.auburn.edu/
~xqin/software/es-mpich2/.

ACKNOWLEDGMENTS

The work reported in this paper was supported by the US
National Science Foundation under Grants CCF-0845257
(CAREER), CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-
0917137 (CSR), CNS-0831502 (CyberTrust), CNS-0855251
(CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and
DUE-0830831 (SFS), as well as Auburn University under a
startup grant and a gift (Number 2005-04-070) from the Intel
Corporation. Mohammed Alghamdi’s research was sup-
ported by the King Abdulaziz City for Science and
Technology (KACST) and AL-Baha University.

372 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

REFERENCES

[1] Nat’l Security Agency. Nat’l Policy on the Use of the Advanced
Encryption Standard (aes) to Protect Nat’l Security Systems and
Nat’l Security Information cnss Policy no. 15 Fact Sheet no. 1, June
2003.

[2] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in
Cryptography. Cambridge Univ. Press, 1999.

[3] R. Brightwell, D.S. Greenberg, B.J. Matt, and G.I. Davida Barriers
to Creating a Secure mpi, 1997.

[4] D. Coppersmith, D.B. Johnson, S.M. Matyas, T.J. Watson, D.B.
Johnson, and S.M. Matyas Triple des cipher Block Chaining with
Output Feedback Masking, 1996.

[5] Intel Corporation. Intel mpi Benchmarks User Guide and
Methodology Description, 2008.

[6] J. Daemen and V. Rijmen, The Design of Rijndael. Springer, 2002.
[7] D.E. Denning, “Secure Personal Computing in an Insecure

Network,” Comm. ACM, vol. 22, no. 8, pp. 476-482, 1979.
[8] J.J. Dongarra, S.W. Otto, M. Snir, and D. Walker, “An

Introduction to the Mpi Standard,” technical report, Knoxville,
TN, 1995.

[9] W. Ehrsam, S. Matyas, C. Meyer, and W. Tuchman, “A
Cryptographic Key Management Scheme for Implementing the
Data Encryption Standard,” IBM Systems J., vol. 17, no. 2, pp. 106-
125, 1978.

[10] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An fpga-Based
Performance Evaluation of the aes Block Cipher Candidate
Algorithm Finalists,” IEEE Trans. Very Large Scale Integration
Systems, vol. 9, no. 4, pp. 545-557, Aug. 2001.

[11] I. Foster, N.T. Karonis, C. Kesselman, G. Koenig, and S. Tuecke,
“A Secure Communications Infrastructure for High-Performance
Distributed Computing,” Proc. IEEE Sixth Symp. High Performance
Distributed Computing, pp. 125-136, 1996.

[12] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E.L. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “Mpi-2: Extending the
Message-Passing Interface,” Proc. Second Int’l Euro-Par Conf.
Parallel Processing (Euro-Par ’96), pp. 128-135, 1996.

[13] R. Grabner, F. Mietke, and W. Rehm, “Implementing an mpich-2
Channel Device over Vapi on Infiniband,” Proc. 18th Int’l Parallel
and Distributed Processing Symp., p. 184, Apr. 2004.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the Mpi Message
Passing Interface Standard,” Parallel Computing, vol. 22, no. 6,
pp. 789-828, 1996.

[15] P. Hamalainen, M. Hannikainen, T. Hamalainen, and J. Saarinen,
“Configurable Hardware Implementation of Triple-des Encryp-
tion Algorithm for Wireless Local Area Network,” Proc. IEEE Int’l
Conf. Acoustics, Speech, and Signal Processing (ICASSP ’01),
pp. 1221-1224, 2001.

[16] G.A. Koenig, X. Meng, A.J. Lee, M. Treaster, N. Kiyanclar, and W.
Yurcik, “Cluster Security with Nvisioncc: Process Monitoring by
Leveraging Emergent Properties,” Proc. IEEE Int’l Symp. Cluster
Computing and Grid (CCGrid ’05), 2005.

[17] M. Lee and E.J. Kim, “A Comprehensive Framework for
Enhancing Security in Infiniband Architecture,” IEEE Trans.
Parallel Distributed Systems, vol. 18, no. 10, pp. 1393-1406, Oct.
2007.

[18] J. Liu, W. Jiang, P. Wyckoff, D.K. Panda, D. Ashton, D. Buntinas,
W. Gropp, and B. Toonen, “Design and Implementation of Mpich2
over Infiniband with rdma Support,” Proc. 18th Int’l Parallel and
Distributed Processing Symp., p. 16, Apr. 2004.

[19] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular and
Scalable aes Hardware Architecture,” IEEE Trans. Computers,
vol. 52, no. 4, pp. 483-491, Apr. 2003.

[20] S. Matyas and C. Meyer, “Generation, Distribution, and Installa-
tion of Cryptographic Keys,” IBM Systems J., vol. 17, no. 2, pp. 126-
137, 1978.

[21] M. Pourzandi, D. Gordon, W. Yurcik, and G.A. Koenig, “Clusters
and Security: Distributed Security for Distributed Systems,” Proc.
IEEE Int’l Symp. Cluster Computing and the Grid (CCGrid ’05), vol. 1,
pp. 96-104, May 2005.

[22] R. Prabhakar, C. Patrick, and M. Kandemir, “MPISec I/O:
Providing Data Confidentiality in MPI-I/O,” Proc. IEEE/ACM
Ninth Int’l Symp. Cluster Computing and the Grid, pp. 388-395, 2009.

[23] V. Ramsurrun and K.M.S. Soyjaudah, “A Highly Available
Transparent Linux Cluster Security Model,” Proc. IEEE Int’l
Performance, Computing and Comm. Conf. (IPCCC), pp. 69-76, Dec.
2008.

[24] S. Saini, R. Ciotti, B.T.N. Gunney, T.E. Spelce, A. Koniges, D.
Dossa, P. Adamidis, R. Rabenseifner, S.R. Tiyyagura, and M.
Mueller, “Performance Evaluation of Supercomputers using hpcc
and imb Benchmarks,” J. Computer and System Sciences, vol. 74,
no. 6, pp. 965-982, 2008.

[25] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck, “Network File System (nfs) Version 4
Protocol,” 2003.

[26] D.S. Wong, H.H. Fuentes, and A.H. Chan, “The Performance
Measurement of Cryptographic Primitives on Palm Devices,”
Proc. 17th Ann. Computer Security Applications Conf. (ACSAC),
pp. 92-101, 2001.

Xiaojun Ruan (S’07-M’09-A’10) received the BS
degree in computer science from Shandong
University in 2005, PhD degree in computer
science from Auburn University in 2011. He is an
assistant professor of Computer Science at
West Chester University of Pennsylvania. His
research interests include energy efficient sto-
rage systems, parallel and distributed systems,
computer architecture, operating systems, HDD
and SSD technologies, and computer security.
He is a member of the IEEE.

Qing Yang (S’08-M’11) received the BE and ME
degrees in computer science and technology
from Nankai University and Harbin Institute of
Technology, China, in 2003 and 2005, respec-
tively, and the PhD degree in computer science
from Auburn University in 2011. He is currently a
RightNow Technologies assistant professor of
computer science at Montana State University.
His research interests include wireless vehicular
ad hoc networks (VANET), wireless sensor

networks, network security and privacy, and distributed systems. He is
a member of the IEEE.

Mohammed I. Alghamdi received the BS
degree in computer science from King Saud
University, Riyadh, Saudi Arabia in 1997, the MS
degree in software engineering from Colorado
Technical University, Colorado, the master’s of
science degree in information technology man-
agement from Colorado Technical University,
Denver, Colorado, 2003 and the PhD degree in
computer science from New Mexico Institute of
Mining and Technology.

RUAN ET AL.: ES-MPICH2: A MESSAGE PASSING INTERFACE WITH ENHANCED SECURITY 373

Shu Yin (S’09) received the BS degree in
communication engineering from Wuhan Uni-
versity of Technology (WUT) in 2006, the MS
degree in signal and information processing
from WUT in 2008, and is currently, working
toward the PhD degree in the Department of
Computer Science and Software Engineering at
Auburn University. His research interests in-
clude storage systems, reliability modeling, fault
tolerance, energy-efficient computing, and wire-

less communications. He is a student member of the IEEE.

Xiao Qin (S’00-M’04-SM’09) received the BS
and MS degrees in computer science from the
Huazhong University of Science and Technol-
ogy, Wuhan, China, and the PhD degree in
computer science from the University of Nebras-
ka-Lincoln, Lincoln, in 1992, 1999, and 2004,
respectively. For three years, he was an
assistant professor with the New Mexico Insti-
tute of Mining and Technology, Socorro. Cur-
rently, he is an associate professor with the

Department of Computer Science and Software Engineering, Auburn
University, Alabama. His research interests include parallel and
distributed systems, storage systems, fault tolerance, real-time systems,
and performance evaluation. His research is supported by the US
National Science Foundation (NSF), Auburn University, and Intel
Corporation. He was a recipient of the US National Science Foundation
Computing Processes and Artifacts Award, the NSF Computer System
Research Award in 2007, and the NSF CAREER Award in 2009. He was
a subject area editor of the IEEE Distributed System Online in 2000-
2001. He has been on the program committees of various international
conferences, including IEEE Cluster, IEEE International Performance,
Computing, and Communications Conference, and International Con-
ference on Parallel Processing. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

374 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

