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Abstract—RAID-6 is widely used to tolerate concurrent
failures of any two disks in both disk arrays and storage
clusters. Numerous erasure codes have been developed to
implement RAID-6, of which MDS Codes are popular. Due to
the limitation of parity generating schemes used in MDS codes,
RAID-6-based storage systems suffer from low reconstruction
performance. To address this issue, we propose a new class
of XOR-based RAID-6 code (i.e., V2-Code), which delivers
better reconstruction performance than the MDS RAID-6 code
at low storage efficiency cost. V2-Code, a very simple yet
flexible Non-MDS vertical code, can be easily implemented
in storage systems. V2-Code’s unique features include (1)
lowest density, (2) steady length of parity chain, and (3) well
balanced computation. We perform theoretical analysis and
evaluation of the coding scheme under various configurations.
The results show that V2-Code is a well-established RAID-6
code that outperforms both X-Code and Code-M in terms of
reconstruction time. V2-Code can speed up the reconstruction
time of X-Code by a factor of up to 3.31 and 1.79 under single
disk failure and double disk failures, respectively.

Keywords-RAID-6; Non-MDS Code; Vertical Code; Lowest
Density Code; Balanced Computation.

I. INTRODUCTION

RAID techniques [1] are widely used in modern storage
clusters to achieve high performance and reliability with
acceptable spatial and monetary cost. Evidence shows that
the possibility of disk failure occurrence grows with the
increasing scale of storage systems [2][3]. RAID-6 coding
schemes have increasingly received attention, because such
coding schemes can tolerate double concurrent disk failures.

Various erasure coding technologies are applied to imple-
ment the RAID-6 layout. According to the structure and dis-
tribution of parities, RAID-6 can be mainly categorized into
horizontal codes [4][5][6][7][8][9][10] and vertical codes
[11][12][13][14]. A typical RAID-6 storage system using
horizontal codes is composed of k+2 disks, where the first k
disks store original information, and the last two are used as
parity disks. Horizontal codes have a common disadvantage
- k symbols must be read to recover any one failed symbol.
Vertical codes are proposed to disperse parities across all
disks instead of dedicated redundant disks (see, for example,
X-Code[13], Cyclic code[11], and P-Code[14]).

A key design goals of erasure codes is to promote re-
construction performance [15][16][17]. Maximum Distance
Separable (MDS) code is a set of codes that require exact k

symbols to reconstruct one failed or erased symbol. Such a
limitation induced by the reconstruction chain length (i.e., k)
potentially degrades the reconstruction performance. Non-
MDS codes (e.g., Weaver codes [18], Hover codes [19],
Code-M [20]) are proposed to overcome the reconstruction
performance bottleneck. Compared to MDS codes, non-
MDS codes use more parity symbols and largely reduce the
number of symbols involved in the generation of one par-
ity symbol, thereby increasing reconstruction performance.
However, existing non-MDS codes behave poorly in some
cases. For example, the Weaver code suffers from low stor-
age efficiency (e.g., ≤ 50%); the HoVer code has extremely
poor reconstruction performance when a horizontal parity
disk fails. In Code-M, the disk array size is restricted by
a prime number, which means that it does not support
application scenarios of arbitrary number of disks.

The low reconstruction performance hurts data reliabil-
ity and availability of RAID-based storage systems. On
one hand, longer reconstruction time translates to a longer
‘window of vulnerability’, in which a second disk failure
inevitably cause persistent data loss [21]; on the other hand,
user requests on the foreground are adversely affected by
the online reconstruction. To address these two issues, we
propose a new class of XOR-based RAID-6 codes called
V2-Code, which is a Vertical code and its shape of the parity
chain like the letter ‘V’ in geometry.

The contributions of this paper is summarized as follows:

• Our V2-Code, an efficient non-MDS XOR-based
RAID-6 code, delivers better reconstruction perfor-
mance than MDS RAID-6 codes at low storage ef-
ficiency cost. The parity chain length of V2-Code is
fixed, i.e., 2m-1 for a m-row-n-column disk array.

• V2-Code is a new class of lowest density array codes.
The number of parity symbols that are affected by a
change of any single information symbol is minimal,
which reduces update complexity.

• V2-Code is a vertical code, in which parity symbols are
evenly distributed over all disk drives. The number of
operations for computing parity symbol at each column
is identical, meaning that computing load is evenly
distributed among all disks. Such a load balancing
feature naturally overcomes the bottleneck induced by
repeated write operations.
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• Our V2-Code has the advantage of high reconstruction
performance. The quantitative analysis demonstrates
that V2-Code speeds up the reconstruction time of
X-Code by a factor of up to 3.31 and 1.79 under single
disk failure and double disk failures, respectively.

The rest of the paper is organized as follows. Section II
briefly overviews the related work. The architecture and
reconstruction process of V2-Code are presented in Sec-
tion III. Section IV describes detailed property analysis and
performance evaluation of V2-Code. Finally, we conclude
our work in Section V.

II. RELATED WORK

Thanks to error-correcting capability, erasure coding tech-
niques [22] are widely used in many fields such as telecom-
munication and data storage. Several well-known erasure
coding schemes (e.g., Reed-Solomon codes and parity array
codes) are capable of protecting against two or more disk
failures in an array of disks. The Vandermonde-based Reed-
Solomon code[4] offer high fault tolerance and optimal stor-
age efficiency, but it requires the support of complex Galois
field arithmetic (GF(2w)). Aiming at the computation prob-
lem of complex multiply operations in Vandermonde Reed-
Solomon codes, Cauchy Reed-Solomon codes[5] adopt the
highly-efficient XOR operations. However, both Vander-
monde and Cauthy Reed-Solomon codes still suffer from
low storage performance [10].

Unlike the Reed-Solomon codes, parity array codes de-
pends solely on XOR operations during encoding and decod-
ing. This simplicity makes parity array coding fit for RAID
storage systems. Among the existing parity array codes,
RAID-6 is able to tolerate double concurrent node failures.
Researchers have proposed many RAID-6 coding schemes,
such as EVENODD code[6], RDP code[7], Blaum-Roth
code[8], Liberation code[10], Liber8tion code[9], Cyclic
code[11], X-Code[13], P-Code[14], and the like. Apart from
the above MDS codes, a few non-MDS codes have been
proposed to improve reconstruction performance. These non-
MDS codes include WEAVER[18], HOVER[19], Pyramid
code[23], Flat XOR-Code[24], and Code-M[20]. To make
fair comparison, in this paper we focus on the parity
array codes while choosing X-Code and Code-M as two
baseline coding schemes. Both X-Code and Code-M belong
to MDS parity array codes and non-MDS parity array codes,
respectively.

A. MDS Parity Array Codes

Due to limited I/O bandwidth and expensive storage
space, MDS codes became the primary focus of research
for the sake of the best storage efficiency. MDS parity array
codes can be divided into the horizontal codes [6][7] and
vertical codes [13][14].

EVENODD and RDP are representative horizontal MDS
codes for RAID-6 storage systems. Due to exist dedicated
parity disks in horizontal codes, EVENODD and RDP suffer

from the unbalanced load problem. There are two parity
types - row parity and diagonal parity. The row parity of
EVENODD is similar to that of RDP; the construction of
the diagonal parity in RDP is different from that of EVEN-
ODD. From the layout of parities, we easily deduce that
EVENODD is not an optimal solution from the perspective
of both computational complexity and update complexity.
Except for high update complexity, RDP obtains optimal
computational complexity.

X-Codes and P-Codes are vertical MDS codes for RAID-
6 storage systems, of which parity symbols are dispersed
over all disks rather than in dedicated redundant disks. Such
a layout achieves optimal computational complexity and
update complexity. A recent study [25] shows that X-Codes
exhibit balanced computation, and P-Codes are experiencing
unbalanced computation.

From the parity layouts of both horizontal and vertical
MDS codes, we observe that MDS-based RAID-6 schemes
have a common disadvantage – the generation of each parity
symbol needs exact k symbols on multiple disk drives;
the long parity chain potentially becomes the performance
bottleneck of reconstruction processes when any failure
occurs.

B. Non-MDS Parity Array Codes

In recent years, I/O bandwidth increases and storage space
becomes cheaper; however, the increasing gap between I/O
bandwidth and disk capacity makes recovery time of an
entire disk increases. Much attention has paid toward how to
speed up recovery and improve the reliability of storage sys-
tems when disk failure occurs [16][20][17][26]. Non-MDS
codes are regarded as favorable coding schemes to improve
reconstruction performance of failed storage systems in the
research community. Sample non-MDS codes are WEAVER
codes[18], Hover codes[19], and Code-M[20].

WEAVER codes focus on tolerating multiple concurrent
disk failures. The main drawback of the WEAVER codes is
their low storage efficiency (≤50%). HoVer codes belongs
to the family of XOR-based lowest density codes. HoVer
coding is a hybrid coding scheme that combines horizon-
tal codes and vertical codes, which make it possible to
achieve improved reconstruction performance under single
and double disk failures. Just as every coin has two sides,
HoVer has the following three limitations. First, HoVer’s
reconstruction cost varies, since it might need to read all
information symbols to reconstruct lost symbols when a
horizontal parity disk fails or two failed disks are adjoining.
Second, HoVer results in unbalanced computing load due
to dedicated parity disks. Last, some spare symbols are
neither data symbols nor parity symbols, leading to a storage
efficiency problem. Code-M is another non-MDS RAID-6
Code. Code-M code is designed to improve reconstruction
performance as a lowest density code; however, the size of
disk arrays must be restricted by a prime number.



III. THE DESIGN OF V2-CODE

To overcome the deficiency in reconstruction performance
of the existing parity array codes, we propose a novel non-
MDS code called V2-Code for large-scale RAID-6 storage
systems. Compared to the existing coding schemes, V2-Code
achieves optimal reconstruction performance under RAID-6
storage systems.

Let us denote V2-Code(m,n) as a specific construction
setting of V2-Code for a m-row-n-column disk array, where
m ≥ 2 and n ≥ (4m-3). Information symbols are placed
in an array of size (m-1)× n, parity symbols are placed in
an additional row, so the coded array is of size m× n (i.e.,
the first m-1 rows containing information symbols and the
last row keeping parity symbols). Like existing array codes
[6][13], parity symbols are constructed from information
symbols along several diagonals of some slopes with the
addition operation ‘+’, which denotes the XOR operation
here. Notice that each column has m-1 information symbols
as well as a parity symbol. That is, information symbols and
parity symbols are mixed in each column. If an error or an
erasure of a symbol occurs in a column, then this column
is considered to be an error or erasure column. This code
structure allows surviving symbols to recover any two erased
columns.

A. Layout and Encoding of V2-Code
V2-Code is composed of a m-row-n-column square ma-

trix with a total m × n symbols. There are two types of
symbols in the square matrix: information symbols and
parity symbols. Ci,j denotes the symbol at the ith row
and jth column, with 0≤i≤(m-1) and 0≤j≤(n-1), and the
parity symbol Cm-1,j at the jth column is constructed using
Equation (1).

Cm-1,j =
m-2∑

t=0

Ct,<j+m-1-t>n +
m-2∑

t=0

Ct,<j-m+1+t>n (1)

where j={0, 1, · · · , n-1}, and <x> n=x mod n. Geomet-
rically speaking, each parity symbol at the parity row is just
the checksums along diagonals of slopes 1 and -1.

Parity symbolInformation symbol

Figure 1. Parity layout of V2-Code(3,9) with a 9-disk array

Fig. 1 depicts an example of V2-Code(3,9), where a col-
umn represents a disk drive and a block denotes a symbol of
V2-Code(3,9). Here, a stripe of V2-Code(3,9) contains three
rows, nine strips, or 27 symbols. The symbols with the same
shape and color form a parity chain. For instance, there are

four information symbols (e.g.,C0,0, C1,1, C1,3, C0,4) and
one parity symbol (e.g.,C2,2) in a parity chain marked as
hexagon (see Fig. 1), parity symbol C2,2 can be produced by
C0,0+C1,1+C1,3+C0,4, and the length of parity chain equals
to five.

From the layout described in Fig. 1, we derive the storage
efficiency (i.e., the percentage of disk space occupied by
non-parity symbols), which is governed by the number m
of row rather than the number n of column. Thus, the
storage efficiency of V2-Code-based RAID system equals to
(m-1)/m. For example, when m is 4, 75% of the capacity
is used for non-parity symbols. Since V2-Code offers the
lowest density, each information symbol participates in two
parity chains. Each parity chain contains the same number
2(m-1) of information symbols; in other words, the parity
chain length of V2-Code is constant (i.e., 2(m-1)+1). To
tolerate double failures, the number of strips in V2-Code
should be greater than or equal to 4(m-1)+1.

B. Construction Process

According to the above information/parity layout and
the encoding scheme, the construction process of V2-Code
contains the following two steps:

• Label all information symbols;
• Calculate parity symbols according to Equation (1).

C. The Correctness of V2-Code

To prove the correctness of V2-Code, we consider the one-
stripe reconstruction case in this subsection. The reconstruc-
tion of multiple stripes is identical to that of one stripe. We
have the following lemma and theorem from the perspective
of one-stripe construction.

Lemma 1: There exists a sequence of a two-integer tuple
(Wk,W

′
k) that satisfies the following two conditions:

Wk= < m-1+(
k+1

2
+
1+(-1)k

4
)(f2-f1) >m

W
′
k=

1+(-1)k

2
f1+

1+(-1)k+1

2
f2 , (k=0, 1, · · · , 2m-1)

With expression 0<(f2-f1)<n, all two-integer tuples
{(0, f1), (0, f2), · · · , (m-1, f1), (m-1, f2)} occur only once
in the sequence. The proof of this lemma can be found in
the literature on RAID-6 codes [6][13][14].

Theorem 1: A m-row-n-column stripe can be recon-
structed from any two concurrent column failures.

Proof: Two failed columns are denoted as f1 and f2 where
0 ≤ f1 < f2 < n. Based on the layout of V2-Code(m,n),
we know that any two symbols in a parity chain do not
reside in the same strip. Meanwhile, any information symbol
always exists in two parity chains. For any two concurrent
failed columns f1 and f2, there are two types of missing
symbols, namely independent missing symbols and de-
pendent missing symbols. The first type is a single symbol
that fails in a parity chain; the second type occurs when two



information symbols miss in a parity chain. In the former
case, two independent missing symbols Ci,f1 and Ci,f2 at the
ith row are reconstructed, because the surviving symbols of
the corresponding parity chain does not appear in the other
failed column.

As to dependent missing symbols that are not in the same
row, if an information symbol Ci,f2 at the ith row f2 column
can be recovered, we can reconstruct the dependent missing
symbol C<i+f2-f1>m,f1 on the same parity chain. This recon-
struction is possible, because the surviving symbols on the
corresponding parity chain exist. Similarly, if information
symbol Ci,f1 at column f1 can be recovered, we can
reconstruct the dependent missing symbol C<i+f2-f1>m,f2

on the same parity chain.

Now we consider the case where dependent missing
symbols are in the same row. If an information symbol Ci,f2

on failed column f2 can be reconstructed, we can reconstruct
dependent missing symbol Ci,f1 on the same parity chain.
Such a reconstruction is reasonable, because the surviving
symbols of the corresponding parity chain exist. Similarly,
an information symbol Ci,f1 on failed column f1 can be
reconstructed; we can reconstruct the dependent missing
symbol Ci,f2 on the same parity chain.

We conclude that all symbols can be reconstructed and
the reconstruction order is based on the sequence of the
two-integer tuple in Lemma 1. In summary, V2-Code can
tolerate any two concurrent column failures.

D. Reconstruction Process

In this subsection, the reconstruction algorithms for
V2-Code are presented under both single-disk-failure and
double-disk-failure scenarios.

The decoding rules of all lost symbols are as follows:

Ci,j=
i∑

t=1

Ci-t,<j-t>n+
m-1-i∑

t=1

Ci+t,<j+t>n+
m-1∑

t=1

Cm-1-t,<j+(m-1-i)+t>n

(2)

Ci,j=
i∑

t=1

Ci-t,<j+t>n+
m-1-i∑

t=1

Ci+t,<j-t>n+
m-1∑

t=1

Cm-1-t,<j-(m-1-i)-t>n

(3)

1) Reconstruction algorithm for single-disk failures:
In the case of single-disk failures, all failed symbols are
independent missing symbols in Theorem 1. Therefore, it
is straightforward to retrieve any information symbol Ci,j

in the jth column according to Equation (2) or (3), with
0 ≤ i ≤ (m-2) and 0 ≤ j ≤ (n-1). Similarly, we can
recover the lost parity symbol Cm-1,j using Equation (1).

2) Reconstruction algorithm for double-disk failures:
A strip distance represents an interval between one strip
and another strip. There exist two strip-distance metrics
— Strip MInimum Distance(SMID) and Strip MAximum
Distance(SMAD). Assume there are n strips and the se-
quence numbers of two failed strips are f1 and f2, then

both SMID and SMAD are min(<f1-f2>n, <f2-f1>n) and
max(<f1-f2>n, <f2-f1>n), respectively.

Compared to the single-disk reconstruction, the double-
disk reconstruction is much more complicated. Three cases
of double-disk reconstruction are 1) two failed strips f1 and
f2 are adjoining and SMID is one, 2) two failed strips f1
and f2 are not adjoining where SMID is 2(m-1)+1, and 3)
two failed strips f1 and f2 are in two different strips where
SMID is greater than and equal to 4(m-1)+1.

Compared to Case 1 that has only one recovery algorithm,
both Cases 2 and 3 have multiple recovery algorithms to re-
cover failed blocks. Although the recovery algorithms in the
latter two cases exhibit the same computational complexity,
they have different I/O complexity. We demonstrate each
reconstruction process using a specific recovery algorithm.
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Figure 2. Reconstruction with two failed strips f1 and f2 in
V2-Code(m,n), where SMID is one and m equals to 3

Case 1: Two failed strips f1 and f2 are adjoining and
SMID is one. There is only one way to retrieve the
two strips. Fig. 2 shows a reconstruction layout in the
V2-Code(m,n) stripe where m=3. Intersections exists be-
tween parity chains of the f1 strip and parity chains of
the f2 strip; On the other hand, different parity chains in
a strip also intersect. Therefore, it is possible to reduce
I/O complexity and achieve high reconstruction performance
when the failures occur.

In this case, SMAD of the two adjoining failed strips is
greater than or equal to 4(m-1)+1. We observe from Fig. 2
that there are two recovery chains: (1) C0,f1 →C1,f2→
C2,f1 and, (2) C0,f2 → C1,f1 → C2,f2 . All the symbols
in a recovery chain depend on each other during the recon-
struction process. The reconstruction process is described as
follows. First, we identify two starting points of the recovery
chain (i.e., information symbols C0,f1 and C0,f2 ). Second,
we determine two endpoints of the recovery chain (i.e.,
parity symbols C2,f1 and C2,f2 ). Third, we reconstruct failed
symbols according to the corresponding recovery chains.
Algorithm 1 outlines the double-disk reconstruction process
for strips f1 and f2 in a V2-Code(m,n)-based stripe.

Case 2: Two failed strips f1 and f2 are not adjoining
where the SMID is 2(m-1)+1. There are several approaches
to retrieving the two strips. Fig. 3 shows a layout for
reconstruction in a V2-Code(m,n) stripe where m=3. All
lost symbols are independent of each other during the
course of reconstruction. Similar to the above case (Case
1), intersections exist in both parity chains of intra-strip
and parity chains of inter-strip, which makes it possible



Algorithm 1: Reconstruction algorithm of double-disk
failures of f1 and f2 where the SMID is one in a
V2-Code(m,n)-based stripe

Step 1:Identify the double failed columns:f1 and f2( f1 < f2)
Step 2:Start reconstructing the lost symbols of strips f1 and f2.
switch 0 ≤ f1 < f2 ≤ n− 1 do

Step 2-A: Reconstruct two starting points C0,f1 and C0,f2 of
the recovery chains based on Equations (3) and (2), respectively.
Step 2-B: Recover the remaining lost symbols in the two
recovery chains.
Two cases start synchronously:
case starting point is C0,f1

repeat
if i=m-1 then

Reconstruct the lost parity symbol with
Equation (1).

else
(1) Reconstruct the next lost information
symbol(in column f1) with Equation (3);
(2) Then reconstruct the next lost information
symbol(in column f2) with Equation (2).

end
until at the endpoint of the recovery chain.;

case starting point is C0,f2
repeat

if i=m-1 then
Reconstruct the lost parity symbol with
Equation (1).

else
(1) Reconstruct the next lost information
symbol(in column f1) with Equation (3);
(2) Then reconstruct the next lost information
symbol(in column f2) with Equation (2).

end
until at the endpoint of the recovery chain;

endsw
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Figure 3. Reconstruction with two failed strips f1 and f2 in
V2-Code(m,n), where the SMID is 2(m-1)+1 and m=3

to reduce I/O complexity and achieve good reconstruction
performance.

In the failure scenario, SMAD of the two failed strips f1
and f2 is no less than 2(m-1)+1. Fig. 3 demonstrates the
reconstruction under double disk failures with two different
strips where SMID is 2(m-1)+1 and m=3. Algorithm 2
shows the reconstruction process of concurrent failures of
f1 and f2 with SMID=2(m-1)+1 and SMID=4(m-1)+1 in
the V2-Code(m,n) stripe.

Case 3: Two failed strips f1 and f2 are in two different
strips where SMID is no less than 4(m-1)+1, and SMAD
of the two failed strips f1 and f2 is no less than 4(m-1)+1.
We also have several choices to reconstruct the two failed
strips. Fig. 4 shows a specific layout for reconstruction in the
V2-Code(3, n) stripe. All the lost symbols are independent

Algorithm 2: Reconstruction algorithm of double-disk
failures in the V2-Code(m,n) with SMID=2(m-1)+1
and SMID=4(m-1)+1

Step 1:Identify the two failed column:f1 and f2( f1 < f2)
Step 2:Reconstruct lost symbols of the f1 column.
foreach lost symbol Ci,j in the failure column f1 do

if i=m-1 then
Reconstruct the lost parity symbol with Equation (1).

else
Reconstruct the lost information symbol with Equation (2);

end
end
Step 3:Reconstruct lost symbols of the f2 column.
foreach lost symbol Ci,j in the failure column f2 do

if i=m-1 then
Reconstruct the lost parity symbol with Equation (1).

else
Reconstruct the lost information symbol with Equation (3);

end
end

of one another during the reconstruction. There are no
intersection between parity chains of the f1 strip and parity
chains of the f2 strip, but parity chains in a strip have
intersections. The corresponding reconstruction process is
listed in Algorithm 2.
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Figure 4. Reconstruction with two failed strips f1 and f2 in
V2-Code(m,n), where SMID is no less than 4(m-1)+1 and m=3

IV. PERFORMANCE AND PROPERTY ANALYSIS

In this section, we first summarize the properties of
V2-Code, including lowest density code, steady parity chain
length, balanced computation, and flexibility. Then, we com-
prehensively evaluate the performance of V2-Code in the
normal mode and degraded mode. Finally, we fully compare
V2-Code with X-Code and Code-M under the same settings
(e.g., both the number of disk and the amount A of user
information in a disk array is identical).

A. Property Analysis

Our V2-Code is a Non-MDS vertical coding scheme,
which takes full advantage of the layout of both diagonal
parities and anti-diagonal parities. From the geometrical
structure of V2-Code, we highlight four features as follows.

1) Lowest density code: According to the construction
process of V2-Code(m,n), each parity symbol at the mth

row (i.e., parity row) is independently calculated from in-
formation symbols. In particular, each information symbol
affects two parity symbols in the parity row. All parity
symbols only depend on information symbols; the parity



symbols are independent of one another. Since updating
one information symbol only needs to update two parity
symbols, V2-Code has the optimal update complexity.

2) Steady parity chain length: In V2-Code, each parity
chain contains the same number 2m-2 of information sym-
bols. Thus, the length of parity chain is constant, i.e., 2m-1
for a given row number m. The parity chain length has
nothing to do with the column number n of a disk array.
Hence, V2-Code achieves better reconstruction performance
than other MDS RAID-6 codes at marginal storage efficiency
cost.

3) Balanced computation: In V2-Code, each column has
one parity symbol, which is the checksum of 2m-2 infor-
mation symbols; consequently, the number of operations for
computing a parity symbol at each column is 2m-3. This
balanced computation property makes V2-Code applicable
to applications that require evenly distributed computations.

4) High Flexibility: Parameter m in V2-Code(m,n) rep-
resents an arbitrary row number where m is no less than
2; n represents an arbitrary number of column where n is
greater than and equal to 4m-3. The arbitrary numbers of
rows and columns make our approach applicable to large-
scale RAID systems. In contrast, many other codes (e.g.,
EVENODD, RDP, P-Code, Code-M) are limited to RAID
systems using a prime number as the disk array size. For
example, Code-M(S,C) is defined by a C-row-S*C-column
matrix, where C+1 must be a prime number; the number
of strip-sets in Code-M can not be less than 3; and the
column number in Code-M must grow at a step of C strips.
Therefore, V2-Code is very flexible in terms of RAID size.

B. Performance Analysis

In this subsection, we comprehensively discuss V2-Code
and quantitatively evaluate its performance in the normal
mode and the degraded mode (e.g., single-disk failure as
well as double-disk failures).

1) Performance in the normal mode: Basic operations
are read and write/update in a RAID system in the normal
mode. Read operations include small reads (reading one
symbol at a time) and strip reads (reading one strip at a
time). Similarly, write operations also include small writes
and strip writes. In the normal mode, the I/O overheads of
V2-Code(m,n) are listed as follows. (1) A small read does
not cause any additional overhead; I/O time of small reads
in V2-Code is the same as that in the existing RAID codes.
(2) A strip read does not utilize all the disk bandwidth, since
the parity symbol in that strip does not need to be accessed.
(3) A strip write should update 2m-2 disks. (4) A small
write/update operation on an information symbol causes two
additional write/update operations, which are optimal for any
code tolerating double disk failures.

2) Performance in the degraded mode: In the degraded
mode, decoding complexity is a very important performance
metric for RAID systems, because it greatly affects both user
response time and reconstruction time, and the reliability

of RAID systems has an inverse relationship with the
reconstruction time.

We first consider the case of single disk failure in
the degraded mode. According to Equations (1), (2),
and (3), 2m-3 XOR operations are required to recover
any one failed symbol, 2m*(m-1)-1 symbols should
be read and m symbols should be written to recover
one failed strip. Accordingly, to recover m*A/((m-1)*n)
symbols in one failed disk, the decoding computa-
tional complexity is m*(2m-3)*A/((m-1)*n) XOR op-
erations, and the decoding I/O complexity is to access
(m*(2m-1)-1)*A/((m-1)*n) symbols.

Now we discuss the double-disk-failure case in the de-
graded mode. In this case, 2m*(2m-3) XOR operations
are needed to recover two strips. That is, the decoding
computational complexity is 2m*(2m-3) XORs. In what
follows, let us discuss the I/O complexity of V2-Code(m,n)
codes for each case described in Section III.

Case 1 - the two failed strips are adjoining and SMID
is one: According to Fig. 2 and Algorithm 1, 2m*(2m-3)
symbols should be read and 2m symbols should be written
to reconstruct two strips. Therefore, the decoding I/O com-
plexity lies in accessing 4m*A/n symbols when rebuilding
m*A/((m-1)*n) lost symbols in each of the two failed
disks.

Case 2 - the two failed strips are in different strips
and SMID is 2(m-1)+1: To recover two strips (see Fig. 3
and Algorithm 2), a reconstruction mechanism must read
2m*(2m-3) symbols and write 2m symbols. Therefore, to
recover m*A/((m-1)*n) lost symbols in each of the two
failed disks, the decoding I/O complexity becomes accessing
4m*A/n symbols.

Case 3 - the two failed strips are in different strips
and SMID is no less than 4(m-1)+1: According to Fig. 4
and Algorithm 2, to recover two strips, 4m*(m-1)-2
symbols should be read and 2m symbols should be
written. So the decoding I/O complexity is to access
(2m*(2m-1)-2)*A/((m-1)*n) symbols, when recovering
m*A/((m-1)*n) lost symbols in each of the two failed disk.

C. Performance Comparisons
In this subsection, we choose X-Code and Code-M as

two baseline coding schemes, because they share some
common characteristics with V2-Code. For example, the
parity symbol construction of our V2-Code is similar to that
of X-Code, and Code-M is also a non-MDS array code for
RAID-6.

We compare V2-Code with X-Code and Code-M under
the same number of total disks and the same I/O bandwidth
for reconstruction. We recover valid user information sym-
bols in a failed disk; a similar approach can be found in
[27][26]. The results of the two comparison scenarios are
given in terms of reconstruction performance ratio.

1) Comparisons between V2-Code and X-Code: We eval-
uate the recovery performance of V2-Code(m,n) with X-
Code(p, p) under the same disk number, i.e., n=p. To recover
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one failed disk, the computational complexity of X-Code
is (p-3)*A/(p-2) and the I/O complexity of X-Code is
(p2-2p+3)*A/(p*(p-2)). To recover double failed disks, the
computational complexity of X-Code is 2(p-3)*A/(p-2) and
the I/O complexity of X-Code is (p*A)/(p-2).

Fig. 5 shows the reconstruction time ratios between
V2-Code(m,n) and X-Code when the number of disks is
set to 11, 19, 23 and 31, respectively. We observe that under
a single disk failure, V2-Code consistently outperforms X-
Code; V2-Code speeds up the reconstruction time of X-
Code by a factor of up to 3.31. Under double disk failures,
V2-Code still outperforms X-Code in all the tested cases,
and the reconstruction speedup is up to a factor of 1.79.

2) Comparisons between V2-Code and Code-M: We
assess the recovery performance of both V2-Code(m,n)
and Code-M(S,C) in the case of same disk number, i.e.,
n=S*C. When recovering one faulty disk, the computa-
tional complexity and I/O complexity of Code-M(S,C) are
(2C-3)*A/(S*(C-1)) and (2C-1)*A/(S*(C-1)), respec-
tively. When it comes to rebuilding double failed disks that
are in the same or adjoining strip-set, the computational and
I/O complexities of Code-M(S,C) are (4C-6)*A/(S*(C-1))
and (3C-1)*A/(S*(C-1)), respectively.

Fig. 6 shows the ratios of reconstruction performance
between V2-Code and Code-M under various configurations
using 12, 16, 18, 20, 24 and 30 disks, respectively. It is
clear that under all the configurations, V2-Code consistently
exhibits higher recovery speed than that of Code-M in both
the single-disk-failure case and the double-disk-failure case.
In addition, we observe that V2-Code improves the recov-
ery performance of Code-M under the same disk number,
storage efficiency, and RAID capacity.

V. CONCLUSION

In this paper, we proposed a novel coding scheme called
V2-Code to tolerate up to two concurrent disk failures for
large-scale RAID-6 storage systems. Our V2-Code is a non-
MDS RAID-6 code, which achieves better reconstruction
performance than that of MDS RAID-6 codes at small stor-
age efficiency cost. V2-Code is a lowest density code, with
its parity chain length fixed at 2(m-1)+1 for a given number
m of rows in a disk array. V2-Code’s storage efficiency is
very high (i.e., (m-1)/m). We conducted extensive theo-
retical analysis for V2-Code under various configurations.
The results show that V2-Code outperforms both X-Code
and Code-M in terms of reconstruction time. For example,
V2-Code speeds up the reconstruction time of X-Code by a
factor of up to 3.31 and 1.79 in the single-disk-failure case
and the double-disk-failure case, respectively.

V2-Code exhibits an array of benefits such as balanced
computation, flexible RAID size, and fixed parity chain
length. These advantages allow our V2-Code to be applied
to a wide range of in-production applications running in
distributed storage environments. As a future direction, we
plan to extend V2-Code to a distributed storage systems
comprised of heterogeneous data nodes.
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