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Abstract 

 
Fault tolerance is an essential requirement for real-time systems, due to the potentially 

catastrophic consequences of faults. In this paper, we investigate an efficient off-line scheduling 

algorithm in which real-time tasks with precedence constraints can tolerate one processor's permanent 

failure in a heterogeneous system with fully connected network. The tasks are assumed to be non-

preemptable, and each task has two copies that are scheduled on different processors and mutually 

excluded in time. In the literature in recent years, the quality of a schedule has been previously 

improved by allowing a backup copy to overlap with other backup copies on the same processor. 

However, this approach assumes that tasks are independent of one other. To meet the needs of real-

time systems where tasks have precedence constraints, a new overlapping scheme is proposed. We 

show that, given two tasks, the necessary conditions for their backup copies to safely overlap in time 

with each other are, (1) their corresponding primary copies are scheduled on two different processors, 

(2) they are independent tasks, and (3) the execution of their backup copies implies the failures of the 

processors on which their primary copies are scheduled. For tasks with precedence constraints, the 

new overlapping scheme allows the backup copy of a task to overlap with its successors’ primary 

copies, thereby further reducing schedule length. Based on a proposed reliability model, tasks are 

judiciously allocated to processors so as to maximize the reliability of heterogeneous systems. 

Additionally, times for detecting and handling of a permanent fault are incorporated into the 

scheduling scheme. We have performed experiments using synthetic workloads as well as a real 

world application. Simulation results show that compared with existing scheduling algorithms in the 

literature, our scheduling algorithm improves the reliability by up to 22.4% (with an average of 

16.4%) and achieves an improvement in performability, a measure that combines reliability and 

schedulability, by up to 421.9% (with an average of  49.3%). 

Keywords: Real-time tasks, off-line scheduling, fault-tolerance, heterogeneous systems, precedence 
constraints, reliability, performability 

1    INTRODUCTION 
Heterogeneous  systems have been increasingly used for scientific and commercial applications, 

including real-time safety-critical applications, in which the system depends not only on the results of 
a computation, but also on the time instants at which these results become available. Examples of 
such applications include aircraft control systems, transportation systems and medical electronics. To 
obtain high performance for real-time heterogeneous systems, scheduling algorithms play an 
important role. While a scheduling algorithm maps real-time tasks to processors in a system such that 
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deadlines and response time requirements are met [29], the system must also guarantee its functional 
and timing correctness even in the presence of hardware and software faults, especially when the 
application is safety-critical. To address this important issue and to improve on some existing 

solutions in the literature, this study investigates a scheduling algorithm with which real-time tasks 
with precedence constraints can be statically scheduled to tolerate the failure of one processor in a 
heterogeneous system. 

In this paper we comprehensively address the issues of fault-tolerance, reliability, real-time, task 
precedence constraints, and heterogeneity. We propose an algorithm, referred to as eFRD (efficient 
Fault-tolerant Reliability Driven Algorithm), can tolerate one processor’s failures in a heterogeneous 
system with fully connected network. Failures considered in our study are of the fail-silent type, and 
the failures are detected after a fixed amount of time. To tolerate any one processor’s permanent 
failure, the algorithm uses a Primary/Backup technique [9][10][11][17][21] to allocate two copies of 
each task to different processors. Thus, the backup copy of a task executes if its primary copy fails 
due to the failure of its assigned processor. To improve the quality of the schedule, a backup copy is 
allowed to overlap with other backup copies on the same processor, as long as their corresponding 
primary copies are allocated to different processors [9][21]. As an added measure of fault-tolerance, 
the proposed algorithm also takes the reliability of the processors into account. Tasks are judiciously 
allocated to processors not only to reduce the schedule length, but also to improve the reliability as 
well. In addition, the time for detecting and handling of a permanent fault is incorporated into the 
scheduling scheme, thus making the algorithm more practical. Computational, communication and 
reliability heterogeneities are also taken into account in the algorithm, as explained in detail in later 
sections. Various algorithms studied in [1-11][13-29] share one or two features with eFRD, in terms 
of the assumed operational conditions, as explained in Section 2. However, eFRD is arguably the 
most comprehensive, in terms of the number of different scheduling issues addressed, and 
outperforms several quantitatively comparable algorithms in the literature. More specifically, 
extensive simulation studies carried out by the authors showed that the proposed algorithm 
significantly outperforms all three relevant and quantitatively comparable algorithms found in the 
literature, namely, FRCD [24], the one in [10][11], which we call FGLS (fault-tolerant greedy list 
scheduling), and the one in [21], called OV by the original authors of that paper.  

In the section that follows, related work in the literature is briefly reviewed to present a 
background for the proposed algorithm and to contrast eFRD with other algorithms to show its 
relevance, similarity, and uniqueness. The rest of the paper is organized as follows. Section 3 presents 
the system characteristics and quantitatively analyzes the reliability of a heterogeneous system. 
Section 4 describes the eFRD algorithm and the main principles behind it, including theorems used 
for presenting the algorithm. Performance evaluation is given in Section 5 where three main measures 
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of performance, namely, schedulability, reliability, and performability are described and used for 
performance assessment of eFRD in comparison with three relevant and quantitatively comparable 
algorithms. Finally, Section 6 concludes the paper by summarizing the main contributions of this 

paper and by commenting on future directions for this work. 

2    RELATED WORK 
 Fault-tolerance must be considered in the design of scheduling algorithms, because occurrences of 

faults are often unpredictable in computer systems [15][18]. Ahn et al. studied a delayed scheduling 
algorithm using a passive replica method [2]. Liberato et al. proposed a necessary and sufficient 
feasibility-check algorithm for fault-tolerant scheduling [16]. Bertossi et al. extended the well-known 
Rate-Monotonic First-Fit assignment algorithm. In their new algorithm, all task copies were 
considered by Rate-Monotonic priority order and assigned to the first processor in which they fit. 
Caccamo and Buttazzo developed an algorithm to schedule hybrid task sets consisting of firm and 
hard periodic tasks [6]. Both of the above algorithms assumed that the underlying system either is 
homogeneous or consists of a single processor. 

Scheduling algorithms fall into two major camps: static and dynamic scheduling. Static scheduling 
algorithms know task sets and their constraints a priori [37]. Ramaritham proposed a static algorithm 
for allocating and scheduling periodic tasks running in distributed systems [37]. Dynamic scheduling 
algorithms heavily rely on system current sate at the time of scheduling. Therefore, it is imperative 
for dynamic scheduling to leverage mechanisms to collect and analyze system states, which in turn 
exhibit extra overheads. Static scheduling algorithms, by contrast, can make scheduling decisions in a 
fast and efficient way. Although static scheduling algorithms may make poor decisions in dynamic 
environments, static algorithms are appealing for computing environments where task sets and 
constraints are known beforehand.    

The issue of scheduling on heterogeneous  systems has been studied and reported in the literature 
in recent years. These studies addressed various aspects of a complicated problem. Ranaweera and 
Agrawal developed a scalable scheduling scheme for heterogeneous systems [25]. In [8] and [28], 
reliability cost, defined to be the product of processor failure rate and task execution time, was 
incorporated into scheduling algorithms for tasks with precedence constraints. However, these 
algorithms neither provide fault-tolerance nor support real-time applications.  

Previous work has been done to facilitate real-time computing in heterogeneous systems. Huh et 
al. proposed a solution for the dynamic resource management problem in real-time heterogeneous 
systems. A probabilistic model for a client/server heterogeneous multimedia system was presented in 
[26]. These algorithms, however, also could not tolerate any permanent processor failures. 

While eFRD tolerates any one processor's permanent failure, the algorithm presented in [1], also a 

 
4

 
 
 



Parallel Computing, vol. 32, no. 5-6, pp. 331-356, June 2006.

 

real-time scheduling algorithm for tasks with precedence constraint, does not support fault-tolerance. 
eFRD schedules the backup copy to start after its primary copy’s scheduled execution time, thus 
avoiding unnecessary execution of the backup copy if the primary copy completes successfully. 

Dima et al. also devised an offline real-time and fault-tolerant scheduling algorithm to handle both 
processor and communication link failures [7]. However, this algorithm must execute the backup 
copy of a task simultaneously with its primary copy. 

Tasks considered in eFRD can either be confined by precedence constraints or be independent, and 
eFRD may be generalized to consider heterogeneous systems, where homogeneity is just a special 
case.  Manimaran et al. [17] and Mosse et al. [9] have proposed dynamic algorithms to schedule real-
time tasks with resource and fault-tolerance requirements on multiprocessor systems, but the tasks 
scheduled in their algorithms are independent of one another and are scheduled on-line. Martin [19] 
has devised an algorithm that assumed the same system and task model as in [9]. Oh and Son also 
studied a real-time and fault-tolerant scheduling algorithm that statically schedules a set of 
independent tasks, and can tolerate one processor’s permanent failure [21]. Two common features 
among these algorithms [9][16][18][20][21] are that (1) tasks considered are independent from one 
another and (2) they are designed only for homogeneous systems. Although heterogeneous systems 
are considered in both [28] and eFRD, the latter considers fault-tolerance and real-time tasks while 
the former does not consider either. 

There exist excellent studies in the arena of multi-criteria scheduling [41]. Fohler studied an 
adaptive fault-tolerate scheduling for real-time systems [38]. Dogan and Özgüner developed matching 
and scheduling algorithms for heterogeneous systems. Their algorithms account for execution time 
and reliability of applications [39]. Dynamic scheduling algorithms, however, have no complete 
knowledge pertinent to task sets and constraints. Girault et al. designed a static scheduling algorithm 
to automatically obtain distributed and fault-tolerant schedules [40]. Assayad et al. developed 
heuristic scheduling algorithm for distributed embedded systems. Their algorithm takes both 
reliability and real-time constraints into account [41]. In addition to the issue of multi-criteria, this 
study is focused on a novel overlapping scheme. 

Very recently, Girault et al. [10][11] have proposed a real-time scheduling algorithm (referred to 
as FGLS) for heterogeneous systems that considers fault-tolerance and tasks with precedence 
constraints. This study is by far the closest to eFRD that the authors have found in the literature. The 
main distinction between FGLS [10][11] and eFRD is four-fold. First, the former does not consider 
task deadlines explicitly, thus implying soft real-time systems, while eFRD considers hard real-time 
systems. Second, eFRD considers heterogeneity in computation, communication, and reliability while 
the former only considers computational heterogeneity. Third, the former does not consider reliability 
when scheduling tasks while eFRD is reliability-driven. Forth, the former allows the concurrent 
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execution of primary and backup copies of a task while eFRD allows backup copies of tasks whose 
primary copies are scheduled on different processors to overlap one another. Last, FGLS handles 
several failures, whereas eFRD tolerates only one processor’s failure at a time.  

In the authors’ previous work, both static [23][24] and dynamic [22] real-time scheduling schemes 
for heterogeneous systems were developed. One similarity among these algorithms is that the 
Reliability Driven Scheme is applied to the algorithms to enhance the reliability of the heterogeneous 
systems. With the exception of the FRCD (Fault-tolerant Reliability Cost Driven) algorithm [24], 
other algorithms proposed in [22] and [23] cannot tolerate any failure. In this paper, the FRCD 
algorithm [24] is extended by relaxing the requirement that backup copies of tasks be prohibited to 
overlap with one another.  

3    SYSTEM MODEL FOR RELIABILITY 
3.1. System Model 

In parallel and  systems, real-time jobs with dependent tasks can be modelled by Directed Acyclic 
Graphs (DAGs).  In this paper, a DAG is defined as T = {V, E}, where V = {v1, v2,...,vn} represents a 
set of real-time tasks that are assumed to be non-preemptable, and a set of weighted and directed 
edges E represents communication among tasks. (vi, vj)∈ E indicates a message transmitted from task 
vi to vj.  

When one processor in a  system fails, it takes a certain amount of time, denoted δ, to detect and 
handle the fault. To tolerate permanent faults in one processor, a primary-backup (PB) technique is 
applied in the proposed scheduling scheme. Thus, two copies of any task, denoted vP and vB, are 
executed sequentially on two different processors. Without loss of generality, we assume that primary 
and backup copies of a task are identical. It is worth noting that the proposed approach can also be 
used tolerate transient processor failures, because it is sufficient to deal with transient failures using 
the same fault-tolerant mechanism.  

A heterogeneous system considered in this study consists of a set P = {p1, p2,..., pm} of 
heterogeneous processors connected by a network. The network in our model provides full 
connectivity through either a physical link or a virtual link. This assumption is arguably reasonable 
for modern interconnection networks (e.g. Myrinet [35] and InfiniBand [36]) that are commonly used 
in heterogeneous systems. A processor communicates with other processors through message passing, 
and the communication time between two tasks assigned to the same processor is assumed to be zero. 
Note that the aspect of fault tolerance in networks is out the scope of this study. 

A measure of computational heterogeneity is modeled by a function, C:V×P→Z+, which represents 
the execution time of each task on each processor in the system. Thus, cij denotes the execution time 
of task vi on processor pj. A measure of communication heterogeneity is modeled by a function Γ: 
E×P×P→ Z+. Communication time for sending a message (vi, vj) ∈ E from task vi on pk to task vj on 
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pb is determined by wkb × eij, where eij is the volume of data and wkb is the weight on the edge between 
pk and pb, with wkb representing the delay involved in transmitting a message of unit length between 
the two processors. Given a task vi ∈ V, di, si and fi denote the deadline, scheduled start time, and 

finish time (fi = si + cij) of vi’s primary copy, whereas di
B, si

B and fi
B (fi

B
 = si

B + cij) represent those of 
vi’s backup copy, respectively. p(vi) denotes the processor to which vi is allocated. These parameters 
are subject to constraints: (1) si ≤ di - cij, where p(vi

P) = j, and (2) si
B

 ≤ di
B

 - cik, where p(vi
B) = k. A 

real-time job has a feasible schedule if for all v ∈ V, the above two constraints are satisfied.  
Let X be an m by n binary matrix corresponding to a schedule, in which the primary copies of n 

tasks are assigned to m processors. Element xij equals 1 if and only if vi’s primary copy has been 
assigned to processor pj; otherwise xij = 0. Likewise, let XB denote an m by n binary allocation matrix 
of backup copies, in which an element xB

ij is 1 if and only if the backup copy of vi has been assigned 
to pj; otherwise xB

ij equals 0. Therefore, we have  and . 1)( =⇔= ij
P
i xjvp 1)( =⇔= B

ij
B
i xjvp

EXAMPLE 1. Fig. 1 shows a task graph that consists of 6 tasks and a system with three processors. 
Two allocation matrices, X for primary copies and BX  for backup copies, are given below. Note that 
cij can be estimated by code profiling and statistical prediction [34].                
 
                                                       p1    p2  p3                                      p1    p2  p3                                                             
                                                        0    1    0     v1                               0    0    1      v1
                                                        1    0    0     v2                               0    0    1      v2

                                           X =       0    0    1     v3                BX  =     1    0    0      v3
                                                        1    0    0     v4                               0    0    1      v4
                                                        0    1    0     v5                               0    0    1      v5
                                                        0    0    1     v6                               1    0    0      v6 

 ((20,8,10),55) 

((10,22,7),70)
((6,18,8),72) 

((9,12,10),80) 

((12,24,10),115) 

e12 = 2 
v1

v2 v3

v4 v5

e56 = 1

e36 = 1 

e46 = 2 

e24 = 1 e25 = 2 

e15 = 1 

((12,8,10),75) 
w23 = w32=3 

w13 = w31=3 w12 = w21= 1 

e13 = 2 

p3 p2 

p1 

v6

 

 

 

 

 

 

Fig. 1 DAG task graph. Assume a 3-processor system and each real-time task is denoted by
vi = ((ci1, ci2, ci3,), di), where cij is the execution time of vi on pj, and di is the deadline. eij and wij

depict data volume and communication weight, respectively. 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.  
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Since many of the real-time systems operate in environments that are non-deterministic and even 
hazardous, it is necessary and important for systems to be fault-tolerant. To quantitatively evaluate 
the system’s level of fault-tolerance, a reliability model needs to be addressed, assuming that fault 

arrival rate is constant and the distribution of the fault-count for any fixed time interval is 
approximated using a Poisson probability distribution [12][27][28]. It is to be noted that the reliability 
function, derived below, helps in evaluating the performance of our scheduling in Section 5.   

 Though the derivation of reliability is similar to that of the reliability function presented in 
[12][27][28], we relax one unrealistic assumption imposed on the reliability models in [12][27][28]. 
The models in [12][27][28] assume that the processors in a  system are fault-free, implying that the 
reliability of the system when one processor fails is not considered. A major reason behind this 
assumption is that these models do not tolerate processor failures. To further enhance the reliability of 
the real-time system, we propose a model, on which the proposed eFRD algorithm is based. 

A k-timely-fault-tolerant (k-TFT) schedule [21] is defined as the schedule in which no task 
deadlines are missed, despite k arbitrary processor failures. In this paper, the scheduling goal is to 
achieve 1-TFT for processor failure by incorporating processor and task redundancy into the 
scheduling algorithm. 

The reliability of a processor  in time interval t is ip )exp( tiλ− , where iλ  (1 ≤ i ≤ m) is 's failure 
rate in a vector of failure rates Λ= (λ

ip
1, λ2, …, λm), with m being the number of processors in the 

system [27]. Likewise, the reliability of a link between pi and pj during the time interval t is 
)exp( tijµ− , where ijµ  is an element of Μ, an m by m matrix of failure rates for links. A processor 

might fail during an idle time, but it is assumed that processors’ failures during an idle time interval 
are not considered in our reliability model. The reason for this assumption is two-fold [12][27][28]. 
First, instead of affecting the system reliability, failures during an idle time merely affect the 
completion time of tasks. Second, a processor’s failure during an idle period can be fixed by replacing 
the failed processor with a spare unit, meaning that such failures are not critical for reliability 
analysis. 

The state of the system is represented by a random variable K which takes value in {0, 1, 2, …, m}. 
More precisely, K = 0 means that no processor permanently fails, and K = i (1 ≤ i ≤ m) signifies that 
the ith processor encounters permanent failures. The probability for K is determined by equation (1), 
where iτ  is the schedule length of processor i, or in other words, the latest of finish times among all 
primary copies of tasks assigned to processor i,  
            

 Pr[K = k]  = 

                                                                    for k = 0                                  (1)

 

[ ]∏
≠=

−−−
m

kii
iikk

,1

)exp()exp(1 τλτλ

∏
=

−
m

i
ii

1

)exp( τλ

otherwise
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It should be noted that the notion of reliability heterogeneity is implied in the variation of 
computation time and failure rate. Let R(Λ, Μ, X, XB, T) denote the system reliability for a given 
schedule X and XB, a set Λ of processors’ failure rates, a matrix Μ of failure rates for links, and a job 

T. The system reliability equals the probability that all tasks can be successfully completed even in 
the presence of one processor’s hardware and software faults. Under the assumption that no more 

than one processor permanently fails in the current system, that is, ∑ , it calls for the 

derivations of two kinds of reliabilities, namely: (1) , the reliability when every 
processor is operational, and (2)  the reliability when exactly the kth 

processor fails. Thus, the system reliability R(Λ,Μ, X, X

=

==
m

i
ik

0
1)Pr(

),,,(0 TXR ΜΛ
,0),,,,,( ≠ΜΛ kTXXR Bk

B, T) can be expressed as below: 

     [ ]∑
=

ΜΛ×=+ΜΛ×==ΜΛ
m

k

BkB TXXRkKTXRKTXXR
1

0 ),,,,()Pr(),,,()0Pr(),,,,( ,        (2) 

where is a product of processor reliability and link 
reliability . Hence, the system reliability when the kth processor fails can be 

written as: 

),,,,( TXXR Bk ΜΛ ),,,( TXXR Bk
PN Λ

),,,( TXXR Bk
LINK Μ

                    .                (3)  mkTXXRTXXRTXXR Bk
LINK

Bk
PN

Bk ≤≤Μ×Λ=ΜΛ 0),,,,(),,,(),,,,(

Before proceeding to derive the expression of the link reliability, we first consider the expressions 
for two reliability functions and , which are defined to be the 

product of all processors' reliabilities. Since the reliability of each processor p

),,,(0 TXXR B
PN Λ ),,,( TXXR Bk

PN Λ

j can be evaluated as: 

, 1 ≤ j ≤ m, the reliability and  are then determined by Equation (4) and (5)  ∏
=

−
n

i
ijijj cx

1

)exp( λ 0
PNR k

PNR

as follows,  

∏∏
= =

−=Λ
m

j

n

i
ijijjPN cxTXR

1 1

0 )exp(),,( λ ,                                                             (4)  

⎭
⎬
⎫

⎩
⎨
⎧

−×
⎭
⎬
⎫

⎩
⎨
⎧

−=Λ ∏ ∏∏ ∏
≠= =≠= =

m

kjj

n

i
ij

B
ijikj

m

kjj

n

i
ijijj

Bk
PN cxxcxTXXR

,1 1,1 1

)exp()exp(),,,( λλ           

                                     [ ]∏ ∏
≠= =

−×−=
m

kjj

n

i
ij

B
ijikjijijj cxxcx

,1 1

)exp()exp( λλ  

                                     [ ]∏ ∏
≠= =

+−=
m

kjj

n

i

B
ijikijijj xxxc

,1 1

)(exp λ , where 1 ≤ k ≤ m.                       (5) 

In Equation (5), the expression within the first pair of brackets on the right hand side of the first 
equal sign represents the probability that tasks, whose primary copies reside in fault-free processors, 
are operational during the course of execution. Similarly, the expression in the second pair of brackets 
is the probability that the backup copies of the tasks, whose primary copies reside on the failed 
processor, are operational during the execution of these backup copies. 
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EXAMPLE 2. Consider the task and processor graphs shown in Figure 1 as an example, where the 
schedule result is represented by X and XB illustrated in Example 1. Thus, we have: 
               1635241332112 ====== xxxxxx , , and, 1615343312313 ====== BBBBBB xxxxxx

               ( ) ( ) ( ))(exp)(exp)(exp),,( 633335212241211
0 ccccccTXRPN +−×+−×+−=Λ λλλ , 

( ) ( ))(exp)(exp),,,( 43236333352122
1 ccccccTXXR B
PN +++−×+−=Λ λλ  ,  

( ) ( ))(exp)(exp),,,( 53136333341211
2 ccccccTXXR B
PN +++−×+−=Λ λλ , 

( ) ( ))(exp)(exp),,,( 52122613141211
3 ccccccTXXR B
PN +−×+++−=Λ λλ . 

Before determining , a link reliability when every processor is operational, we 
derive a probability  that the link between p

),,(0 TXRLINK Μ
),,( TXRkb Μ k and pb is operational during the transmission 

of messages through this link. The set of all messages transmitted from pk to pb is defined as below: 
                   { }110),( =∧=∧>= jbikijjikb xxevvE , ∀1 ≤ k, b, q ≤ m: k ≠ b, k ≠ q, and b ≠ q. 

where eij > 0 signifies that a message is sent from vi  to vj, xik = 1 means that the primary copy of vi is 
assigned to pk, and xjb = 1 indicates that the primary copy of vj is assigned to pb. The reliability of the 
message (vi, vj) ∈ Ekb  is the probability that the link connecting pk and pb is operational during the 
time interval  when the message is being transmitted. Hence, message (vijkbew i, vj)’s reliability can be 
calculated as: )exp( ijkbjbikkb ewxxµ− )exp( ijkbkb ewµ−= . 
 Based on the definition of message reliability, ),,( TXRkb Μ can be expressed as the product of the 
reliabilities of all messages that belong to set Ekb. More precisely, ),,( TXRkb Μ is obtained as: 

[ ]∏ ∏ ∏
= ≠= ∈

−=−=Μ
n

i

n

ijj Evv
ijkbkbijkbjbikkbkb

kbj

ewewxxTXR
1 ,1 ),( ,

)exp()(exp),,( µµ .                (6) 

 ) is determined as a product of all links’ reliabilities, and therefore we have,  ,,(0 TXRLINK Μ

∏ ∏
= ≠=

Μ=Μ
m

k

m

kbb
kbLINK TXRTXR

1 ,1

0 ),,(),,( .                       (7) 

EXAMPLE 3. Again, given a heterogenous system illustrated in Example 1, where ,12112 == ww  
and , we have 33113 == ww 33223 == ww === 1321215212 )},,{()},,{( EvvEvvE  ),,{()},,{( 312364 vvEvv =    

and, . )},( 65 vv ( ))(3exp)3exp()exp()exp(),,( 561323461312212512
0 eeeeeTXRLINK +−×−×−×−=Μ µµµµ

Similar to the reliability function of  calls for the derivation of link reliability 
, which is a probability that the link between p

0
LINKR , q

LINKR
),,( TXRq

kb Μ k and pb is operational when exactly the qth 
processor fails under a schedule X. Before proceeding to derive the expression of , we 

define two sets of messages that have to be transmitted if p

),,( TXRq
kb Μ

q encounters permament failures:   
                               { }1110),( =∧=∧=∧>= B

jbjqikijji
q
kb xxxevvE , 

                              { }11110),( =∧=∧=∧=∧>=′ B
jbjq

B
ikiqijji

q
kb xxxxevvE , 

                                          ∀1 ≤ k, b, q ≤ m: k ≠ b, k ≠ q, and b ≠ q. 
q
kbE  implies that, if , the primary copy of vq

kbji Evv ∈),( i is assigned to pk, the primary and backup 
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copies of vj are assigned to pq and pb respectively, then this message must be shipped from vi’s 
primary copy to vj’s backup copy due to pq’s failure. Similarly,  indicates that, if , 

the primary copies of v

q
kbE ′ q

kbji Evv ′∈),(

i and vj are both assigned to pq, whereas  the backup copies of vi and vj are 
assigned to pk and pb, respectively, forcing the message to be sent from the backup copy of vi to that 
of  vj (i.e., through the link between pk and pb). 
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Since denotes the reliability of all links when processor p),,,( TXXR Bq
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permanent failures, it can be written as the following expression: 
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We are now in a position to derive the expression for the system reliability R(Λ, Μ, X, XB, T) by 
substituting (4), (5), (7) and (9) into (2). Thus, the system reliability can be caculated as: 

+⎥
⎦

⎤
⎢
⎣

⎡
Μ⎥

⎦

⎤
⎢
⎣

⎡
−×==ΜΛ ∏ ∏∏∏

= ≠== =

m

k

n

kbb
kb

m

j
ijij

n

i
j

B TXRcxKTXXR
1 ,11 1

),,()exp()0Pr(),,,,( λ            

        .   (10) ∑ ∏ ∏∏ ∏
= ≠= ≠≠=≠= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
Μ⎥

⎦

⎤
⎢
⎣

⎡
+−×=

m

q

m

qkk

m

qbkbb

Bq
kb

m

kjj

n

i

B
ijikijijj TXXRxxxcqK

1 ,1 ,,1,1

),,,()(exp()Pr( λ

 
11

 
 
 



Parallel Computing, vol. 32, no. 5-6, pp. 331-356, June 2006.

 

4 SCHEDULING ALGORITHMS 

In this section, we present eFRD, an efficient fault-tolerant, reliability-cost driven scheduling 
algorithm for real-time tasks with precedence constraints in a heterogeneous system. 

This algorithm schedules real-time jobs with dependent tasks at compile time, by allocating 
primary and backup copies of tasks to processors in such a way that: (1) Total schedule length is 
reduced so that more tasks can complete before their deadlines; (2) Permanent failures in one 
processor can be tolerated; and (3) The system reliability is enhanced by assigning tasks to processors 
that provide high reliability.  

4.1   An Outline 
It is assumed in the system model (Section 3) that at most one processor encounters permanent 

failures. The key for tolerating permanent failures in a single processor is to allocate the primary and 
backup copies of a task to two different processors such that the backup copy subsequently executes 
if the primary copy fails to complete. This approach referred to as Primary/Backup technique has 
been extensively studied in the literature [9,10,21]. The Primary/Backup techniques presented in 
[9][10][21] are developed for real-time systems where tasks are independent from one another, 
meaning that there are no precedence constraints and the backup copy of a task executes if and only if 
its primary copy fails. However, the above condition for backup copies’ execution has to be extended 
to meet the needs of tasks with precedence constraints. More precisely, given a task vj, then there are 
two cases in which vj

P may fail to execute: (1) a fault occurs on p(vj
P) before time finish fj, and (2) 

p(vj
P) is operational before fj, but vj

P  fails to receive messages from all its predecessors. Case (2) is 
illustrated by a simple example in Fig. 2 where dotted lines denote messages sent from predecessors 
to successors. Let vi be a predecessor of vj, and p(vi) ≠ p(vj). Suppose p(vi

P) fails before fi, then vi
B 

should execute. Since vj
P cannot receive a message from vi

B, vj
P still can not execute even if p(vj

P) is 
operational. The primary copy of a task that never 
encounters case (2) is referred to as a strong 
primary copy, as formally defined in Def. 1. Thus, 
a task v has a strong primary if the primary and 
backup tasks of all v’s predecessors are scheduled 
to finish earlier than the start time of vP (accounting 
for communication time) and thus the vP can 
receive all the messages of its predecessors. 

DEFINITION 1. Given a task v, vP is a strong primary copy, if and only if the execution of vB implies 
the failure of p(vP) before time f.  

It is of critical importance to determine whether a task has a strong primary copy. It is 
straightforward to prove that a task without any predecessor has a strong primary copy. Based on this 

vi
B

vj
P

vj
B

vi
P

Fig. 2 Since processor p1 fails, vi
B  executes.

Because vj
P can not receive message from vi

B,
vj

B must execute instead of vj
P. 

time

p3

p2

p4

p1
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fact, Theorem 1, below, suggests an approach to determine whether a task with predecessors has a 
strong primary copy. In this approach, we assume that we already know if all the predecessors have 
strong primary copies or not. By using this approach recursively, starting from tasks with no 

predecessors, we are able to determine whether a given task has a strong primary copy. To facilitate 
the description and proof of Theorem 1-5, which are used in the eFRD algorithm, we need to further 
introduce the following definitions. 
DEFINITION  2.  vi is schedule-preceding vj, if and only if sj ≥ fi. 
DEFINITION 3. vi is message-preceding vj, if and only if vi sends a message to vj. Note that vi is 
message-preceding vj implies that vi is schedule-preceding vj, but not inversely. 
DEFINITION 4. vi is execution-preceding vj, if and only if both tasks execute and  vi is message-
preceding  vj. Note that vi is execution-preceding vj implies that vi is both message-preceding and 
schedule-preceding vj, but not inversely. 
THEOREM 1. (a) A task with no predecessors has a strong primary copy. (b) Given a task vi and any of 
its predecessors vj , if they are allocated to the same processor and vj has a strong primary copy, or, if 
they are allocated on two different processors and the backup copy of vj is schedule-preceding the 
primary copy of vi ,  then vi   has a strong primary copy. That is, ∀vj∈V, (vj, vi) ∈ E’: ((p(vi

P) = p(vj
P) ∧ 

(vj
P

 is a strong primary copy)) ∨ (p(vi
P) ≠ p(vj

P) ∧ (vj
B  is message-preceding vi

P)) ⇒ (vi
P is a strong 

primary copy). 
PROOF. As the proof of (a) is straightforward from the definition, it is omitted here. We only prove 
(b). Suppose p(vi

P) is operational before fi. There are two possibilities: (1) p(vi
P) = p(vj

P), we have fj < 
fi, implying that p(vj

P) does not fail before fj. Because vj
P is a strong primary copy, vj

P must execute. 
(2) p(vi

P) ≠ p(vj
P) and vj

B is message-preceding vi
P , implying that even if one processor fails, vi

P can 
still receive message from task vj. Based on (1) and (2), we have proven that vi

P can receive messages 
from all its predecessors. In other words, vi

P must execute since p(vj
P) is operational by time fi. 

Therefore, according to Definition 1, vi
P is a strong primary copy. �  

In the eFRD algorithm, if the backup copies of task vi and vj are allowed to overlap with each other 
on the same processor, then three conditions are held, namely, (1) the corresponding primary copies 
are allocated to the different processors; (2) vi and vj are independent with each other; and (3) the 
primary copies of vi and vj are strong primary copies. This argument is formally described as the 
following proposition, 
Proposition  1. ( ) ( ) ( )( ) ⇒<≤∨<≤∧=∈∀ B

j
B
i

B
j

B
i

B
j

B
i

B
j

B
iji fssfssvpvpVvv )()(:, ∧≠ )()( P

j
P
i vpvp  

copyprimarystrongaisvcopyprimarystrongaisvEvvEvv P
j

P
iijji ∧∧′∉∧′∉ ),(),( , where E ′  is a 

set of precedence constraints, which is defined as: given two tasks and , then iv jv Evv ji ′∈),(  if and 
only if: (1) , or (2) there exists a task , such that  and Evv ji ∈),( kv Evv ki ′∈),( Evv jk ′∈),( . 
Therefore, and are independent (or concurrent), if and only if neither iv jv Evv ji ′∉),( , nor 
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Evv ij ′∉),(
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Fig. 3 shows an example illustrating this case. In this example, we assume that vi and vj are 
independent, vi

P and vj
P are strong primary copies, and vi and vj, are allocated to p1 and p3, 

respectively. The two backup copies of these two tasks can be overlapped with each other on p2 
because at most one of them will ever execute in the single-processor failure model. 

However, if vi and vj in the above example are dependent upon one another, the overlapping 
between vi

B and vj
B will be prohibited. More strictly, even though vi

B and vj
B are scheduled on 

different processors, they still are not allowed to overlap in time with each other. This statement is 
formalized in Proposition 2. 

PROPOSITION  2.  If vi and vj are dependent upon one another, the overlapping between vi
B and vj

B are 
prohibited. Thus, ( ) ( )B

j
B
i

B
j

B
i

B
j

B
ijiji fssfssEvvVvv <≤¬∧<≤¬⇒′∈∈∀ ),(:, . 

PROOF. Assume  and  can be overlapped in time with one another, which means  will not 

execute if  begins running, because the message cannot be transferred from  to . If a fault 

occurs on before ,  has to execute, implying that  will not execute. Neither can  

successfully execute, since it is incapable of obtaining the message from either  or . Therefore, 
task  is unable to be successfully completed. This means that the assumption is incorrect, which 

completes the proof for this proposition. � 

B
iv B

jv B
jv

B
iv B

iv B
jv

)( P
ivp if B

iv B
jv P

jv
P
iv B

iv

iv

The above proposition shows that the positive effects yielded from the backup-overlapping scheme 
(BOV) are lessened by the vast majority of tasks that have precedence constraints. To eliminate this 
limitation, we propose an alternative overlapping scheme for tasks with precedence constraints. The 
overlapping scheme is formally presented as Proposition 3 (Fig. 4 shows this scenario). Please note 
that the backup of vj should not be scheduled on p1, and the proof can be found in Theorem 3. 
Proposition  3. Given two tasks and , if iv jv Evv ji ′∈),( , then vi

B and vj
P are allowed to overlap with 

each other on the same processor. Thus,  
⇒′∈∈∀ EvvVvv jiji ),(:, B

iv  and  are allowed to overlap with each other on the same processor. P
jv

PROOF. This argument is proved by considering the following three cases in which a failure occurs: 
(1) p1 has failed before . In this case, vif i

B and vj
B will be guaranteed to complete on p2 and p3, 

vi
P

vj
P

vj
Bvj

B

time

overlap p3 

p2 

p1 

Fig. 3 Primary copies of vi and vj are allocated to
p1 and p3, respectively, and backup copies of vi
and vj are both allocated to p2. These two backup
copies can be overlapped with each other. 

p1

p2 

p3 

vi
Bvj

P

vj
B

overlap 

timevi
P

Fig. 4 (vi, vj) ∈ E’, then vi
B and vj

P are allowed
to overlap with each other on the same
processor. 
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respectively. (2) A fault occurs on p2 before . In this case, vjf i
P and vj

B will successfully execute on 

p1 and p3, respectively. (3) A fault occurs on p3 at an arbitrary time. In this case, the failure of p3 
presents no adverse effects on vi

P and vj
P, which will be successfully executing on p1 and p2. All 

cases ensure that at most one of vi
B and vj

P will execute in the presence of a fault, implying that these 
two copies can be overlapped with each other on the same processor. � 

The algorithm schedules tasks in the following three main steps. First, real-time tasks are ordered 
by their deadlines in non-decreasing order, such that tasks with tighter deadlines have higher priorities. 
Second, the primary copies are scheduled to satisfy the precedence constraints, to reduce the schedule 
length, and to improve the overall reliability. Finally, the backup copies are scheduled in a similar 
manner as the primary copies, except that they may be overlapped on the same processors to further 
reduce schedule length.  More specifically, in the second and third steps, the scheduling of each task 
must satisfy the following three conditions: (1) its deadline should be met; (2) the processor allocation 
should lead to the maximum increase in overall reliability among all processors satisfying condition 
(1); and (3) it should be able to receive messages from all its predecessors. In addition to these 
conditions, each backup copy has two extra conditions to satisfy, namely, (i) it is allocated on the 
processor that is different than the one assigned for its primary copy, and (ii) it is allowed to overlap 
with other backup copies on the same processor if their primary copies are allocated to different 
processors. Condition (i) and (ii) can also be formally described by Proposition 4, where δ is the fault 
detection time measured by the time interval between the moment a failure occurs and the moment 
the failure is detected. Individual processor’s failure can be detected by various mechanisms 
including adoption of suitable self-checking [32] and periodic testing [33].  

PROPOSITION 4. A schedule is 1-TFT → ( ) ( )δ+≥∧≠∈∀ i
B
i

BP
i fsvpvpVv )()(: ∧ vi

B can overlap 
with other backup copies on the same processor if their primary copies are allocated to different 
processors. 

Table 1. Definitions of Notation 
NOTATION                                         DEFINITION 
D(v) Set of predecessors of task v. D(v) = {vi | (vi, v) ∈ E} 
S(v) Set of successors of task v, S(v) = {vi | (v, vi) ∈ E} 
F(v) Set of feasible processors to which vB can be allocated, determined in part by Theorem 3.  
B(v) Set of predecessors of v’s backup copy, determined by Expression (14). 
VQi VQi = {v1, v2, …, vq} is a queue in which all tasks are scheduled to pi,  sq+1 = ∞, and f0 = 0 
VQi’(v) Queue in which all tasks are scheduled to pi, and cannot overlap with the backup copy of task v, 

where sq+1 = ∞, and f0 = 0 
EATi(v, vj) Earliest available time for the primary or backup copy of task v if message e sent from vj∈ D(v) 

represents the only precedence constraint. 
EATi

P(v)  Earliest EATi time of v’s primary copy on pi  
EATi

B(v) Earliest EATi time of v’s backup copy on pi
ESTi

P(v)  Earliest start time for the primary copy of v on processor pi.  
ESTi

B(v) Earliest start time for the backup copy of v on processor pi.  
ESTP(v)  Earliest EST time of v’s primary copy  
ESTB(v) Earliest EST time of v’s backup copy  
MSTik(e) Start time of message e sent from pi to pk. 
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In the subsection that follows, the eFRD algorithm is presented, along with some key properties of 
and relationships between tasks and their primary and backup copies. 
4.2 The eFRD Algorithm  

To facilitate the presentation of the algorithm, some of the conditions listed above, (1)-(3) and (i)-
(ii), and other necessary notations and properties are listed in Table 1. 

In Table 1, EATi
P(v) is the earliest available time on processor pi for the primary copy of task v, 

taking into account the time for it to receive messages from all its predecessors. Similarly, EATi
B(v) 

denotes the earliest available time on processor Pi for the backup copy of task v. ESTP(v), determined 
by the minimal value of ESTi

P(v) for all pi ∈ P, is the earliest start time for the primary copy of task v. 
ESTB(v) is the earliest start time for the backup copy of task v, and is equal to the minimal value of 
ESTi

B(v) over all Pi ∈ P . Formulas for computing these values for a given DAG and heterogeneous  
system are given among expressions (11) through (16), presented later in the section. F(v) can be 
determined based on the restriction that primary and backup copies of a task cannot be allocated to 
the same processor and on Theorem 3 which is presented later in this section.  

A detailed pseudocode of the eFRD algorithm, accompanied by explanations, is presented below.   
The eFRD Algorithm: 
1. Sort tasks by the deadlines in non-decreasing order, subject to precedence constraints, and put them in a list OL; 
    for each processor pi do VQi ← ∅; 
2. for each task vk in OL, following the order, schedule the primary copy vk

P do /* Schedule primary copies */ 
      2.1 s(vk

P) ← ∞; r ← 0;  
      2.2 for each processor pi do        /* Determine whether task v should be  allocated to processor pi */    
          2.2.1 Calculate EATP

i(vk), the earliest available time of vk
P on  pi; 

    2.2.2 Compute ESTP
i(v), the earliest start time of vP on  pi;  

          2.2.3 if  vk
P starts executing at ESTP

i(vk) and can be completed before dk then /* Determine the earliest ESTi */ 
                  Determine rk, processor and link reliability of vk

P on pi;                  
     if ((ri > r) or (ri = r and ESTP

i(vk)< s(vk
P)))  then  Assign start time and reliability;  

           end for
      2.3 if no proper processor is available for vk

P, then return(FAIL); 
      2.4 Assign p to vk, where the reliability of vP on p is the maximal; VQp ← VQp  + vk

P; 

      2.5 Update information of messages; 
    end for                                                                                   
3. for each task vk in the ordered list OL, schedule the backup copy vk

B do  /*Schedule backup copies of tasks */ 
  3.1  s(vk

B) ← ∞; r ← 0; 
     /* Determine whether the backup copy of task vk should be  allocated to processor pi */     
3.2 for each feasible processor pi ∈ F(vk) , subject to Proposition 4 and Theorem 3, do    

       3.2.1 Calculate EATB
i(vk), the earliest available time of vk

B on  pi; 
 3.2.2 Identify backup copies already scheduled on pi that can overlap with vk

B, subject to Proposition 1, 2 and 3; 
 3.2.3 Determine whether vk

P is a strong primary copy (using Theorem 1); 
       3.2.4 for (all vj  in task queue VQi’(vk)) do  /*check if the unoccupied time intervals, interspersed by currently */ 
                 scheduled tasks, and time slots occupied by backup copies that can overlap with vB ;  
       3.2.5 if  vk starts executing at ESTB

i(vk) and can be completed before dk  then   /* Determine the earliest ESTi */               
                 Determine rk, processor and link reliability of vk

B on pi;                       
       if ((ri > r) or (ri = r and ESTB

i(vk) < s’k)) then Assign start time and reliability; 
              end for                                                                  
    3.3 if no proper processor is available vk

B, then return(FAIL); 
    3.4 Find and assign p∈ F(vk)  to vk, where the reliability of vk

B on p is the maximal; VQp ← VQp  + vk
B; 

    3.5 Update information of messages; 
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    3.6 Based on Theorem 2, 4, and 5, redundant messages are avoided; 
     end for 
return (SUCCEED); 

Step 1 takes O(|V|log|V|) time to sort tasks in non-decreasing order of deadlines. It takes O(|E|) 
time in Step 2.2.1 to compute EATi

P(v), and it also takes O(|V|) time in Step 2.2.2 to compute 
ESTi

P(v). Since there are O(|V|) tasks in the ordered list and O(m) candidate processors, the time 
complexity of Step 2 is bounded by O(|V|m(|E|+|V|)). Similarly, Step 3 also takes O(|V|m(|E|+|V|)) 
to schedule the backup copies of the task graph. Therefore, the time complexity associated with the 
eFRD algorithm is O(|V|m(|E|+|V|)), indicating that eFRD is a polynomial algorithm. 

4.3 The Principles 
 The above algorithm relies on the values of two important parameters, namely, EST(v), the 
earliest start time for task v, and EAT(v), the earliest available time for task v, to determine a proper 
schedule for the primary and backup copies of a given task v. The difference between EAT and EST is 
that while both indicate a time when task v’s precedence constraint has been met (i.e. all messages 
from v’s predecessors have arrived), EST additionally signifies that the processor p(v) (to which v is 
allocated) is now available for v to start execution. In other words, EST(v) ≥ EAT(v), since at time 
EAT(v) processor p(v) may not be available for v to execute.  In the following, we present a series of 
derivations that lead to the final expressions for EAT(v)  and EST(v). 
    If task v had only one predecessor task vj

P/B, then the earliest available time EATi(vP/B, vj
P/B) for the 

primary/backup copy of task v depends on the finish time f(vj
P/B) of vj ∈D(v), the message start time, 

MSTik(e), and the transmission time, wik*|e|, for message e sent from vj to v, where pk is the processor 
to which task vj has been allocated. Thus, EATi(v, vj) is given by the following expression, where 
MSTik(e) is determined by an algorithm presented later in this section. Note that if both the tasks are 
scheduled on the same node, then the communication cost is negligible. 

                       EATi(vP/B, vj
P/B) =    f(vj

P/B)                          if pi = pk                         

                               MSTik(e) + wik*|e|      otherwise.              (11) 
Now consider all predecessors of v. Clearly v must wait until the last message from all its 

predecessors has arrived. Thus the earliest available time for the primary copy of v, EATi
P(v) is the 

maximum of EATi(vP, vj
P) over all its predecessors.  

                    .                       (12) )},({)( )(
P

j
P

ivDv
P

i vvEATMAXvEAT
j∈

=

Based on expression (12), the earliest start time ESTi
P(v) on pi can be computed by checking the 

queue VQi to find out if the processor has an idle time slot that starts later than task’s EATi
P(v) and is 

large enough to accommodate the task. This procedure is described in Step 2.2.2 in the algorithm. 
ESTi

P(v) is an important parameter used to derive ESTP(v), which denotes the earliest start time for the 
primary copy of task v on any processor. An expression for ESTP(v) is given below.        

                .                  (13) )}({)( vESTMINvEST P
iPp

P
i∈

=
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ESTB(v), the earliest start time for the backup copy of task v, is computed in a more complex way 
than ESTP(v). For EATi

B(v), the earliest available time for the backup copy of v, the derivation for its 
expression is more involved than that of EATi

B(v).  This is because the set of predecessors of v’s 
primary copy, DP(v), contains exclusively the primary copies of v’s predecessor tasks, whereas the set 
of predecessors of v’s backup copy, B(v), may contain a certain combination of the primary and 
backup copies of v’s predecessor tasks.  

Strong primary copy and the above relationships among tasks are fundamental concepts used in 
Theorem 2, which is helpful in determining the set of 
predecessors for a backup copy. Based on the 
assumption that at most one processor in the system will 
encounter permanent failure, we observe that, if vi is a 
predecessor of vj and both tasks have strong primary 
copies, then the backup copy of vi is not message-
preceding the backup copy of vj. Fig. 5 illustrates a 
scenario of the case, which is presented formally in the 
theorem below. 
THEOREM 2. Given two tasks vi and vj, vi is a predecessor of vj. vi

B is not message-preceding vj
B , 

meaning that vi
B does not need to send message to vj

B , if vi
P and vj

P are both strong primary copies, 
and p(vi

P) ≠ p(vj
P), then the backup copy of vi is not message-preceding the backup copy of vj. 

PROOF. Since vi
P and vj

P are both strong primary copies, according to Definition 1, vi
B and vj

B can 
both execute if and only if both vi

P and vj
P have failed to execute due to processor failures. But vi

P and 
vj

P are allocated to two different processors, an impossibility. Thus, at least one of vi
B and vj

B will not 
execute, implying that no messages need to be sent from vi

B to vj
B. � 

Let B(v) ⊂ V be the set of predecessors of vB. It is defined as follows. 
       B(v) = { vi

P  | vi ∈ D(v)} ∪  {vi 
B | vi∈ D(v) ∧ ( vi

P is not a strong primary copy ∨   
                         vP is not a strong primary copy ∨  p(vi

P) = p(vP))} =DP(v) ∪  DB(v)        (14) 
In the proposed scheduling algorithm, the primary copy of a task is allocated before its 

corresponding backup copy is scheduled. Hence, given a task v and its predecessor vi ∈ D(v), the 
primary and backup copies of vi  should have been allocated when the algorithm starts scheduling vB. 
Obviously, vB must receive message from vi

P. In addition, vB also needs to receive message from vi
B, 

for all vi
B∈ DB(v). Therefore, the maximum earliest available time of vB on pi is determined by the 

primary copies of its predecessors, the backup copies of tasks in DB(v) and messages sent from these 
tasks. EATi

B(v) is given in the expression below, where δ is the fault detection time. 
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Fig. 5 (vi, vj) ∈ E, vi
P and vj

P are both strong
primary copies, and vi

P and vj
P are

scheduled on two different processors. vi
B

is not messaging-preceding vj
B. 
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ESTi
B(v) and ESTB(v) denote the earliest start time for the backup copy of v on pi, and the earliest 

start time for the backup copy of task v on any processor, respectively. The computation of ESTi
B(v) is 

more complex than that of ESTi
P(v), due to the need to judiciously overlap some backup copies on 

the same processor. The computation of ESTi
B(v) can be found from step 3.2.4 in the above algorithm. 

In the eFRD algorithm, the BOV scheme is implemented in step 3.2, which attempts to reduce 
schedule length by selectively overlapping backup copies of tasks. The expression for ESTB(v) is 
given below,  

                    { })()( )( vESTMINvEST B
ivFp

B
i∈

=                         (16) 

 

 

 

 

 

 

Unlike expression (13) for ESTP(v), the candidate processor pi in (16) is not chosen directly from 
the set P. Instead, it is selected from F(v), a set of feasible processors to which the backup copy of v 
can be allocated. Obviously, p(vP) is not an element of F(v). Furthermore, given a task v, it is 
observed that under some special circumstances described below, vB cannot be scheduled on the 
processor where the primary copy of v's predecessor vi

P is scheduled (Fig. 6 illustrates this scenario). 
The set F(v) can be generated with help of Theorem 3. 
Theorem 3. Given two tasks vi and vj, (vi, vj)∈ E, if vi

B is not schedule-preceding vj
P, then vj

B and vi
P 

can not be allocated to the same processor. 
PROOF. Suppose p(vi

P) has failed before time fi, and vi
B executes instead of vi

P. Thus, either vi
B is 

execution-preceding vj
P or vi

B is execution-preceding vj
B. But vi

B cannot be execution-preceding vj
P, 

since vi
B is not schedule-preceding vj

P. Hence, vi
B must be execution-preceding vj

B. This implies that 
vj

B executes on a processor, which is operational before fj
B. Since a fault occurs on p(vi

P) before fj
B,  

vj
B  is not scheduled on p(vi

P), thus, p(vj
B) ≠ p(vi

P). � 
 Recall that EATi(v, vj) in expression (11) is a basic parameter used to derive EATi

P(v) in 
expression (12) and EATi

B(v) in expression (12). EATi(v, vj) is determined by the start time MSTik(e) 
of message e sent from pi = p(v) to pk = p(vj). MSTik(e) depends on how the message is routed and 
scheduled on the links. Thus, a message is allocated to a link if the link has an idle time slot that is 
later than the sender’s finish time and is large enough to accommodate the message. MSTik(e) is 
computed by the following procedure, where e = (vj, v), MST(er+1) = ∞, MST(e0) = 0, |e0| = 0, and 

vi
B

vj
B

p1

p2

timevi
P

vj
P

p3

Fig. 7 vi is the predecessor of vj, vi
P and vj

P are
scheduled on the same processor, and vi

P is
the strong primary copy. In this case, vi

B is not
execution-preceding vj

P. 
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p3 

time vj
B
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P

Fig. 6 (vi, vj) ∈ E, vi
B,is not schedule-preceding

vj
P and vi

P is a strong primary copy. vj
B can

not be scheduled on the processor on which
vi

P is scheduled. 
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MQi = {e1, e2, …, er} is the message queue containing all messages scheduled to the link from pi to pk. 
This procedure behaves in a similar manner as the previous procedure for computing the earliest start 
time of a task. 

Computation of MSTik(e): 
1. for (g = 0 to r + 1) do /* Check whether the idle time slots */ 
2.     if MSTik(eg+1) - MAX{MSTik(eg) + wik*|eg|, f(vj)} ≥  wik*|e|  then /* If the idle time slots  
3.            return MSTik(eg) + wik*|eg|, f(vj);                          /* can accommodate v, return the value */ 
4.   end for
5.   return ∞; /* No such idle time slots is found, MST is set to be ∞ */  

 In scheduling messages, the proposed algorithm tries to avoid sending redundant messages in step 
3.6, which is based on the following theorem. This scheme enhances the performance by consuming 
less communication resources. Suppose vj

P has successfully executed, either vi
P is execution-

preceding vj
P or vi

B is execution-preceding vj
P. We observe that, in a special case illustrated in Fig 7, 

vi
B will never be execution-preceding vj

P. This statement is described and proved in Theorem 4. 
THEOREM 4. Given two tasks vi and vj, (vi, vj)∈ E, if the primary copies of vi and vj are allocated to 
the same processor and vi

P is a strong primary copy, then vi
B is not execution-preceding vj

P, meaning 
that sending a message from vi

B to vj
P would be redundant. 

PROOF. By contradiction: Assume vi
B is execution-preceding vj

P, thus, both vi
B  and vj

P must execute 
(Def. 4). Since vi

P is a strong primary copy, processor p(vi
P) must have failed before time fi (Def. 1). 

But vi
P and vj

P are allocated to the same processor and vi
P is schedule-preceding vj

P, implying that vj
P 

also could not execute. A contradiction.  � 
Additionally, we identify another enlightening 

principle, based on which redundant messages can be 
eliminated. Fig. 8 shows a scenario that there is no 
need for a message to be delivered from vi

P to vj
B. 

The rationale behind this case is proved in the 
following theorem. It is assumed that if p1 fails 
during the execution of vj

P, vi
B will have to be 

executed to send a message to vj
B. 

THEOREM 5 Given two tasks vi and vj, (vi, vj)∈ E, if the primary copies of vi and vj are allocated to the 
same processor, vj

P is a strong primary copy, and vj
P is schedule-preceding vi

B, then vi
P is not 

message-preceding vj
B, indicating that a message from vi

P to vj
B is not required. 

PROOF. Suppose vj
B is executed. We know that processor p(vj

P) must have failed before fj due to the 
nature of strong primary copy of vj (Def. 1). Since vi

P is assigned to p(vj
P), vi

P is unable to 
successfully execute if p(vj

P) has failed before fj, otherwise vi
P might have been completed. In this 

case, vi
B takes an opportunity to start executing, because vi

B’s start time is later than the finish time of 

vi
B

vj
B

Fig. 8 vi is the predecessor of vj, vi
P and vj

P are
scheduled on the same processor, vi

P is the
strong primary copy, vj

P is schedule-preceding
vi

B.  Hence, vi
B is not message-preceding vj

P. 
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p2
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P vj

P time
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vi
P and vj

P (vj
P is schedule-preceding vi

B). Thus, it is guaranteed that vj
B can receive a message from vi

B 
when p(vj

P) fails, making a message sent from vi
P to vj

B redundant.   � 

5    PERFORMANCE EVALUATION 
In this section, we compare the performance of the proposed algorithm with three existing real-

time fault-tolerant scheduling algorithms in the literature, namely, OV [21], FGLS [10][11], and 
FRCD[24] by extensive simulations. For the purpose of comparison, we also simulated a non fault-
tolerant real-time scheduling algorithm (referred to as NFT hereafter) that is unable to tolerate any 
failure. In this study, we considered a real world application in addition to synthetic workloads. 

Three performance measures are used to capture three important but different aspects of real-time 
and fault-tolerant scheduling. The first measure is schedulability (SC), defined to be the percentage of 
parallel real-time jobs that have been successfully scheduled among all submitted jobs, which 
measures an algorithm’s ability to find a feasible schedule. The second is reliability, defined in 
expression (2), which describes the reliability of a feasible schedule. Reflecting the combined 
performance of the first two measures, the third measure, performability (PF), is defined to be a 
product of schedulability and reliability. Formally, 

   SC = Number of jobs with feasible schedules /Total number of submitted jobs         (17) 
     PF(Λ, Μ, X, XB,T) = R(Λ, Μ, X,XB,T) × SC                                              (18) 

 In the following discussions, performability serves as a single scalar metric that measures the 
overall performance of a real-time heterogeneous system. 

Recall that while the four algorithms to be compared share some features such as being fault-
tolerant and static, they differ in some other aspects such as task dependence and heterogeneity. OV 
assumes independent tasks and homogeneous systems, whereas FRCD, eFRD and FGLS consider 
tasks with precedence constraints that execute on heterogeneous systems. Since FGLS is developed 
for  systems where the communication link is single bus, the communication heterogeneity is not 
considered in FGLS. Additionally, while FRCD and eFRD incorporate computational, communication 
and reliability heterogeneities into the scheduling, FGLS considers only computational heterogeneity. 
In order to make the comparison fair and meaningful, some adjustments have to be made to the 
algorithms. More specifically, when comparing all four algorithms in Sections 5.2 and 5.3, both 
FGLS, FRCD and eFRD are downgraded to handle only independent tasks that execute on 
homogeneous systems, by removing precedence constraints from tasks, making the underlying system 
homogeneous, and assuming fixed deadlines for all tasks. 

Similarly, when comparisons are made between eFRD and FGLS in Sections 5.4 and 5.5, the 
eFRD algorithm is downgraded by assuming communication homogeneity, while the FGLS algorithm 
is adapted to include reliability heterogeneity. Furthermore, the FGLS algorithm does not explicitly 
show how deadlines are considered, implying that FGLS might be designed for soft real-time systems. 
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Therefore, SC cannot be directly measured in FGLS. In order for the comparison to be meaningful, 
we made minor modifications to FGLS so that deadlines are explicitly considered in scheduling tasks, 
thereby making SC measurable. 

5.1 Workload and System Parameters 
Workload parameters are chosen in such a way that they are either based on those used in the 

literature or represent reasonably realistic workload and provide some stress tests for the algorithms. 
We studied three types of task graphs (DAGs): binary tree, lattice and DAGs with random precedence 
constraints, ones that have been frequently used by researchers in the past [23][27][28]. 

In each simulation experiment, 100,000 real-time DAGs were generated independently for the 
scheduling algorithm as follows: First, for each DAG, determine the number of real-time tasks N, the 
number of processors m and their failure rates R = {λ1, λ2, …, λm}. Then, the computation time in the 
execution time vector C is randomly chosen from a uniformly range EX = [5, 50]. The scale of this 
range approximates the level of computational heterogeneity. Data communication among real-time 
tasks and communication weights are randomly selected from uniformly ranges V =[1, 10]. Finally, 
the fault detection time δ is randomly computed according to a uniform distribution in the range 
between 1 and 10, because the fault detection time on average is approximately 3 ms [31]. Real-time 
deadlines can be defined in two ways: 
1. A single deadline is associated with a real-time job, which is a set of tasks with or without 

precedence constraints. Such a deadline is referred to as a common deadline in the literature 
[19][20]. Common deadlines were used in simulation studies reported in Sections 5.2 and 5.3. 

2. Individual deadlines are associated with tasks within a real-time job. This deadline definition is 
often used for the dynamic scheduling of independent real-time tasks [9][16]. In simulation 
studies reported in Sections 5.4 and 5.5, this deadline definition was adapted for tasks of a real-
time job with precedence constraints. More specifically, given vi ∈V, if vi is on pk and vj is on pl, 
then vi’s deadline is determined by:  di = MAX{dj +  eij×wlk} + MAX{cik} + t,   (19)  where t is a 
constant chosen uniformly from a given range H that represents individual relative deadlines. 

   A DAG with random precedence constraints is generated in four steps: First, the number of tasks 
N and the number of messages U are chosen. In this simulation study, it is assumed that U = 4N. 
Second, the execution time for each task is chosen randomly. Third, the communication time for each 
message is generated randomly and its sender and receiver selected randomly, subject to the condition 
that such selection does not generate any circle in the graph. Finally, a relative deadline t for each task 
is selected uniformly from a given H. 

5.2 Schedulability 
This experiment evaluates performance in terms of schedulability among the five algorithms 

using the schedulability measure. The workload consists of sets of independent real-time tasks 
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running on a homogeneous system. The size of the task set is fixed at 100 tasks and the size of the 
homogeneous system is fixed at 20. A common deadline of 100 is selected. SC is first measured as a 
function of task execution time in the range between 19 and 29 with increments of 1 (see Fig. 9), and 

then measured as a function of task set size (see Fig. 10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs. 9 and 10 show that the schedulabilities of the OV and eFRD algorithms are almost identical, 

and so are the FGLS and FRCD algorithms. Considering that the eFRD algorithm has to be 
downgraded for comparability, this result should imply that eFRD is more powerful than OV, because 
eFRD can also schedule tasks with precedence constraints to be executed on heterogeneous systems, 
which OV is not capable of. The results indicate that high reliabilities are made possible by eFRD at 
the cost of schedulability, because the average SC value of NFT is approximately 7% higher than that 
of eFRD. 

The results further reveal that both OV and eFRD significantly outperform FGLS and FRCD in 
SC, suggesting that both FGLS and FRCD are not suitable for scheduling independent tasks. The 
reason for FGLS’s poor performance can be explained by the fact that, like FRCD, it does not employ 
the overlapping scheme for backup copies. The 
consequence is twofold. First, FGLS and FRCD 
require more computing resources than eFRD, 
which is likely to lead to a relatively low SC when 
the number of processors is fixed. Second, unlike 
eFRD, the backup copies in FGLS and FRCD 
cannot overlap with one another on the same 
processor, and this may result in a much longer 
schedule length.  
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Fig. 10. Schedulability as a function of N. 
Common deadline = 100, m = 16, MIN_F = 
0.5*10-6, MAX_F = 3.0*10-6, EX = [1, 20]. 

Fig. 9. Schedulability of independent tasks as 
a function of execution time. Common 
deadline = 100, N = 100, m = 20. 

Fig. 11 Reliability as function of MAX_F. N = 
50, m = 20, MIN_F = 1*10-6, EX = [500, 1500]. 



Parallel Computing, vol. 32, no. 5-6, pp. 331-356, June 2006.

 

5.3 Reliability Performance 
In this experiment, the reliability of the OV, FGLS, FRCD and eFRD algorithms are evaluated as 

a function of maximum processor failure rate, shown in Fig. 11. 
To stress the reliability performance, schedulabilities of all the four algorithms are assumed to be 

1.0 by assigning extremely loose deadlines for tasks. The task set size and system sizes are 200 and 
20, respectively. Execution time of each task is chosen uniformly from the range between 500 and 
1500, and the failure rates were uniformly selected from the range between MIN_F and MAX_F. In 
this experiment, MIN_F is 1.0*10-6 per hour and MAX_F varies from 3.5*10-6  to 7.5*10-6  per hour 
with increments of 0.5*10-6. The link failure rates are taken uniformly in the range from 0.65×10-6 to 
0.95×10-6 per hour. 

We observed from Fig. 11 that the reliability of OV and FGLS are very close, and so are those of 
FRCD and eFRD. FRCD and eFRD perform considerably better than both OV and FGLS, with R 
values being approximately from 10.5% to 22.3% higher than those of OV and FGLS. The FRCD and 
eFRD algorithms have much better reliability simply because OV and FGLS do not consider 
reliability in their scheduling schemes while both FRCD and eFRD take reliability into account. This 
experimental result validates the use of FRCD and eFRD to enhance the reliability, especially when 
tasks either have loose deadlines or no deadlines (non-real-time systems). 

5.4 Impact of Computational Heterogeneity on Performance 
Section 5.2 and 5.3 show that the reliabilities of FRCD and eFRD are identical, while the 

schedulability of eFRD is significantly superior to that of FRCD. Since performability is a product of 
reliability and schedulability,  eFRD should consistently outperform FRCD in terms of performability 
under all workloads. Hence, FRCD will not be considered in the following discussions, and we only 
evaluate the performance of the FGLS and eFRD algorithms.  

Since computational heterogeneity is reflected in part by the variance in execution times of the 
computation time vector C, a metric is introduced to represent the computational heterogeneity level. 
It is denoted by η = (α, β), where α is the minimal value for execution time in C, and β is the 
deviation C. In this experiment, the execution time for each task on a given processor is chosen 
uniformly from the range between α and α + β. Clearly, the higher the value of β, the higher the level 
of heterogeneity. 

To study the impact of the heterogeneity level on the PF performances of the FGLS and eFRD 
algorithms, we set α to a constant value of 20, and varied β from 0 to 28 with increments of 4. For 
each value of β we ran the two algorithms on 10,000 binary trees and 10,000 4-ary trees, with 150 
nodes (tasks) each, respectively. Fig. 12 shows SC performance as a function of β, the heterogeneity 
level. Only tree-based DAGs are presented in this experiment, since the other two types of DAGs 
behave similarly. 
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The first observation from Fig. 12 is that the value of PF increases with the heterogeneity level. 
This is because PF is a product of SC and R, and both SC and R become higher when the 
heterogeneity level increases. These results can be further explained by the following reasons. First, 

though the individual relative deadlines (i.e. t in expression (19)) are not affected by the change in 
computational heterogeneity, high variance in task execution times does affect the absolute deadlines 
(i.e. d(vi) in expression (19)), making the deadlines looser and the SC higher. Second, high variance in 
task execution times also provides opportunities for more tasks to be packed in with the fixed number 
of processors, giving rise to a higher SC. Third, RC decreases as the heterogeneity level increases, 
implying an increasing R. This is because high variance in execution times will lead to a low 
minimum execution time in C. Given the greedy nature of both algorithms, processors with minimum 
execution time in C are most likely to be chosen for task execution, giving rise to high reliability as a 
function of processor execution time and processor failure rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The second interesting observation is that eFRD outperforms FGLS with respect to PF at low 

heterogeneity levels while the opposite is true for high heterogeneity levels. This is because when 
heterogeneity levels are low, both SC and R of eFRD are considerably higher than those of FGLS 
(Reliabilites are depicted in Fig. 13). On the other hand, eFRD’s SC is lower than that of FGLS at a 
high heterogeneity level, and Rs of two algorithms becomes similar (eFRD is slightly better than 
FGLS) when heterogeneity level increases. Therefore, eFRD’s PF, the product of SC and R, is lower 
than that of FGLS at high heterogeneity levels. 

This result suggests that, if schedulability is the only objective in scheduling, FGLS is more 
suitable for systems with relatively high levels of heterogeneity, whereas eFRD is more suitable for 
scheduling tasks with relatively low levels of heterogeneity. In contrast, if R is the sole objective, 
eFRD is consistently better than FGLS. 
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Fig. 13 Reliability of btrees and 4-ary trees
as a function of heterogeneity level. H = [1,
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Fig. 12 Performability of btrees and 4-ary 
trees as a function of heterogeneity level. 
H = [1, 100], N = 150, m=20, alpha = 20
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In addition, Fig. 12 indicates that performability of FGLS increases much more rapidly with 
heterogeneity level than that of eFRD, implying that FGLS is more sensitive to the change in 
computational heterogeneity than eFRD. This is because both SC and R (See Fig.13) of FGLS 

continuously increase more sharply with the increasing heterogeneity level than those of eFRD. 
Fig. 13 depicts the R as a function of computational heterogeneity level. The simulation parameters 

are the same as the above experiment. Fig. 13 reveals that R increases as the heterogeneity level 
increases. This is because high variance in execution times will lead to a low minimum execution 
time in C. Given the greedy nature of both algorithms, processors with minimum execution time in C 
are most likely to be chosen for task execution, giving rise to high reliability as R is a function of 
processor execution time and processor failure rate. Fig.13 shows that R of eFRD is consistently 
higher than that of FGLS, suggesting that eFRD is superior to FGLS in terms of reliability. 

5.5 Impact of Task Parallelism on Schedulability 
One interesting observation from the previous experiments (Figures 12 and 13) is that task 

parallelism, implied by the width of the tree in the DAGs (binary vs. 4-ary trees), has a significant 
impact on the SC performance while the R performance is insensitive to such task parallelism. In this 
section we present simulation results that substantiate this observation and establish the relationship 
between task parallelism and SC performance.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 shows an indirect relationship between SC and task parallelism of random task graphs 

containing a fix number of tasks, by plotting SC as a function of the number of messages in the task 
graph. For a task graph with a fixed number of tasks, the more messages there are among tasks, the 
more precedence constraints that are imposed on the tasks, implying that fewer tasks may execute 
concurrently. In other words, task parallelism decreases as the number of messages increases.  

Fig. 14 plainly shows that the schedulabilities of FGLS and eFRD are very close when the number 
of messages is greater than 260, with FGLS outperforming eFRD slightly. As the number of messages 
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Fig. 15. Schedulability of trees as a function of
the number of branches. H = [1, 100], N = 200,
m = 10, EX = [1, 20], COM = [1, 10]. 

Fig. 14. Schedulability of random graphs as a
function of the number of messages. H = [1, 10], N
= 100, m = 16, EX = [1, 20], COM = [1, 10]. 
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decreases to below 240, eFRD starts to outperform FGLS, with the performance gap widening rapidly 
with the decrease in messages. This result suggests that eFRD yields significantly better performance 
than FGLS at high levels of task parallelism while FGLS outperforms eFRD marginally at low task 

parallelism levels. 
Fig. 15 illustrates schedulability as a function of the node degree of the tree task graphs, 

establishing a more direct relationship between schedulability and task parallelism. This is because a 
high node degree in a tree implies a tree with a high width, clearly indicating a high average task 
parallelism. The schedulabilities of both FGLS and eFRD decrease as the node degree of tree 
increases, with FGLS’s performance dropping much more rapidly than that of eFRD.  

Both Fig. 14 and Fig. 15 reveal that task parallelism has much more significant impact on FGLS 
than on eFRD, indicating that FGLS is much more sensitive to task parallelism than eFRD. This may 
be explained by the fact that the FGLS algorithm allows backup copies to concurrently execute with 
their corresponding primary copies, which can be advantageous when task parallelism is low and the 
number of processors available is fixed. This advantage, however, quickly diminishes as task 
parallelism increases while the number of available processors remains constant, since the concurrent 
backup copies occupy processor resources that would otherwise be available for primary copies of 
other parallel tasks, thereby lengthening the schedule and lowering SC.  

These two figures also indicate that the SC performance decreases with the increase in task 
parallelism, a seemingly counter-intuitive phenomenon, because higher task parallelism should in 
general help shorten schedule length. The reason for this phenomenon is that in this experiment, it is 
the individual deadlines (expression (19)), not the common deadline that was used. As a result, the 
increase in task parallelism, while shortening the schedule length to some extent, considerably 
tightens the deadlines. The tightened deadlines significantly offset gains obtained from the shortened 
schedule length, especially for FGLS. 
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Fig. 17. Reliability of 4-ary trees as a 
function of CCR. H = [1, 100], N = 200, 
m = 12, COM = [1, 100].   

Fig. 16. Schedulability of 4-ary trees as a 
function of CCR. H = [1, 100], N = 200, 
m = 12, COM = [1, 100]. 
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5.6 Impact of Communication to Computation Ratio on Performance 
In this section we evaluate the impact of communication to computation ratio (CCR),  which 

indicates the ratio of the average execution time of communication activities to that of computation 
activities. A large value of CCR means a relatively high communication load compared with 
computation load. In this experiment we varied CCR within [0.1, 10]. First, the communication cost 
of each message is randomly chosen from a uniform distribution. Next, the execution cost of each 
task is randomly generated according to the given CCR value.  

Fig. 16 reveals that when the CCR value is small (less than or equal to 1), the schedulability of 
eFRD is significantly higher than that of FGLS. The SC performance improvement of eFRD over 
FGLS decreases as the CCR value increases. This result implies that eFRD performs substantially 
better than FGLS with small values of CCR while FGLS.  outperforms eFRD marginally at low task 
parallelism levels.  

Fig. 17 clearly shows that CCR has noticeable impacts on both FGLS and eFRD. It is observed 
from  Fig. 17 that the reliabilities yielded by FGLS and eFRD increase with the increasing values of 
CCR, indicating that a large CCR value leads to high reliabilities. These results can be explained by 
the way of choosing execution times. Specifically, larger CCR values result in smaller execution 
times of tasks, which in turn induce higher reliabilities. Similar to the schedulability performance, the 
reliability improvement of eFRD over FGLS is pronounced when the CCR value is small. However, 
this advantage gradually diminishes as the CCR value goes up. This is mainly because execution 
times become a whole lot shorter with large CCR values. The shortened execution times cause 
relatively higher reliabilities, leaving limited room for further improvement in reliability. 

5.7 Performance on a Real Application 

The goal of this experiment is three-fold: First, to validate the results from the synthetic 

application cases; second, to evaluate the impact of processor numbers on the performance of the 

proposed algorithm; and third, to test the scalability of our algorithm. To do so, we evaluate the 

performance of eFRD with very large task graphs generated from a real application: a digital signal 

processing (DSP) system with 119 tasks in the task graph [30]. Since OV assumes independent tasks 

and homogeneous systems, we only compare eFRD against FRCD and FGLS, which can handle tasks 

with precedence constraints executing on heterogeneous systems. 

The number of processors of a simulated heterogeneous system is varied from 9 to 16. The failure 

rates of the processors, which are fully connected with one another, are chosen randomly between 

1×10-6 and 7.5×10-6. Similarly, the link failure rates of the system are uniformly  in the range from 
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0.65×10-6 to 0.95×10-6 per hour [28]. We performed the experiment with ranges for generating 

deadlines set to 500ms. From Fig. 18, it can be seen that the increase in number of processors 

increases the schedulability for all the three algorithms. Importantly, eFRD improves the 

performance in schedulability over FGLS and FRCD by up to 1823% and 127% (with average of 

374% and 64%), respectively. Furthermore, the advantage of eFRD over FGLS and FRCD becomes 

more pronounced when the number of processors is small, and the performance improvement in 

schedulability decreases as the number of processors increases. This is because when the number of 

processors is large, there is less likelihood that the processors are the bottleneck of in performance. 

The results indicate that the proposed algorithm can substantially improve system schedulability over 

the existing algorithms under circumstances where processors are critical resources in heterogeneous 

systems.  

 
 
 
 
 
 
 
 
 
 
 
 
The reliabilities of the three alternatives are presented in Fig. 19. We find that the eFRD algorithm 

improves the reliability of FGLS by more than 15.7% while maintaining the same level of reliability 

as that of FRCD. This is because eFRD leverages the reliability-cost driven technique to achieve the 

high reliability. From Figures 18 and 19 we conclude that the proposed algorithm can provide reliable 

allocations for both small- and large-scale applications while significantly improving resource 

utilization. 

6.  CONCLUSION 
In this paper we propose an efficient fault-tolerant scheduling algorithm (eFRD), in which real-

time tasks with precedence constraints can tolerate one processor’s failures in a heterogeneous system 

with fully connected network. The fault-tolerant capability is incorporated in the algorithm by using a 
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Fig. 19. Reliability results for a real world 
application: a digital signal processing system.

Fig. 18. Schedulability results for a real world 
application: a digital signal processing system.
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Primary/Backup (PB) model, where failures are detected after a fixed amount of time. In this PB 

model, each task is associated with a primary copy and a backup copy that are allocated to two 

different processors and the backup copy is executed only if the primary copy fails due to the 

permanent failure of one processor. Unlike FRCD [24], the eFRD algorithm relaxes the requirement 

in FRCD that forbids the overlapping of any backup copies to allow such overlapping on the same 

processor if their corresponding primary copies are allocated to different processors. The system 

reliability is further enhanced by assigning tasks to processors that are able to yield high reliability. 

Moreover, the algorithm takes system and workload heterogeneity into consideration by explicitly 

accounting for computational, communication, and reliability heterogeneity. 

To the best of our knowledge, the proposed algorithm is the first of its kind reported in the 

literature, in that it most comprehensively addresses the issues of fault-tolerance, reliability, real-time, 

task precedence constraints, and heterogeneity. To assess the performance of eFRD, extensive 

simulation studies were conducted to quantitatively compare it with the three most relevant existing 

scheduling algorithms in the literature, OV [21], FGLS [10][11], and FRCD [24]. The simulation 

results indicate that the eFRD algorithm is considerably superior to the three algorithms in the vast 

majority of cases. There are two exceptions, however. First, the FGLS outperforms eFRD marginally 

when task parallelism is low. Second, when computational heterogeneity is high, the eFRD algorithm 

becomes inferior to the FGLS algorithm. 

The experimental results also indicate that both computational heterogeneity and task parallelism 

have a significant impact on the schedulability. In particular, the FGLS algorithm is much more 

sensitive to computational heterogeneity and task parallelism than the eFRD algorithm.  
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