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Abstract—Online content distribution systems, which store
incredibly large amounts of information and provide service to
large numbers of users, are becoming increasingly commonplace.
To fulfill the wide range of requests sent by different users, these
systems must ensure efficient handling of massive amount of data.
To achieve this goal, the in-depth analysis and comprehensive
understanding of user behaviors are critical. However, analyzing
the behaviors of worldwide users with different needs is a very
challenging task. This is especially true when historical user
behaviors evolve over time or may be affected by unpredictable
events. In this paper, we present a number of workload char-
acterization techniques applied to one of the world’s largest
online satellite image distribution systems operated by the U.S.
Geological Survey (USGS) and NASA.
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I. INTRODUCTION

The Information Age is so named after the ever-increasing
amounts of data available on a daily basis [1]. Consequently,
with an expanding data set comes a heightened need for
the efficient management of information flow. Among the
myriad of powerful new consumer software fueled by this
data explosion are geospatial applications such as Google
Earth [2] and Microsoft MapPoint [3]. These programs rely
on large stores of geographic information to provide a wide
range of utilities to their users, such as Google Earth’s ability
to provide detailed satellite images of nearly any location on
Earth. Without efficient workload management systems, these
new applications would be unable to handle the large amount
of operations they generate.

In April 2008, the United States Geological Survey (USGS)
Earth Resources Observation and Science (EROS) center
opened their online satellite imagery archive freely to the
public after successfully serving researchers privately for many
years. The Global Visualization Viewer (GloVis) [4] enables
users to browse and download terrestrial images captured by
the National Aeronautics and Space Administration (NASA)
Landsat program from 1972 to the present [5], with data
provided by the system put to use in fields as diverse as
agricultural development, regional management, education,
and many government applications. Increased demand for
images places high importance on quick preparation and
distribution of content to users, but the system’s processing

time of up to days for non-cached images elevates efficiency
to paramount importance. The performance of conventional
caching algorithms on the EROS system has been discussed
in previous publications[6], but significant performance gains
have yet to be achieved. Other methods such as employing
modified caching strategies and utilizing generic data mining
techniques have been proved unable to provide sizable perfor-
mance improvements.

For such a large-scale system, efficiency improvements
would yield substantial savings in terms of time and power
usage. A good understanding of the workload characteristics
plays an important role in deciding which caching strategies
and other performance improvement techniques to adopt. The
workload generated by GloVis constantly changes in several
dimensions as new users make requests in response to real-
world events and 250+ new sets of image data are downlinked
daily, providing a continuous feed of new content to be
requested.

In this paper, we present an in-depth analysis of user, image,
and request characteristics of the USGS EROS system. We
present the results of the characterization of over five million
lines of real-world data and use the information therein to
reveal insightful patterns and glean useful knowledge on user
behavior.

We make use of Google Earth’s abilities to display user
generated data to assist our discovery of meaningful relation-
ships within our data set. The usefulness of Google Earth as
a geovisualization aid has been explored previously [6], [7],
[8], but there do not yet exist many studies featuring its use
in assisting in workload characterization.

The remainder of this paper is organized as follows. Section
II contains background information on USGS EROS and the
GloVis system, as well as the motivation for characterizing
the workload of the GloVis servers. Section III briefly reviews
the conventional methods that have been applied to the EROS
data set previously. We present the results of our experiments
in section IV and discuss the implications of our findings.
Within section V, we summarize our findings and explain the
significance thereof, as well as lay the foundation for future
work related to the EROS GloVis system.
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II. BACKGROUND

In this section, we will provide further information on the
EROS system that is the subject of this paper, including
its unique environmental constraints. We will detail the log
files provided by EROS and the manner in which they were
processed to provide the material for our research. Finally,
we will review the important terms used when describing the
geospatial data captured with the Landsat satellites.

A. EROS Log File

The USGS-provided log file which we received contained
over 5,000,000 lines of data, with each line representing one
user request for one image to be processed and made available
for download. Figure 1 contains a snapshot of the log file
received from EROS, showcasing the raw data it contained.
From each request, we extract the ID of the user generating
the request, the date on which the request was made, and
an agglomerate variable which represents the location on the
globe and the acquisition date of the image being requested.
A further description of the log file components may be seen
in Figure 2.

B. Worldwide Reference System

Image data warehoused by EROS is cataloged using the
Worldwide Reference System (WRS), a global notation system
designed for referencing Landsat data. The two satellites still
in operation, Landsat 5 and Landsat 7, use an extension of
the WRS system known as WRS-2. There exist technical
distinctions between the two reference systems in order to
account for the large orbital differences between the older and
most recent launches in the Landsat missions, making WRS
and WRS-2 coordinates incompatible without conversion [5].
Despite the differences between the WRS protocols, both
systems attempt to divide the globe into a grid mirroring the
satellites’ orbital paths, with each area on the grid referred to
as a scene.

1) Scene: WRS-2 features a global grid that divides Land-
sat 5 and Landsat 7’s orbital tracks into a system of 248
latitudinal segments known as rows (North-South) and 233
longitudinal segments called paths (East-West). The satellites’
irregular orbits are responsible for a small amount of overlap
across neighboring scenes, and only terrestrial imagery is
captured, bringing to total number of unique scenes available
to approximately 17,000. Each scene is targeted for imaging by
the satellites once every orbit (approximately every 16 days),
providing a third dimension of time. A unique combination of
row, path, and acquisition date is referred to as an image.

2) Image: Landsat 5 and 7 both complete 14.5625 orbits
per day, and as such, complete one ’viewing’ of the earth every
16 days. Thus, any given scene should receive new imaging
downlinked approximately every 8 days. The frequency at
which images are acquired means that every scene gains about
47 new images every year. Prospective users of the EROS data
must request one or more scenes using the respective WRS-2
row/path combination (forming the X and Y axes) with the
addition of an acquisition date, exemplified in Figure 3.

III. CONVENTIONAL METHODS

In general, traditional caching strategies such as LRU and
LFU yield major improvements compared to FIFO [9], [10],
[11], [12], [13]. However, previous work shows that conven-
tional caching algorithms can only reach approximately 45%
of hit ratio on the EROS system [6]. We implemented a market
basket analysis (MBA) based prefetching scheme to further
improve the system. Images that are often requested together
were processed together. The improvements were very low
(less than .01%) for both LRU and LFU.

In a massive global system like EROS, it is likely that
many different types of user behavior patterns are present.
Efficient processing of different patterns may require different
strategies; there may be no single approach suitable for all such
patterns. Characterizing the workload based on suitability-of-
strategy could shed light in the creation of more complex
caching and/or prefetching algorithms.

IV. CHARACTERIZATION

Gaining a more complete view of the data set supplied
by USGS provided the driving force behind our employ of
workload characterization techniques. We seek the ability to
classify portions of the imagery available through EROS.
Through intelligent classification, images may be automati-
cally selected as likely candidates for future requests by a
prefetching algorithm with the intent of avoiding expensive
cache misses upon a real request coming from a user. When
we begin to characterize the workload described in the logs
provided by EROS, we discover the existence of multiple
trends in data requests that could be used for classification.

By exploring these unique relationships, new knowledge
may be gathered on both user behavior and system perfor-
mance. In this section, we will present three dominant trends
in the log data we chose to monitor throughout the course of
our analysis. The perspectives covered will be user-oriented,
scene-oriented, and request-oriented. When examining the
server logs from a user-oriented perspective, a small group of
users is found to make tens of thousands of image requests,
while most users only make a few. In addition, when taking
a scene-centric perspective, there exist few scenes which may
be considered highly popular whereas the large majority of
scenes are not. Scenes with a cumulative download request
total exceeding 1000 will now be referred to as popular scenes.
Finally, in exploring the request perspective, it is seen major
historical events such as natural disasters have a significant
impact on users’ behavior. We shall discuss the possibility of
exploiting these three workload characteristics using caching
and prefetching strategies.

A. Characterizing Users

USGS/EROS users may be characterized as aggressive and
casual users [6]. Within the system trace, the aggressive
behavior of few users persists. Figure 5 shows that top 100
aggressive users account for almost the same amount of
requests made by the remaining 79,437 casual users. As the
green line in Figure 4 illustrates, aggressive users create a
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Fig. 1. Snapshot of EROS-provided log file.

Fig. 2. Explanation of log file contents.
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Fig. 3. Scenes are comprised of layers of images for a given row and path
with respect to time.

sequential pattern in download requests for a scene as they
request a wide range of imagery for a single scene. The use of
sequential prefetching techniques may be able to target users
that exhibit such aggressive behavior and mitigate the impact
they have on the image processing queue.

B. Characterizing Scenes

While some scenes are in high demand, many other scenes
are only requested a few times. Figure 6 shows that the
distinction between popular and unpopular scenes. We also
look for the same behavior at the image level. Figure 7 shows
that a similar popularity distribution exists for images.

Some images and scenes are significantly more popular than

others, but the set of popular scenes changes over time. In
Figures 8 and 9, we compare the top 100 list of popular scenes
and images before and after January 1st, 2011, which is about
the midpoint for our data. Between the shifting time periods,
51 of the top 100 scenes remained in the list over time. On
the other hand, only 8 images remained in top 100 in the
same two time. This continually shifting popularity suggests
that window-based caching algorithms may be better suited
for the effective handling of image requests.

Findings suggest that users are more interested in newer
images of the same scenes. Are there current popular scenes
that users request the newest images available as soon as
they become available? Are there archival popular scenes that
users are mostly interested in older images? Such scenes that
attract frequent download requests are referred to as current.
Prefetching new images as they become available may be
beneficial in the case of current scenes, however, an LFU-like
approach could be more suitable for archival scenes.

When image requests are examined as in Figure 4, a distinct
slope is seen on the rightmost points in the graph as the
request date increases (moves forward in time). The tightly
clustered nature of the leading edge of the graph in Figure
4 implies that requests are frequently submitted for the most
recent image available at any given time for a scene. Improving
upon our definition of current images, we consider requests
for an image that are made within 60 days from the date the
image is first made available as current images. Figure 10
captures the number of unique recent image requests for each
popular scene. We can clearly observe clusters of scenes that
have substantially more requests for current images than most
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Fig. 4. Scatter plot for a coastal scene in California.

Fig. 5. Impact of top 100 aggressive users.

other scenes.
We utilize Google Earth’s geovisualization abilities to ex-

amine current scenes. When we begin marking scenes on the
map that fit the criteria for being current, we note that the top
eight most heavily requested current scenes cluster along the
Southwestern coast of the United States, as shown in Figure
11. As we continue to visualize the most current popular
scenes, we find that the majority of scenes fall within the
United States. We can see how current scenes cluster into the
rough shape of the United States in Figure 12.

Figure 11 provides another valuable insight into trends in
scene requests in that some scenes exhibit behavior with the
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Fig. 6. Popularity distribution of scenes.

Fig. 7. Popularity distribution of images.
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Fig. 8. Scenes stay popular over time.

Fig. 9. Images lose popularity over time.

Fig. 10. Distribution of current and archival popular scenes.

Fig. 11. Top eight current popular scenes

Fig. 12. Current popular images with over 60 unique current requests.

opposite characteristics of current scenes - recently captured
images are very rarely requested. While the majority of scenes
such as northwest of Brazil in Figure 13 have a moderate
number of requests for recent images, some scenes such as
Brazil contain almost no such requests. Figure 13 lacks a
visible slope as the x-axis is traversed, implying that the scene
in question would benefit much less from any attempt to
improve access to the most current imagery it contains. We
refer to scenes that contain few requests for recent imagery
yet have a large number of overall requests (200 or more) as
archival.

When visualizing characteristics of archival scenes, we
note several clusters appear within geographical boundaries
wherein bordering scenes all share the property of being
archival, as observable in Figures 14 and 15 below. As current
scenes would benefit from expedited preperation of recently
taken images, so too would archival scenes would realize
performance gains by improving access to more historical
imagery.

C. Characterizing Requests

Images are sometimes requested unexpectedly, and we ob-
serve multiple instances in which a particular row and path
exhibit an extremely sharp peak in request density without
any previous indications of doing so. Examining the scenes
that express such behavior reveals that real-world events occur
within the scene immediately prior to the increase in interest.

Recalling that EROS is a system utilized primarily by
researchers, we find that large-scale geophysical events garner
a sizable increase in requests for scenes in which they occur.
The epicenter of the 2010 Haiti earthquake, located at 18◦27’
N, 72◦31’ W (row 47, path 9) [14], proved to be a scene of
great interest, as seen in Figures 16 and 17. While there were
zero requests for the scene containing Port-au-Prince prior to
the earthquake on 12 January, 2010, an immediate surge of
requests can be observed in the wake of the event, lasting
many days.

Similarly to the 2010 Haitian event, the 2011 Tohoku
earthquake in Eastern Japan with an epicenter located at
38◦19’ N, 142◦22’ E (row 33, path 106) [15] generated a
marked increase in interest in the scene containing Tohoku,
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Fig. 13. Scatter plot for a scene northwest of Brazil.

Fig. 14. Archival popular scenes with more than 200 cumulative requests
and less than 2 unique current requests.

as well as neighboring scenes, visualized in Figures 18 and
19. Real-world events are a powerful force for motivating user
download requests, even of scenes which would not have been
considered popular before the event’s occurrence. Maintaining
an increased awareness of ongoing events worldwide would
allow the EROS system to anticipate scenes which are likely
to be the recipients of sudden bursts of requests. A prefetching
system that employs event-awareness could reduce the delays
caused by request processing and image preparation affecting
these conditionally popular scenes.

Furthermore, we take note of the characteristics of requests
for some scenes where major events had taken place in the

Fig. 15. Archival popular images with more than 1200 cumulative requests
and less than 5 unique current requests.

past. The scene at row 24, path 26 contains the city of
Pripyat, Ukraine, as well at the site of the Chernobyl Nuclear
Power Plant at 51◦23’ N, 30◦5’ E [16]. The Chernobyl plant
experienced a large explosion on 26 April, 1986, which is one
of only two of the most highly rated events on the International
Nuclear Event Scale. Although the GloVis system was not
in operation at the time of the Chernobyl disaster, NASA’s
Landsat satellites were in orbit, capturing and archiving the
imagery for future use.

Figure 20 contains requests for imagery of Chernobyl
plotted to explore the relationship between the date the image
was captured and the date the image was requested. There
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Fig. 16. Requests for Haiti in January 2010.

Fig. 17. Location of Haiti earthquake - January 2010.
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Fig. 18. Requests for Japan in March 2011.

Fig. 19. Location of Japan tsunami - March 2011.

exists a vertical cluster slightly to the right of the line denoting
the date of the Chernobyl disaster, signifying that the image
taken on 29 April, 1986 is requested many times across the
3+ years that the GloVis server logs cover. Because this image
maintains a high level of interest even as time passes, it could
benefit overall system performance to reserve an amount of
space in cache for this and other scenes that contain such
historically significant areas of interest.

V. CONCLUSION AND FUTURE WORK

In this paper, we have provided an explanation as to why
traditional caching strategies do not work on a massive global
system. Using suitable visualization techniques, we were able
to identify distinct characteristics of the USGS EROS global
satellite image distribution system workload.

• Few users request many images while many users only
request a few.

• Some scenes are very popular while most of them are
unpopular.

• For current popular scenes, users are interested in the
newest available images. For archival scenes, users are
mostly interested in older images.

• Hierarchical clustering of current and archival scenes
reveals meaningful geographical shapes.

• Very few images are very popular.
• The popularity of scenes slowly evolves over time while

the popularity of images evolves rather quickly.
• Some image requests are triggered right after important

global events.
• Images of extreme historical events stay popular after

many years.
Such overlapping patterns should be identified and targeted
accordingly. In particular, evolving patterns should be targeted
using time window-based caching strategies. An appropriate
window size should be determined based on how quickly the
pattern is evolving. Popularity is shown to be a bad measure
for prefetching new images as they become available. Current
popularity seems to be a better criterion for prefetching.

EROS currently utilizes an array of hard disk drives to serve
as a cache for processed images awaiting download. By em-
ploying an intelligent prefetching policy targeting high-priority
images, current levels of performance may be achievable with
a significantly smaller overall cache size. By reducing the
number of active hard drives needing to be kept in constant
operation, EROS could realize a reduction in net power usage
and ecological impact as a result of daily operations.
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Fig. 20. Scatter plot for the scene encompassing the epicenter of the Chernobyl disaster outside of Prypiat, Russia.

Survey (USGS) Earth Resources Observation and Science
(EROS) Center.
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