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ABSTRACT

Although various parallel disk systems have been developed to achieve high I/O performance and energy
efficiency, most existing parallel disk systems lack an adaptive way to conserve energy in dynamically
changing workload conditions. To solve this problem, we develop an adaptive energy-saving scheme
or DCAPS in parallel disk systems. We show that adaptability in energy conservation can be achieved
through the integration of a dynamic disk scheduling scheme and power management in parallel
disk systems. DCAPS consists of a data partitioning mechanism, a response time estimator, and an
adaptive energy-conserving mechanism. The Data partitioning mechanism allows DCAPS to adjust the
parallelism degrees of write requests based on dynamic workload conditions. Apart from supporting the
data partitioning mechanism, the response time estimator makes it possible for the adaptive energy-
conserving mechanism to dynamically adjust voltage supply levels while guaranteeing desired response
times. We conducted extensive experiments to quantitatively evaluate the performance of the proposed
energy-conserving strategy. Experimental results consistently show that DCAPS significantly reduces
energy consumption of parallel disk systems in a dynamic environment over the same disk systems

without using DCAPS.

Published by Elsevier B.V.

1. Introduction

Since the performance gap between processors and disks
has widened over the last two decades [1], the performance
of data-intensive applications has been significantly affected by
disk systems [2,3]. Because parallel disks are highly scalable,
parallel disk systems can alleviate I/O bottleneck problems in many
data-intensive systems like video surveillance [4], remote-sensing
database systems [5,6], digital libraries [7,8], simulation tools [9],
and long running simulations [10].

Although parallel disks play an important role in achieving
high-performance for data-intensive applications, a substantial
amount of energy consumed in data-intensive systems is con-
tributed by parallel disk systems. A recent industry report reveals
that storage devices account for almost 27% of the total energy con-
sumed by a data center [11]. For example, the power consump-
tion of today’s data center ranges from 75 to 200 W/ft?. Since
this trend will undoubtedly continue in the near future [12], the
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energy-consumption problem in data centers will become even
more serious. Therefore, we are motivated to extensively investi-
gate energy-conservation software techniques for parallel disk sys-
tems.

Modern parallel disk systems have increasingly become energy
efficient (see, for example, [13]); however, there is a lack of
approaches for adaptively conserving energy in parallel disks.
Adaptive energy-saving techniques are important in parallel disk
systems because of two reasons. First, many data centers have
dynamically changing workload characteristics. For example, 1/O
loads of web servers are known to dynamically change with
time [14]. Second, real-world data-intensive applications tend
to have performance and resource requirements. For example,
disk requests issued by data-intensive applications need to
be completed within specified response times [15]. Adaptively
conserving energy in parallel disk systems becomes particularly
critical for data-intensive applications running in dynamically
changing computing environments.

In this study, we are inspired by the needs of data-intensive
applications to develop a way of flexibly and adaptively reducing
energy consumption caused by the data-intensive applications. We
show that adaptability in energy conservation can be achieved
through the integration of a dynamic disk scheduling scheme
and power management in parallel disk systems. We focus
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on disk scheduling in this research, because disk scheduling
algorithms (e.g., shortest seek time first (SSTF) and SCAN) can
significantly improve disk performance [16-20]. For example, the
SSTF algorithm aims to minimize seek time of disk requests [21];
the SCAN algorithm solves the unfairness problem and reduces
seek time [21]; and Reist and Daniel developed a parameterized
generalization of SCAN and SSTF to seamlessly integrate the
two algorithms [22]. Most existing disk scheduling algorithms
are inadequate for improving energy efficiency of parallel disk
systems. To address this problem, we develop an adaptive
energy-conservation technique or DCAPS that incorporate power
management with disk scheduler in parallel disks systems. More
importantly, our DCAPS scheme can offer significant energy
savings while guaranteeing desired response times of disk
requests.

Our DCAPS scheme can manage two types of disk I/O par-
allelisms, namely, inter-request parallelism and intra-request
parallelism. The inter-request parallelism allows multiple inde-
pendent disk requests to be served simultaneously by multiple
disks, whereas the intra-request parallelism enables a single disk
request to be responded by an array of disks in parallel. The par-
allelism degree of a data request is the number of disks in which
the requested data is residing [23]. DCAPS adjusts the parallelism
degrees of write requests based on dynamic workload conditions
(see Section 4.1). After determining parallelism degrees, DCAPS op-
timizes disk supply voltage levels to reduce power consumption
while guaranteeing requests’ desired response times by utilizing
the disk scheduling mechanism (see Sections 4.2 and 4.3).

Experimental results show that DCAPS significantly reduces
energy consumption of parallel disk systems in a dynamic
environment over the same disk systems without using DCAPS.
In addition, DCAPS improves energy efficiency of parallel disks
without reducing satisfied ratio of requests having desired
response times.

The rest of the paper is organized as follows. We summarize
related work in the next section. Section 3 describes the system
architecture for energy-efficient parallel disk systems. In Section 4,
we propose the adaptive energy-conservation scheme called
DCAPS. Section 5 evaluates the performance of the proposed
energy-saving technique by comparing an existing approach.
Section 6 concludes the paper with summary and future directions.

2. Related work

Disk I/O has become a performance bottleneck for data-
intensive applications due to the widening gap between processor
speeds and disk access speeds [1,24,25]. To help alleviate the
problem of disk I/O bottleneck, a large body of work has been
done on parallel disk systems. For example, Kallahalla and Varman
designed an on-line buffer management and scheduling algorithm
to improve performance of parallel disks [26]. Scheuermann et al.
addressed the problem of making use of striping and load balancing
to tune performance of parallel disk systems [23]. Rajasekaran
and Jin developed a practical model for parallel disk systems [27].
Kotz and Ellis proposed investigated several write back policies
used in a parallel file system implementation [28]. Our research is
different from the previous studies in that we focused on energy
savings for parallel disk systems. Additionally, our strategy is
orthogonal to the existing techniques in the sense that our scheme
can be readily integrated into existing parallel disk systems to
substantially improve energy efficiency and performance of the
systems.

Abundant research has been done to improve energy efficiency
of mobile devices (e.g., smart phones) to increase battery life of the
devices. Unlike mobile devices where battery life is critical, disk
systems have to be energy efficient in order to lower electricity

bills in data centers. In the past decade, much attention has been
paid to the development of energy-efficient disk systems. For
example, the conventional wisdom of saving energy in disks is to
place idle disks into the low-power (e.g., standby) mode. Because
significant energy in disks is consumed by spindle motors, dynamic
power management schemes are proved to be very effective [29].
Therefore, the dynamic power management techniques have been
widely applied to reduce energy dissipation in disk drives of both
PCs and high-performance computers [30].

Most of the previous research regarding conserving energy fo-
cuses on single disk system in laptops and mobile devices to extend
the battery life. Recently, a handful of techniques proposed to save
energy in disk systems include dynamic power management [30-
32], I/O workload-skew schemes [33,34], power-aware cache
management [35-37], power-aware perfecting schemes [38-40],
software-directed power management techniques [41], redun-
dancy techniques [41], multi-speed disks [42-44], and data place-
ment technique [45]. However, the research on energy-efficient
parallel disk systems is still in its infancy. It is imperative to de-
velop new energy conservation techniques that can provide signif-
icant energy savings for parallel disk systems while maintaining
high performance.

The dynamic voltage scaling technique or DVS is a widely
adopted approach to conserving energy in processors. The
DVS technique can dynamically reduce the voltage supplies
of processors to conserve energy consumption in processors
(see, for example, [46,47]). Thus, processor voltage supplies are
scaled down to the most appropriate levels, thereby quadratically
reducing power whenever possible. Compared with traditional
computer systems with fixed voltage supplies, DVS-enabled
systems can achieve high energy efficiency. Our approach differs
from the conventional DVS methods, because ours is the first
technique of its kind designed exclusively for energy-efficient
parallel disk systems aiming to guarantee desired response times
requests issued by of data-intensive applications. Our adaptive
energy-conserving strategy seamlessly incorporates DVS-enabled
dynamic power management into the disk scheduler to achieve
high energy efficiency in parallel disk systems while satisfying
desired response times.

3. System architecture and model

In this section, we first present a framework within which we
develop an adaptive energy-conservation technique for parallel
disk systems. Then, we describe the power consumption model
used to estimate the power consumption of large-scale parallel
disk systems.

3.1. System architecture

Fig. 1 outlines the framework of energy-efficient parallel disk
systems. The framework is general enough to accommodate a wide
range of storage systems, including both network attached storage
devices (NAS) and storage area networks (SAN). The framework in
Fig. 1 embraces a parallel disk system, networks, and the DCAPS
scheme. In this study, we focus on the development of DCAPS
that consists of a data partitioning mechanism (see Section 4.1), a
response time estimator (see Section 4.2), and an adaptive energy-
conserving mechanism (see Section 4.3).

The data partitioning mechanism (see Section 4.1) is geared to
divide a large amount of data into fixed-size of data units stored on
a number of disks. We consider file striping - a generic method for
various data types. To optimize the parallelism degree (a.k.a., stripe
unit size) for each write request, the data partitioning mechanism
relies on the response time estimator to predict requests’ response
times.

The response time estimator (see Section 4.2) not only supports
the data partitioning mechanism, but also is indispensable for the
adaptive energy-conserving mechanism. The response time esti-
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Fig. 1. The framework of energy-efficient parallel disk systems.

mator is important, because estimating response times makes it
possible for the adaptive energy-conserving mechanism to dynam-
ically adjust voltage supply levels while guaranteeing desired re-
sponse times.

The energy-conserving mechanism (see Section 4.3) - at the
heart of the proposed DCAPS - is responsible for adaptively
saving energy in parallel disks without violating desired response
times of disk requests. Thus, the energy-conserving mechanism
aims to achieve the best tradeoff between energy efficiency and
performance. More specifically, the adaptive energy-conserving
mechanism reduces energy consumption by making use of
the dynamic voltage scaling technique to judiciously lower
voltage supply levels of disks as long as specified performance
requirements can be met.

3.2. Energy consumption model

Before developing the adaptive energy-conserving mechanism,
we first introduce a power consumption model for parallel disk
systems. We consider a sequence of disk requests R = {rq, 1y,

., I'n} submitted to a parallel disk system. Each disk requestr; € R
has an arrival time g;, a desired response time t;, and data size
d;. Ideally, request r; needs to be completed within the desired
response time t;.

A multiple-voltage disk system has a number of discrete
voltages; the disk system can instantaneously switch from one
voltage to another. Without loss of generality, we assume the
parallel disk system can be operated at a finite set V =
{v1, v, ..., vmax} Of voltage supply levels. Given a disk voltage v;,
we can accordingly determine the bandwidth b; of the disk.

Because energy dissipation in disks quadratically proportional
to supply voltages, voltage scaling can achieve significant energy
savings for disks. Thus, the energy consumption rate P; of the ith
disk can be expressed as below:

(Ui,dd - Ut)a

Pi=C-v2,, -
i,dd Cz

,» Vidd €V, Vigd > v (1)

where Cy, G, and o € [4,48] are constants depending on physical
characteristics of disk devices, v; 44 is the supply voltage, and v,
is the threshold voltage. Let D; denote a set of disk requests to
be processed by the ith disk in the parallel disk system. Given a
disk request r; to be processed by the ith disk, we can calculate the
energy consumption of the request as below:

Eij=Pi ('){,dd> -6 ("?,dd) ) (2)

where vf.',dd is the voltage supply level determined for the disk

request, P; (vf;dd) is the disk’s energy consumption rate, and
0; (v{:,dd) is the processing time of the disk request. Both P; (vf:’dd)
and 6 (Uli,dd) largely rely on the supply voltage v,{dd of the disk;

p; (v{ dd) can be straightforwardly derived from Eq. (1).

The energy consumption E; of disk i is written as a summation
of energy consumption caused by each disk request handled by the
disk. Thus, we have

Ei _Z.;EU_XI;P ( 1dd) (ded) (3)

Suppose there are m disks in the parallel disk system, the total
energy consumption E of the disk system can be expressed as:

E_ZE Y E =YY (da) (). @

i=1 rjeD; i=1 rjeD

We can now obtain the following non-linear optimization
problem formulation to compute the energy consumption of a
parallel disk system

Minimize Z ZP: ( i,dd ) (lff dd)
}—1 rjeD (5)
Subjectto  (a) v} 4y € {v1, V2, .. .. Umax} ,
(d)fi = ¢,
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where f; is the response time of the jth disk request. f; < ¢ in
Expression (5) signifies that the desired response time constraints
must be met.

4. Adaptive energy-conservation strategy

The proposed adaptive energy-conserving strategy encom-
passes three components, namely, a data partitioning technique,
response time estimation method, and an adaptive DVS algorithm.
In this section, we describe the design of these three components
in more detail.

4.1. Data partitioning

The proposed DCAPS framework (see Section 3.1) depends on
the data partitioning scheme to optimize parallelism degrees for
write requests. The adaptability of DCAPS is made possible by
dynamic data partitioning that helps in minimizing write request
response times. Therefore, the data partitioning scheme in DCAPS
offers great opportunities to improve energy efficiency by scaling
down disk supply voltages. In the first phase, DCAPS utilizes the
dynamic data portioning scheme to substantially shorten response
times by adaptively determining the parallelism degrees of each
write request (see Step 3 in Fig. 2 in Section 4.3).

We denote the parallelism degree and data size of a request
r; by p; and d;, respectively. Before proceeding to the analysis of
optimal parallelism degrees, let us first formally derive the disk
service time Tyis, (d;, p;) of request r;. Thus, the disk service time
can be computed as

Tdisk(di’ pi) = Tseek(pi) + Trot(pi) + Ttrans(dis pi)’ (6)

where Tseek (D), Tror (Pi), and Tyans(d;, p;) are the seek time, rotation
time, and transfer time of the disk request. Seek time T (p;) can
be approximated as Eq. (7) [23]:

Tseer(pi) = eC (1 —a—blIn(py)) +f (7)

where C is the number of cylinders on a disk, a and b are two
disk-independent constants, whereas e and f are disk-dependent
constants.

The value of rotation time can be expressed as Eq. (8):

Di
pi+1
where Tgor is the nominal rotation time of a disk. The disk request
transfer time can also be given as:

d 1
Toans(di, pi) = — -
Di Baisk
where Bgisx denotes the disk bandwidth.
Substituting Eqs. (7)-(9) into Eq. (6), we obtain the value of disk
service time as:

T (pi) = - Tror (8)

(9)

Taisk(di, pi) = eC (1 —a—DblIn(p)) +f + pi Tror
pi+1
d 1
o (10)
pi Buisk

Now we are positioned to calculate the optimal parallelism
degree of request r; by determining the minimum of the function
Taisk (d;, pi). Thus, we can obtain the optimal value of p; by solving
Eq. (11).

dTaisk(di, pi) _ Teor ~ Pi-Teor eCb di 1

dp) P+l Gi+D> p P Baw
The parallelism degree determined by Eq. (11) cannot exceed
the number (i.e, m) of disks in the parallel disk system.

Consequently, the optimal parallelism degree is the minimum
value of pi and m (i.e., min(p;, m)).

=0. (11)

4.2. Response time estimator

The response time estimator is of importance to both the
data partitioning mechanism and the adaptive energy-conserving
mechanism. The maximum response time of a disk request is
defined as the time interval between submission and completion
of the request by the parallel disk system. The response time for
a newly issued disk request r is the sum of queuing delay, data
partitioning time, and processing delay. Thus, we have:

p )
T(r,p,o0) = Tqueue + Tpartition + [{l_a1x {T;ﬂoc(rv D, Ui)} s (12)

where p is the parallelism degree of disk request 7, Tgueye is the
queuing delay at the client side, Tyarition is the time spent in data
partitioning, and Tiroc is the system processing delay experienced
by the ith stripe unit of the request. With respect to the ith
stripe unit of the request, the system processing delay T, can be
expressed as

ToC

T;Jroc(r’ p,v) = Trlzetwork(r’ p,v)+ Tc;isk(r’ p, vi), (13)
where v = (vy, vy, ..., Up) is the request’s vector of the supply
voltage for p stripe units, T! . and Tj, are the delays at the
network subsystem, and parallel disk subsystems, respectively.

We assume that when the ith stripe unit of a request arrives
at the network queue, there are k stripe units waiting to be
delivered to the parallel disk sub-system. Suppose stripe units are
transmitted in a first-in-first-out order, all the stripe units that are
already in the queue prior to the arrival of the ith stripe unit must
be transmitted earlier than the ith stripe unit. Hence, the delay in
the network subsystem T, .« (T P, Vi) can be written as

k
-9+ d
Tz;e[work(r! p,v) = B = H (14)
network

where d; is the data size of the jth stripe unit in the network queue,
and Bpetwork 1S the effective network bandwidth. It is worth noting
that k in Eq. (14) is the optimal parallelism degree determined by
the data partitioning mechanism (see Eq. (11) in Section 4.1).

Similarly, it is assumed that when the ith stripe unit of the
request arrives at disk j, there are k disk requests must be processed
by disk j before handling the stripe unit. Thus, the delay in the disk
subsystem T, (r, p, v;) is given by the following formula

k
Thisk (T Ps i) = Taisk j(d/p) + Z Taisk j(d), (15)
=1

where Ty j(d)is the disk processing time of a request containing
d bytes of data. We can quantify Ty j(d)as follows

d , (16)
Baisk

where T, and T, are the seek time and rotational latency, and
ﬁis the data transfer time depending on the data size d and disk
bandwidth Byjsy.

Tdisk.j(d) = Tseek + Tror +

4.3. The adaptive energy-conservation algorithm

The adaptive energy-conservation algorithm dynamically opti-
mizes parallel disk voltage levels to reduce energy consumption
caused by each disk request. The algorithm adaptively chooses the
most appropriate voltage for stripe units of a disk request while
guaranteeing the desired response time of the request.

The proposed algorithm fully utilizes the dynamic data
partitioning mechanism (see Section 4.1) and the response time
estimator (see Section 4.2) to adaptively control voltage levels.
The algorithm outlined in Fig. 2 attempts to minimize the supply
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Input: . a newly arrived disk request

t;: desired response time of the ith request

Vimax: the maximum supply voltage
Vmin: the minimum supply voltage

0, a waiting queue at the client side

1. Insert » into Q based on the earliest desired response time first policy
2. for each request 7; in the waiting queue O do
/* Phase 1: dynamic data partitioning */

3. Calculate the optimal parallelism degree p; of r;
4. Partition the request into p; stripe units
5. for each stripe unit of ; do
6. Initialize v; of the jth stripe unit to the maximum supply voltage vx
/* Phase 2: response time estimation */
7. Apply Egs. (15) and (16) to estimate the response time of the jth stripe unit;
/* Phase 3: Dynamic Voltage Scaling */
8. while (estimated response time < desired response time ) and (if v;; > v, then
I* v;; can be further reduced */ (see property 1)
10. scale the voltage v; down to the next level;
11. Apply Egs. (15) and (16) to estimate the response time of the jth stripe unit;

12. end while

13. Deliver the jth unit through the network subsystem to the parallel disk system;

14. end for

Fig. 2. The adaptive energy-conserving strategy (DCAPS) for parallel disk systems.

voltage levels of a disk request to improve the energy efficiency of
the disk systems.

The algorithm takes the following three steps to reduce voltage
levels. First, the algorithm dynamically calculates the optimal
parallelism degree of the disk request to effectively shorten
response time of the request in the parallel disk system (see
Eq.(11)). Second, the algorithm estimates the response time of
each stripe unit of a disk request (see Eq. (12)). Third, based on the
estimated response time and desired response time, the algorithm
adaptively lower down the supply voltage for each stripe unit
provided that the request can be completed before its desired
response time.

When a disk request is issued to the system, the DCAPS strategy
inserts the newly arrived requests into the waiting queue based on
the earliest desired response time first policy (see Step 1). After the
data portioning of each request in the queue, DCAPS initializes the
voltage of all the stripe units of request r; to the maximum supply
voltage vmax (see Step 6). In doing so, DCAPS are more likely to
guarantee desired response times under heavily loaded conditions.
Using the dynamic voltage scaling technique, the DCAPS strategy
adaptively makes disks operate at low voltage supply levels for all
the stripe units to conserve the total energy consumption of the
parallel disk system. Assume that the maximum supply voltage
Umax- 1S 3.3V, the supply voltage can be reduced as long as the disk
request can be accomplished within its desired response time or
the supply voltage reach the minimum voltage vp,,. In this study,
we assume that the threshold voltage is 0.8 [online]. In an effort to
steadily reduce the voltage of stripe units, DCAPS guarantees that
all requests will be completed before their desired response times.
Thus, the following property needs to be satisfied in DCAPS.

(1) The reduced supply voltage vj is greater than the minimum
voltage vmin;

(2) Tj(ri, pi,01) < t;, where T; is the response time of the jth
stripe unit, ¢; is the desired response time of the request, and
Tj(rh Di, Ui) = Tqueue + Tpar[ition + Tpltjroc (ri7 Di, O‘ij)‘

Steps 10-11 are repeatedly performed to scale down disk voltage

until a request’s desired response time cannot be guaranteed (see
Step 12) or the supply voltage approaches the threshold voltage.

Table 1

Disk parameters of the simulated parallel disk system.
Number of disks 16
Block size 1KB
Number of tracks per cylinder 11
Number of cylinder per disk 1435
Capacity 300 GB
Average seek time 8 ms
Spindle speed 7200 RPM
Vmax 33V
Vnin 12V

Three-level multiple voltages 12,24,and 3.3V

Consequently, DCAPS adaptively reduces the supply voltage while
making the best effort to complete all the disk requests before their
desired response time.

5. Experimental evaluation

To evaluate the performance of the DCAPS strategy in an
efficient way, we simulated a parallel disk system with all the
functions that are necessary to implement our system. Table 1
summarizes important parameters used to resemble real world
disks. In addition, we implemented a data-partitioning algorithm
to optimize parallelism degrees of large disk 1/O requests. We
will first compare the performance of a parallel disk system with
DCAPS against that of another system without employing DCAPS.
In this study, a system that does not apply DCAPS is a standard
parallel disk system with a fixed voltage level. We will then study
effects of varying arrival rates, data size, and disk bandwidth on the
performance of the two disk systems. Next, we will compare and
evaluate the two disk systems based on varying the voltage. Finally,
we will also analyze the performance impacts of parallelism
degrees on the parallel disk systems.

In our simulation experiments, we made use of the following
three performance metrics to demonstrate the effectiveness of the
DCAPS scheme.

(1) Satisfied ratio is a fraction of total arrived disk requests that are
found to be finished within their desired response times.

(2) Energy consumption is the total energy consumed by the
parallel disk systems.

(3) Energy conservation ratio.

(4) Average overhead measured in seconds.



M. Nijim et al. / Future Generation Computer Systems 29 (2013) 196-207 201

[ (b) Normalized Energy Consumption |

[ (a) Satisfied ratio |
90

[—@— winDCAPS
L_-I—utmmcus

ssf

<4 NP I TP PP PP P P e N
01 015 02 025 03 035 04 045 05
Arrival Rate (nofzec)

02F
01F

TP PIFPPT PP IPPIPP PP PIPIPR PRI PO I
01 015 02 025 03 035 04 045 05
Arrival Rate (nofzec)
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5.1. Impact of arrival rate

In this experiment, we evaluate the impacts of disk request ar-
rival rate on the satisfied ratio and normalized energy consump-
tion. We compare a DCAPS-enabled parallel disk system with a
non-DCAPS-enabled parallel disk system where voltage supply lev-
els are fixed. We vary the arrival rate from 0.1 to 0.5 No./s with an
increment of 0.1 No./s.

Fig. 3 plots the satisfied ratios and normalized energy consump-
tion of the two evaluated parallel disk systems. Fig. 3(a) shows that
the non-DCAPS-enabled system’s satisfied ratio is slightly lower
than that of the DCAPS-enabled system. This intriguing result can
be explained by the fact that non-DCAPS-enabled system attempts
to conserve energy by placing disks into the standby mode at extra
power-state-transition overhead. Rather than relying on power-
state-transitions, DCAPS conserves energy by lowering the power

6

voltage. Fig. 3(b) shows that the DCAPS algorithm significantly re-
duces the energy consumption in the parallel disk system by up
to 71% with an average of 52.6%. The improvement in energy ef-
ficiency can be attributed to the fact that DCAPS reduces the disk
supply voltages while making an effort to completes requests be-
fore their desired response times.

Fig. 4 shows the energy conservation ratios offered by
DCAPS when the arrival rate is increased. The results plotted
in Fig. 4 confirm increasing 1/O load leads to decreased energy-
conservation rate. This trend is reasonable, partially because heavy
I/0O load forces DCAPS to boost disk voltages to complete requests
before their desired response times. Increasing voltage levels in
turn reduces chances of saving energy in parallel disk systems.

Fig. 5 shows the energy-conservation overhead introduced
by DCAPS. Fig. 5 indicates that increasing arrival rates leads to
increased energy conservation overhead, which gives rise to a
low energy-conservation rate. In addition, Fig. 5 shows that the
DCAPS-enable system has higher energy-conservation overheads
than those of the non-DCAPS system, because DCAPS pays extra
overhead to adjust voltage levels.

5.2. Impact of disk bandwidth

In the second experiment we measure performance impacts
of disk bandwidth on the energy efficiency of DCAPS. We vary
varying the disk bandwidth from 10 to 50 MB/s, with an increment
of 10 MB/s. Fig. 6(a) clearly shows that as one increases the disk
bandwidth, the satisfied ratios of the two parallel disk systems
gradually climb up. This performance trend can be explained by
the fact that increasing disk bandwidth results in shortened data

4+
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Fig. 5. Impact of arrival rate on energy conservation overhead.
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transfer times, which in turn lead to decreased I/O processing
times of disk requests. Consequently, an increasing number of disk
requests can be accomplished within their desired response times.
Fig. 6(b) shows that the normalized energy consumption decreases
as the disk bandwidth is increases. This is mainly because energy
consumption is a product of power and I/O processing time, which
is noticeably reduced with the increasing disk bandwidth.

Interestingly, Fig. 7 shows that the energy conservation ratio
continues increasing as the disk bandwidth increases. This effect is
apparent because the shortened I/O processing times allows DCAPS
to leverage the scaled-down voltages to substantially conserve the
energy consumption by up to 60% with an average of 51%.

Similar to Fig. 5, Fig. 8 confirms that DCAPS reduces energy
dissipation in parallel disks at the expense of energy-conservation
overheads. Fig. 8 shows that the energy-conservation overhead
for high-speed disks is larger than those of low-speed disks.
Although DCAPS introduces larger energy-conservation overheads
for disks with high bandwidth, DCAPS still can offer better energy-
conservation rate for high-speed parallel disks.
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Fig.9. The impact of minimum voltage level on energy efficiency of DCAPS.
5.3. Impact of the minimum supply voltage level

In the third experiments, we focus on the impact of the
minimum voltage supply level on energy efficiency and the
overhead of DCAPS applied in parallel disk systems. Fig. 9 shows
that when one increases the minimum supply voltage, energy
dissipations in both parallel disk systems go up. Fig. 10 illustrates
that the energy conservation ratio slightly drops as the minimum
voltage increases. The implication of this result is that parallel
disk systems can take greater advantage from DCAPS when the
minimum voltage level is lower.

Fig. 11 illustrates the impacts of minimum voltage level on
energy-conservation overhead. The results show that the energy-
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Fig. 8. Impact of disk bandwidth on energy conservation overhead.
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conservation overhead is slightly increased when the minimum
voltage is increased from 1 to 1.5 V. The increased energy-
conservation overhead partially contributes to the decrease in
energy-conservation ratio when the minimum voltage goes up.

5.4. Impact of parallelism degrees

Recall that two types of I/O parallelisms are inter-request and
intra-request parallelism. In this experiment let us consider the
intra-request parallelism, because the inter-request parallelism
can be treated as a special case of the intra-request parallelism.
Please note that DCAPS can be readily extended to deal with
inter-request parallelisms. In this experiment, we vary the
parallelism degree from 2 to 16. Fig. 12(a) shows that the
performance in terms of satisfied ratio is improved with the
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Fig. 13. Impact of parallelism degree voltage on energy conservation ratio.

increasing parallelism degree. The rationale behind this trend is
that increasing parallelism degrees allow a large number of disk
requests to simultaneously served by multiple disks in the systems.
Thus, high parallelism degrees help to substantially enhance
throughput of the parallel disk systems, thereby making more
requests to be completed within their desired response times.

It is intriguing to observe from Fig. 12(b) that the high
parallelism degrees lead to low energy consumption. We attribute
this performance trend to positive impacts of the large striping
widths substantially reduce the response times, which in turn
make it possible to efficiently scale down the supply voltage.
Fig. 13 reveals that the energy conservation ratio increases with
the increasing value of parallel degree, because high parallelism
degrees help to substantially enhance system throughput, which
provides space for further energy savings.

Fig. 14 shows that a high parallelism degree leads to low
energy-conservation overhead, which in turn contributes to the
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high energy-efficiency of DCAPS (see Fig. 13). Fig. 14 suggests that
energy-conservation overhead caused by DCAPS can be reduced by
increasing parallelism degrees in large-scale parallel disk systems.

5.5. Real I/O intensive applications

To validate the results from the synthetic workload, we used
disk traces of real world I/O-intensive applications to evaluate
the performance of our strategy in comparison to the alternative
one. We chose two common I/O-intensive applications: LU

decomposition [49] and Sparse Cholesky [50], which have various
I/O patterns. The LU decomposition application tries to compute
the dense LU decomposition of an out-of-core matrix, whereas
the sparse Cholesky application is used to calculate Cholesky
decomposition for sparse, symmetric positive-definite matrices.
First, we evaluate the impact of disk bandwidth on the two
real applications. In this group of experiments, the disk bandwidth
varies from 10 to 50 MB/s with increment of 10MB/s. Figs. 15
and 16 depict the disk bandwidth effect on both the DCAPS-
enabled and non-DCAPS-enabled systems when LU decomposition
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and sparse Cholesky are used as the workload. Figs. 16(a)-(c)
and 17(a)-(c) illustrate that for all the cases we have examined,
the increased disk bandwidth is a driving force of the improved
satisfied ratios and the decreased of energy consumption. These
results are consistent with the disk bandwidth impact observed in
Figs. 6 and 7 (see Section 5.2).

Not surprisingly, the disk bandwidth effect on the two disk
systems relies in part on the data-intensive applications. More
specifically, the energy conversation ratio achieved by DCAPS is
much more pronounced for the workload with the sparse Cholesky
application as compared to the workload with LU decomposition.
This can be attributed relatively to the small arrival rate and
data size of the workload with sparse Cholesky compared to LU
decomposition, which induces lower energy conservation.

Now we evaluate the impact of desired response time on the
two real applications. In this group of experiments, the desired
response time varies from 10 to 50 s with increment of 10 s.
Throughout this set of experiments; the disk bandwidth was set to
30 MB/s. The results for the LU decomposition and sparse Cholesky
applications are plotted in Figs. 17 and 18, respectively. Figs. 17(a)
and 18(a) show that for the two I/O-intensive applications, satisfied
ratios yielded by DCAPS are higher than those of the alternative
strategy. This observation is especially true when the desired
response time is long. Figs. 17(b) and 18(b) demonstrate that
as the desired response time increases, the normalized energy
consumption decreases conspicuously. This is mainly because
when the desired response time is enlarged, the possibility of

reducing the supply voltage without violating timing constraints
increases.

By comparing the two applications, we observe that LU
decomposition is more sensitive to desired response time while
sparse Cholesky is less sensitive. The cause of this performance
difference can be explained as follows. The disk request arrival
rate and data size are two dominant factors for satisfied ratio and
average security level. High arrival rate and large data size of disk
requests give rise to LU decomposition’s small satisfied ratios and
reduction to high-energy consumption (See Figs. 17(a) and 18(b)).
Consequently, the increase in desired response time provides more
opportunities for LU decomposition to improve both satisfied ratio
and energy conservation.

Now it is time to compare the performance of the two strategies
based on the supply voltage. In this group of experiments, the
supply voltage varies from 1 to 1.5 V. Throughout this set of
experiments; the disk bandwidth was set to 30 MB/s. Figs. 19 and
20 plot the results for the LU decomposition and sparse Cholesky
applications, respectively. Figs. 19 and 20 reveal that DCAPS can
reduce energy consumption caused by the two data-intensive
applications.

6. Conclusions and future work

Parallel disk systems play an important role in achieving high-
performance for data-intensive applications, because the high
parallelism and scalability of parallel disk systems can alleviate the



206 M. Nijim et al. / Future Generation Computer Systems 29 (2013) 196-207

| Normalized Energy Consumption |
1 | —8— with DCAPS
I+ without DCAPS

0.2~
0
E
b 1 1 Lasynl L 1
= 1 11 12 1.3 14 1.
Voltage (volts)

Fig. 19. Impact of minimum supply voltage on sparse Cholesky.

Normalized Energy Consumption |

| @ with DCAPS
I —— withcut DCAPS
1 ]
§ I
- _
L e .
go‘a L P
el
93-05
g |
a |
50.4
EDAZ
z
n- L A A Lo i 1 bk 1 o |
b 1 14 12 13 14 1.
Voltage (voits)

Fig. 20. Impact of minimum supply voltage on LU decomposition.

disk 1/O bottleneck problem. However, growing evidence shows
that a substantial amount of energy is consumed by parallel disk
systems in data centers. It is therefore highly desirable to design
energy-efficient parallel disk systems by extensively investigate
energy-conservation software techniques. Adaptively conserving
energy in parallel disk systems becomes particularly critical for
data-intensive applications in which disk requests need to be
completed within specified response times or desired response
times. In this paper, we focused on the design of novel parallel
disk systems that can achieve both great energy efficiency and high
guarantee of specified performance. Specifically, we developed an
adaptive energy-conserving strategy, which dynamically scaled
down disk voltage supplies to the most appropriate levels, thereby
significantly reducing energy dissipation in parallel disk systems.
The experimental results have confirmed that our scheme can
achieve up to 70% energy savings compared with standard parallel
disk systems with fixed supply voltage.

Our approach is the first technique of its kind designed
exclusively for energy-efficient parallel disk systems aiming to
guarantee specified performance of data-intensive applications. As
a future direction, we will implement a prototype of an energy-
efficient storage system where the DCAPS scheme is incorporated.
In addition, we will test a set of data-intensive applications on the
energy-efficient storage systems to evaluate the energy efficiency
and performance impact of DCAPS on real-world storage systems.
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