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Abstract— Parallel disk systems consume a significant amount of 
energy due to the large number of disks. To design economically 
attractive and environmentally friendly parallel disk systems, in 
this paper we design and evaluate an energy-aware prefetching 
strategy for parallel disk systems consisting of a small number of 
buffer disks and large number of data disks. Using buffer disks to 
temporarily handle requests for data disks, we can keep data 
disks in the low-power mode as long as possible. Our prefetching 
algorithm aims to group many small idle periods in data disks to 
form large idle periods, which in turn allow data disks to remain 
in the standby state to save energy. To achieve this goal, we 
utilize buffer disks to aggressively fetch popular data from 
regular data disks into buffer disks, thereby putting data disks 
into the standby state for longer time intervals. A centrepiece in 
the prefetcing mechanism is an energy-saving prediction model, 
based on which we implement the energy-saving calculation 
module that is invoked in the prefetching algorithm. We 
quantitatively compare our energy-aware prefetching mechanism 
against existing solutions, including the dynamic power 
management strategy. Experimental results confirm that the 
buffer-disk-based prefetching can significantly reduce energy 
consumption in parallel disk systems by up to 50 percent. In 
addition, we systematically investigate the energy efficiency 
impact that varying disk power parameters has on our 
prefetching algorithm. 
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I.  INTRODUCTION 
The number of large-scale parallel disk systems is 

increasing in today’s high-performance data-intensive 
computing systems due to the storage space required to 
contain the massive amount of data. Typical examples of data-
intensive applications requiring large-scale parallel disk 
systems include long running simulations [8], remote sensing 
applications [20] and biological sequence analysis [10], to 
name just a few. As the size of a parallel disk system grows, 
the energy consumed by the I/O system often becomes a large 
part of the total cost of ownership [16]. Reducing the energy 
costs of operating these large-scale disk I/O systems often 
becomes one of the most important design issues. 

Several techniques proposed to conserve energy in disk 
systems include dynamic power management schemes [7], 
power-aware cache management strategies [23], software-
directed power management techniques [18], redundancy 
techniques [15], data placement [16], and multi-speed settings 
[9]. However, the research on energy-efficient prefetching 
with buffer disks is still in its infancy. Therefore, it is 
imperative to develop new prefetching techniques to reduce 
the energy consumption in parallel disk systems while 
maintaining high performance. 

Existing power management strategies can shorten the life 
cycle of disks if they are spun up and down too frequently, 
thereby degrading the reliability of the disks. To remedy this 
deficiency we propose a novel parallel disk architecture with 
buffer disks (see [21] for the details of the disk architecture) to 
reduce the number of power-state transitions of disks. Using 
buffer disks to temporarily buffer the requests for data disks, 
one can keep data disks in the low-power state (e.g., standby 
mode) as long as possible. To fully utilize buffer disks while 
aggressively putting data disks into the low-power state, we 
design, in this study, an energy-aware prefetching strategy 
(PRE-BUD for short).  

There are two buffer disk configurations for PRE-BUD. 
PRE-BUD 1 adds an extra disk performing as a buffer disk, 
whereas the PRE-BUD 2 configuration uses an existing disk in 
the I/O system as a buffer disk. The design of these two disk 
configurations relies on the fact that in a wide variety of data-
intensive computing applications (e.g., web applications) a 
small percentage of the data is frequently accessed [14]. The 
goal of this research is to move this small amount of 
frequently accessed data from data disks into buffer disks, 
thereby allowing data disks to switch into a low-power state 
for an increased period of time. 

PRE-BUD has the goal of dynamically fetching data sets 
with the highest energy-savings potential into buffer disks. To 
accurately prefetch data blocks, information concerning future 
disk requests is indispensable. PRE-BUD can deal with both 
the offline and online situations. In the offline case, PRE-BUD 
is provided with a priori knowledge of the list of disk requests. 
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In the online case, PRE-BUD employs the look-ahead 
technique [12] that can furnish a window of future disk 
requests. This work is also currently focuses on techniques to 
improve the energy efficiency of read requests. To implement 
writes in the BUD architecture data consistency must be 
addressed, but we reserve this for future work. 

This research offers the following contributions. First, we 
are among the first to examine how to prefetch data blocks with 
maximum potential energy savings into buffer disks, thereby 
reducing the number of power-state transitions and increasing 
the number of standby periods to improve energy efficiency. 
Second, we build a new energy-saving prediction model, based 
on which an energy-saving calculation module was 
implemented for parallel disk systems with buffer disks. The 
energy savings measured by the prediction model represents 
the importance and priority of prefetching blocks in a buffer 
disk to efficiently conserve energy in disk systems. Third, we 
developed an energy-efficient prefetching algorithm in the 
context of two buffer disk configurations. A greedy prefetching 
module was implemented to fetch blocks that have the highest 
energy savings. We also quantitatively compare PRE-BUD 
with existing techniques employed in parallel disk systems.  

The rest of the paper is organized as follows. Section 2 
summarizes related work in the area of energy-efficient disk 
systems. Section 3 presents a prefetching module and an 
energy-saving calculation module to facilitate the development 
of energy-efficient parallel disk systems with buffer disks. In 
Section 4 we experimentally compare PRE-BUD with existing 
approaches found in the literature. The conclusion of the paper 
and future research directions are discussed in Section 5. 

II. RELATED WORK 

A. Strengths/Limitations of Previous Work 
Almost all energy efficient strategies rely on DPM 

techniques [1]. These techniques assume a disk will have 
several power states. Lower power states have lower 
performance, so the goal is to place a disk in a lower power 
state if there are large idle times. There are several different 
approaches to generate larger idle times for individual disks. 
There are also several approaches to prefetch data, although 
many techniques have focused on low power disks.  

Memory cache techniques – Energy efficient prefetching 
was explored by Papathanasiou and Scott [15]. Their 
techniques relied on changing prefetching and caching 
strategies within the Linux kernel. PB-LRU is another energy 
efficient cache management strategy [24]. This strategy 
focused on providing more opportunities for underlying disk 
power strategies to save energy. Flash drives have also been 
proposed for use as buffers for disk systems [4].  Energy 
efficient caching and prefetching in the context of mobile 
distributed systems have also been extensively studied [11] 
Error! Reference source not found.. These three research 
papers focus on mobile disk systems, whereas we focus on 
large parallel disk systems. All the previously mentioned 
techniques are limited in the fact that caches, memory, and 
flash disk capacities are typically smaller than disk capacities. 

We propose strategies that use a disk as a cache to prefetch 
data into. The break even times of disk drives are usually very 
high and prefetch data accuracy and size become a critical 
factor in energy conservation.  

Multi-speed/low power disks – Many researchers have 
recognized the fact that large break-even times limit the 
effectiveness of energy efficient power management 
strategies. One approach to overcome large break-even times 
is to use multi-speed disks [18] [22]. Energy efficient 
techniques have also relied on replacing high performance 
disks with low energy disks [2]. Mobile computing systems 
have also been recognized as platforms where disk energy 
should be conserved [4][13]. The mobile computing platforms 
use low power disks with smaller break-even times. The 
weakness of using multi-speed disks is that there are no 
commercial multi-speed disks currently available. Low power 
disk systems are an ideal candidate for energy savings, but 
they may not always be a feasible alternative. Our strategies 
will work with existing disk arrays and do not require any 
changes in the hardware.  

Disk as cache – MAID was the original paper to propose 
using a subset of disk drives as cache for a larger disk system 
[6].  MAID designed mass storage systems with the 
performance goal of matching tape-drive systems. PDC was 
proposed to migrate sets of data to different disk locations 
[16]. The goal is to load the first disk with the most popular 
data, the second disk with the second most popular data, and 
continue this process for the remaining disks. The main 
difference between our work and MAID is that our caching 
policies are significantly different. MAID caches blocks that 
are stored in a LRU order. Our strategy attempts to analyze the 
request look-ahead window and pre-fetch any blocks that will 
be capable of reducing the total energy consumption of the 
disk system. PDC is a migratory strategy and can cause large 
energy overheads when a large amount of data must be moved 
within the disk system. PDC also requires the overhead of 
managing metadata for all of the blocks in the disk system, 
whereas our strategy only requires metadata for the blocks in 
the buffer disk. 

B. Observations 
With the previously mentioned limitations of energy 

efficient research we propose a novel prefetching strategy. Our 
research differs from the previous research on the following 
key points. 
(1) We develop a prefetching strategy that tries to move the 
most popular data into a set of buffer disks without affecting 
the data layout of any of the data disks.  
(2) Our prefetching strategy is unique in the fact that it 
prefetches blocks that will produce energy savings using 
information in the look-ahead window.  Previous techniques 
prefetch blocks without consideration of the explicit energy 
savings the prefetched block can produce. Our strategies also 
have the added benefit of not requiring any changes to be 
made to the overall architecture of an existing disk system.
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Previous work has focused on redesigning a disk system, or 
replacing existing disks, to produce energy savings. Our 
strategy will either add extra disks or use the current disk 
system to produce energy savings under certain conditions. 

III. ENERGY-EFFICIENT PREFETCHING STRATEGY 

A. Prefetching Model 
Before presenting the prefetching module of PRE-BUD, 

we first summarize the notation for the description of the 
prefetcher in Table 1.  Fig. 1 outlines the prefetching module 
in PRE-BUD. PRE-BUD is energy-efficient in nature, because  
 

a request for data in a disk currently in the standby mode will 
not have to be spun up to serve the request if the requested 
block is present in the buffer disk (see Step 4). Buffer-disk- 
resident blocks allow standby data disks to stay in the low- 
power state for an increased period of time as long as accessed 
blocks are present in the buffer disk. 

There is a side effect of making the buffer disk perform 
I/Os while placing data disks in the standby state longer; that 
is, the buffer disk is likely to become a performance 
bottleneck. To properly address the bottleneck issue, we 
design the prefetcher in such a way that the load between the 
buffer and data disks is balanced, if the active data disk can  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

TABLE I.  NOTATION FOR THE DESCRIPTION OF THE PREFETCHING MODEL 

Notation Description 
R Current look-ahead. r ∈ R is a reference in the look-ahead 

block(r) Block accessed in reference r ∈ R 

disk(r) Disk in which block(r) is residing 

A Subset of the look-ahead R; for any r in A, disk(r) is active, i.e., ∀ r∈A: disk(r) is active 

G A set of blocks present in the buffer disk 

Es(b) Energy saving contributed by prefetching block b 

A+ For any b ∈ A+, we have disk(b) ∈A, Es(b)>0, b ∉ G, and ∃r ∈R: block(r)=b 

G+ The set of blocks with the highest energy savings in A+ ∪ G 

Input: a request r, parallel disk system with m disks 
1  if block(r) is present in the buffer disk { 
2     if disk(r) is active and TDisk(r) ≤ T0(r), where TDisk(r) and T0(r) are response time of r when  
             serviced by disk(r) and the buffer disk, respectively 
3       The request r is serviced by disk(r); 
4   else the request r is serviced by the buffer disk; 
    } 
5 else { /* block(r) is not present in the buffer disk */ 
    /* Initiate the prefetching phase */ 
6      if disk(r) is in the standby state /* spin up disk(r) when it is standby */ 
7        spin up disk(r); 
8    Compute the energy savings of references in A ⊆ R,  
          where A is a subset of the look-ahead R, and ∀ r’∈A: disk(r’) is active; 
9    Update the energy savings of blocks in the buffer disk; 

 10   Fetch blocks in A+ ∩ G+; 
 11   Evicting the blocks in G – G+ with the lowest energy savings as necessary,  
            where G is the set of blocks present in the buffer disk; 

             A+ is the set of blocks, such that if block b ∈ A+, then b is referenced by  
                 a request in the look-ahead, b is not present in the buffer disk, disk(b) is active 
                 (i.e., disk(b) ∈ A), and the energy saving Es(b) of b is larger than 0;  

               G+ is the set of blocks with the highest energy saving in A+ ∪ G,  
11.a                     such that  

0
'

)'()'( Brtr
Gr

<⋅∑
+∈

λ  /* Bandwidth constraint must be satisfied */  

11.b                                      
0

'

)'( Crs
Gr

≤∑
+∈

/* Capacity constraint must be satisfied */ 

         /* The request r is then serviced */ 
12     if block(r) has not been prefetched  
13         The request r is serviced by disk(r); 
14     else return block(r); /* block(r) was recently retrieved; no extra I/O is necessary */ 
 }  

Figure 1.  The energy-efficient prefetching module. 
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achieve a shorter  response time than the buffer disk (see step 
2). In addition to load balancing, utilization control is 
introduced to prevent disk requests from experiencing 
unacceptably long response times. In light of the utilization 
control, the prefetching module ensures that the aggregated 
required I/O bandwidth is lower than the maximum bandwidth 
provided by the buffer disk (see Line 11.a in Fig. 1). To 
improve the energy efficiency of PRE-BUD, we force PRE-
BUD to fetch blocks from data disks into the buffer disk on a 
demand basis (see Line 5 in Fig. 1). Thus, block b is 
prefetched in Step 10 only when the following four conditions 
are met. First, a request r in the look-ahead is accessing the 
block, i.e., ∃r∈R: block(r) = b. Second, the block is not 
present in the buffer disk, i.e., b ∉ G. Third, fetching the 
blocks and caching them into the buffer disk can improve 
energy efficiency, i.e., Es(b)>0. Lastly, the block is residing in 
an active data disk, i.e., disk(b)∈A. Note that set A+ (see Table 
1) contains all the blocks that satisfy the above four criteria.  

To maximize energy efficiency, we have to identify data-
disk-resident blocks with the highest energy savings potential. 
This step is implemented by maintaining a set G+ of blocks 
with the highest energy saving in A+ ∪ G. Thus, blocks in A+ 
∩ G+ are the candidate blocks to be fetched in the prefetching 
phase. A tie of energy savings between a buffer-disk-resident 
block and a data-disk-resident block can be broken in favor of 
the buffer-disk-resident block. If two data-disk-resident blocks 
have the same energy savings, the tie is broken in favor of the 
block accessed earlier by a request in the look-ahead.  

In the case that the buffer disk is full, blocks in G – G+ 
must be evicted from the buffer disk (see Step 11 in Fig. 1). 
This is because G – G+ contains the blocks with the lowest 
energy savings. We assign zero to the energy savings of 

buffer-disk-resident blocks that will not be accessed by any 
requests in the look-ahead. The buffer-disk-resident blocks 
without any contribution to energy conservation will be among 
the first to be evicted from the buffer disk, if a disk-resident 
block with high energy saving must be fetched when the 
buffer disk is full. Blocks that will not be accessed in the look-
ahead are evicted in the least-recently-used order.  

PRE-BUD can conserve more energy by the virtue of its 
on-demand manner, which defers prefetching decisions until 
the last possible moment when the above criteria are satisfied. 
Deferring the prefetching phase is beneficial, because (1) this 
phase needs to spin up a corresponding disk if it is in the 
standby state, and (2) late prefetching leads to a larger look-
ahead for better energy-aware prefetching decisions. The 
prefetching module can be readily integrated with a disk 
scheduling mechanism, which is employed to independently 
optimize low-level disk access times in each individual disk. 
This integration is implemented by batching disk requests and 
offering each disk an opportunity to reschedule the requests to 
optimize low-level disk access performance 

B. Energy-Saving Calculation Model 
We develop an energy-saving prediction model, based on 

which we implement the energy-saving calculation module 
invoked in Steps 8 and 9 in the prefetching module (see Fig. 
1). The prediction model along with the calculation module 
are critical for the prefetcher, because the energy savings of a 
block represents the importance and priority of placing the 
block in the buffer disk to reduce the energy consumption of 
the disk system. The energy-saving calculation module can 
predict the amount of energy conserved by fetching a block 
from a data disk into a buffer disk. It also calculates the utility 
of caching a buffer-disk-resident block rather than evicting it 

TABLE II.  NOTATION FOR THE DESCRIPTION OF THE ENERGY-SAVING CALCULATION MODULE. 

Notation Description 

R,j A set of references accessing blocks in the jth data disk. 

Rk,j ⊆ R A set of references accessing the kth block bk,j in the jth data disk 

bk,j The kth block in the jth data disk 

TBE Break-even time. Minimum idle time required to compensate the cost of entering standby 

Tij Active time period serving the ith request issued to the jth data disk 

tij Time spent serving the ith request issued to the jth data disk 

αij Time spent in the idle period prior to the ith request accessing a block in disk j 

Iij An idle period prior to the ith request accessing a block in the jth data disk 

nj The total number of requests (in the look-ahead) issued to the jth disk 

Φj A set of disk access activities for references in Rj, 

time(bk,j) Active time period to serve a request accessing block bk,j. 

block(Tij) A block accessed during the active period Tij 

TD Time to transition from active/idle to standby 

TU Time to transition from standby to active mode 

ED Energy overhead of transitioning from active/idle to standby 

EU Energy overhead of transitioning from standby to active mode 

PA, PI, PS Disk power in the active, idle, and standby mode 
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from the buffer disk. Table 2 summarizes the notation for the 
description of the energy-saving calculation module. To 
analyze circumstances in which prefetching blocks can yield 
energy savings, we focus on a single referenced block stored 
in a data disk. Let R,j ⊆ R be a set of references accessing 
blocks in the jth data disk. Thus, R,j – a subset of the look-
ahead R – can be defined as 

}.,,)(blockdisk datath )({ GjkbjkbrjrdiskRrrjR ∉∧=∧=∧∈=

Given a set Rk,j ⊆ R of references accessing the kth block bk,j in 
the jth data disk, let us derive the energy saving Es(bk,j) 
achieved by fetching bk,j from the data disk into the buffer 
disk. Rk,j is comprised of all the requests referencing a 
common block bk,j that is not present in the buffer disk; 
therefore, Rk,j can be formally expressed as 

})({ ,,, GbbrblockRrrR jkjkjk ∉∧=∧∈= .  

Given a reference list Rj and a block bk,j, in what follows 
we identify four cases where a reference in Rj can contribute to 
positive energy savings by the virtue of prefetching block bk,j. 
First, we introduce two energy saving principles utilized by 
PRE-BUD.  
Energy Saving Principle 1: To increase the length and number 
of idle periods larger than disk break-even time TBE, which is 
the minimum disk standby time required to compensate the 
cost of entering the standby state. This principle can be 
realized by combining two adjacent idle periods to form a 
single idle period that is larger than TBE.  PRE-BUD fetches in 
advance a block accessed between two adjacent idle periods, 
thereby possibly forming a larger inactivity time that allows 
the disk to enter the standby state to conserve energy.  
Energy Saving Principle 2: To reduce the number of power-
state transitions. The energy efficiency of a disk can be further 
improved by minimizing the energy cost of spinning up and 
down disks. Disk vendors can provide high quality disks with 
low spin-up/down energy  

Now we investigate cases which exploit the above energy 
saving principles to conserve energy in disks. Let Φj = {I1j, T1j, 
I2j, T2j,… Iij, Tij,… Inj,j, Tnj,j} be a set of disk accesses for 
references in Rj, where for an active period Tij, tij is the time 
spent serving the ith request issued to data disk j; for idle 
period Iij, αij is the time spent in the idle period prior to the ith 
request accessing a block in the jth data disk, and nj is the total 
number of requests issued to the jth disk. We denote block(Tij) 
as a block accessed during the active period Tij.  

The first three cases demonstrate scenarios that apply the 
energy saving principle 1 while the fourth case uses the energy 
saving principle 2 to generate longer idle periods (i.e., longer 
than TBE) by prefetching block(Tij) to combine the ith and 
(i+1)th idle periods. Let us pay attention to the ith active 
period Tij and the two periods Iij and I(i+1)j (i.e., the ones 
adjacent to Tij). Cases 1-3 share two common conditions – (1) 
both Iij and I(i+1)j are larger than zero and (2) the summation of 
tij, αij, and α(i+1)j is larger than the break-even time TBE. 
Case 1: Both the ith and (i+1)th idle periods are equal to or 
smaller than the break-even time TBE. Thus, we have 

BEij T≤< α0 , BEji T≤< + )1(0 α , and BEjiijij Tt >++ + )1(αα . 

Case 2: The ith idle period is equal to or smaller than the 
break-even time TBE; the (i+1)th idle period is larger than TBE. 
Formally, we have BEij T≤< α0 , BEji T>+ )1(α , and 

BEjiijij Tt >++ + )1(αα . 
Case 3: The ith idle period is larger than TBE; the (i+1)th idle 
period is equal to or smaller than TBE. The conditions for case 
3 can be expressed as: BEij T>α , BEji T≤< + )1(0 α , and 

BEjiijij Tt >++ + )1(αα .  

Case 4: In this case, both αij and α (i+1)j are larger than TBE, 
meaning that the jth disk can be standby in these two time 
intervals to conserve energy. Formally, we have BEij T>α , 

BEji T>+ )1(α , and BEjiijij Tt >++ + )1(αα . 

IV. EXPERIMENTAL RESULTS 

For our experimental results we implemented a parallel 
disk simulator in JAVA. The disk simulator implements the 
algorithm presented in Fig. 1 and the energy saving calculator 
in Fig. 2. The disk parameters used for our simulation results 
are given in Table 3.  

The first set of experiments we conducted varied the hit rate 
and the data size of the requests. The hit rate in these 
experiments is defined as the percentage of all the requests 
that can be served by the buffer disk and the data size is 
defined as the data size of each request. We generated random 
disk requests and varied the inter-arrival delay of the requests. 
The inter-arrival rate must be fairly low to produce energy 
savings or disks will never be placed in the sleep state. If the 
inter-arrival rate is high all disks must be active to serve the 
requests. The results of the first set of experiments are 
summarized in Fig. 3.  

There are two main observations we can draw from this 
figure, one being that as data size increases energy savings 
increases, and second, as the hit rate is increased energy 
savings increases. As the data size increases the time to serve 
the request increases. If multiple requests can be served from 
the buffer disk than the data disks have a greater opportunity 
to transition to the sleep state. Similarly as the hit rate 
increases the buffer disk serves a greater number of 
consecutive hits allowing data disks to sit idle for longer 
periods of time. The goal of our energy-efficient prefetcher is 
to increase the number and length of idle periods to allow a 
data disk to transition to the sleep state. This can be achieved 
by increasing the hit rate or increasing the data size of 
requests. This leads us to believe that many web and 
multimedia applications would be suitable for our energy 
saving techniques.  

The second set of experiments conducted focuses on the 
impact that varying disk power parameters has on the energy 
savings. Fig. 4 varies the power characteristics of our 
simulated IBM36Z15 disk. For each figure we only vary one 
disk energy parameter. The number of disks was fixed at four 
and the data size is 25MB. From Fig. 4 we realize that
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TABLE III.  DISK PARAMETERS USED FOR SIMULATIONS 

Simulation Parameters 
Transfer Rate  PA PI PS TD TU ED EU 
55 MB/S 13.5 W 10.2 W 2.5 W 1.5 S 10.9 S 13.0 J 135 J 

 
 

  
                                                                                      (a)                                                                                       (b) 

  
                                                                    (c)                                                                                       (d) 

Figure 3.   Total Energy Consumption of Disk System while Data Size is varied for four different values of hit rate: (a) 85 %, (b) 90 %, (c) 95 %, and (d) 100 % hit 
rate. 

 

Input: block bk,j, disk j, a set Φj  of disk access activities; Output: ES(bk,j)  
1  Initialize ES(bk,j) to 0; 
2     for (i = 1 to nj) { 
3       if ( BEjiijij Tt >++ + )1(αα ) {  

4           if ( BEij T≤< α0 ) { 

5 if ( BEji T≤< + )1(0 α )       

6    UDDUiijijSjiijIijSijS EETTtPPbEbE −−−−++⋅−+⋅+= ++ )()()()( )1()1( αααα ; 

7 else )()()( ijijSijIijSijS tPPbEbE +⋅−⋅+= αα ;  

8 } 
9 else { 
10     if  ( BEji T≤< + )1(0 α ) /* Case 3, see Eq. (4.8) */ 

11          )()()( )1()1( ijjiSjiIijSijS TPPbEbE +⋅−⋅+= ++ αα ; 

12      else ).()()( ijUDSUDijSijS tTTPEEbEbE ++⋅−++=   

13 } 
14  } /* end Cases 1-4 */ 
15 else ijIijSijS tPbEbE ⋅−= )()( ; /* Negative energy saving. */ 

16 } /* end for */ 
17 return )time()( jkAijS bPbE ⋅−  

Figure 2.  The energy-saving calculation module. 
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                                                                                               (a)                                                                     (b)                    

 
(c) 

Figure 4.   Total Energy consumption for various values of the following disk parameters: (a) power active, (b) power idle, and (c) power standby 
 
lowering the Power Active, which is the energy consumed 
while the disk is in the active state, will decrease the energy 
consumption for all the strategies we compared. Lowering 
Power Active also impacts the relative energy savings that the 
PRE-BUD strategies are able to produce. If Power Active is 
9.5W PRE-BUD2 saves 15.1 % energy over DPM. If it is 
increased to 17.5W PRE-BUD2 only saves 13% energy over 
DPM. Fig. 4 (a) is similar to Fig. 4 (b) but now we see that 
Power Idle has a greater impact on energy savings as 
compared to Power Active. If Power Idle, the energy 
consumed while the disk is idle, is very low PRE-BUD 2 has a 
negative impact, but if it’s increased to 14.2 W PRE-BUD 2 
now saves 25 % of energy as compared to DPM.  The last set 
of experiments varied the Power Sleep parameter, which 
represents the energy consumed while the disk is in the sleep 
state, also has significant impact on PRE-BUD strategies. The 
percentage change in energy savings starts at 16.3% and drops 
to 11.7% with increasing Power Sleep.  

The results illustrated in Fig. 4 indicate that parallel disks 
with low active power, high idle power, and low standby 
power can produce the best energy-savings benefit. This is 
because PRE-BUD allows disks to be spun down to the 
standby state during times they would be idle using DPM. The 
greater the discrepancy between idle and standby power, the 
more beneficial PRE-BUD becomes. 

V.  CONCLUSIONS AND FUTURE WORK 
The use of large-scale parallel disk systems continues to 

rise as the demand for information systems with large 
capacities grows. Parallel disk systems combine smaller disks 
to achieve large capacities. A challenging problem is that 
large-scale disk systems can be extremely energy inefficient. 
The energy consumption rates are rising as disks become 
faster and disk systems are scaled up. The goal of this study is 
to improve the energy efficiency of a parallel disk system 

using a buffer disk to which frequently accessed data are 
prefetched. 

We proposed two different buffer disk configurations. The 
first configuration added an extra disk to the parallel disk 
system, whereas the second one used an existing disk as the 
buffer disk. Placing popular data blocks in the buffer disk 
provides ample opportunities to increase idle periods in data 
disks, thereby facilitating long sleep times of disks. As sleep 
times are increased the disk is able to save energy over being 
in the idle state. Although the first prefetching strategy may 
consume more energy due to the energy overhead introduced 
by an extra disk, it does not compromise the capacity of the 
disk system. We implemented a simulator and compared our 
approaches against three existing approaches.  

For the future research work we will investigate the 
scalability of the energy-efficient prefetching algorithm by 
adding more than one buffer disk to the disk system. The 
number of buffer disks will have to be increased as the scale of 
the disk system is increased. This will add the extra 
requirements parallel applications demand and our strategies 
will have to be modified to reflect these changes. There is also 
a need to support write operations in the BUD architecture. 
Furthermore, we plan to use traces from real-world 
applications to evaluate the performance of PRE-BUD. Last 
but not least, we will study the reliability impacts of buffer 
disks on parallel disk systems.  
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