
Energy-Aware Prefetching for Parallel Disk Systems
Algorithms, Models, and Evaluation

Adam Manzanres†, Xiaojun Ruan†, Shu Yin†, Mais Nijim‡, WeiLuo¥, and Xiao Qin†
†Department of Computer Science and Software Engineering

Auburn University
Auburn, AL USA

{acm0008, xzr0001, szy0004, xqin}@auburn.edu

‡School of Computing
University of Southern Mississisippi

Hattiesburg, MS USA
mais.nijim@usm.edu

¥China Ship Development and Design Center

Wuhan, Hubei China
free_xingezi@163.com

Abstract— Parallel disk systems consume a significant amount of
energy due to the large number of disks. To design economically
attractive and environmentally friendly parallel disk systems, in
this paper we design and evaluate an energy-aware prefetching
strategy for parallel disk systems consisting of a small number of
buffer disks and large number of data disks. Using buffer disks to
temporarily handle requests for data disks, we can keep data
disks in the low-power mode as long as possible. Our prefetching
algorithm aims to group many small idle periods in data disks to
form large idle periods, which in turn allow data disks to remain
in the standby state to save energy. To achieve this goal, we
utilize buffer disks to aggressively fetch popular data from
regular data disks into buffer disks, thereby putting data disks
into the standby state for longer time intervals. A centrepiece in
the prefetcing mechanism is an energy-saving prediction model,
based on which we implement the energy-saving calculation
module that is invoked in the prefetching algorithm. We
quantitatively compare our energy-aware prefetching mechanism
against existing solutions, including the dynamic power
management strategy. Experimental results confirm that the
buffer-disk-based prefetching can significantly reduce energy
consumption in parallel disk systems by up to 50 percent. In
addition, we systematically investigate the energy efficiency
impact that varying disk power parameters has on our
prefetching algorithm.

Keywords-storage systems; energy-efficiency;prefetching

I. INTRODUCTION
The number of large-scale parallel disk systems is

increasing in today’s high-performance data-intensive
computing systems due to the storage space required to
contain the massive amount of data. Typical examples of data-
intensive applications requiring large-scale parallel disk
systems include long running simulations [8], remote sensing
applications [20] and biological sequence analysis [10], to
name just a few. As the size of a parallel disk system grows,
the energy consumed by the I/O system often becomes a large
part of the total cost of ownership [16]. Reducing the energy
costs of operating these large-scale disk I/O systems often
becomes one of the most important design issues.

Several techniques proposed to conserve energy in disk
systems include dynamic power management schemes [7],
power-aware cache management strategies [23], software-
directed power management techniques [18], redundancy
techniques [15], data placement [16], and multi-speed settings
[9]. However, the research on energy-efficient prefetching
with buffer disks is still in its infancy. Therefore, it is
imperative to develop new prefetching techniques to reduce
the energy consumption in parallel disk systems while
maintaining high performance.

Existing power management strategies can shorten the life
cycle of disks if they are spun up and down too frequently,
thereby degrading the reliability of the disks. To remedy this
deficiency we propose a novel parallel disk architecture with
buffer disks (see [21] for the details of the disk architecture) to
reduce the number of power-state transitions of disks. Using
buffer disks to temporarily buffer the requests for data disks,
one can keep data disks in the low-power state (e.g., standby
mode) as long as possible. To fully utilize buffer disks while
aggressively putting data disks into the low-power state, we
design, in this study, an energy-aware prefetching strategy
(PRE-BUD for short).

There are two buffer disk configurations for PRE-BUD.
PRE-BUD 1 adds an extra disk performing as a buffer disk,
whereas the PRE-BUD 2 configuration uses an existing disk in
the I/O system as a buffer disk. The design of these two disk
configurations relies on the fact that in a wide variety of data-
intensive computing applications (e.g., web applications) a
small percentage of the data is frequently accessed [14]. The
goal of this research is to move this small amount of
frequently accessed data from data disks into buffer disks,
thereby allowing data disks to switch into a low-power state
for an increased period of time.

PRE-BUD has the goal of dynamically fetching data sets
with the highest energy-savings potential into buffer disks. To
accurately prefetch data blocks, information concerning future
disk requests is indispensable. PRE-BUD can deal with both
the offline and online situations. In the offline case, PRE-BUD
is provided with a priori knowledge of the list of disk requests.

2009 Eighth IEEE International Symposium on Network Computing and Applications

978-0-7695-3698-9/09 $25.00 © 2009 IEEE

DOI 10.1109/NCA.2009.29

90

In the online case, PRE-BUD employs the look-ahead
technique [12] that can furnish a window of future disk
requests. This work is also currently focuses on techniques to
improve the energy efficiency of read requests. To implement
writes in the BUD architecture data consistency must be
addressed, but we reserve this for future work.

This research offers the following contributions. First, we
are among the first to examine how to prefetch data blocks with
maximum potential energy savings into buffer disks, thereby
reducing the number of power-state transitions and increasing
the number of standby periods to improve energy efficiency.
Second, we build a new energy-saving prediction model, based
on which an energy-saving calculation module was
implemented for parallel disk systems with buffer disks. The
energy savings measured by the prediction model represents
the importance and priority of prefetching blocks in a buffer
disk to efficiently conserve energy in disk systems. Third, we
developed an energy-efficient prefetching algorithm in the
context of two buffer disk configurations. A greedy prefetching
module was implemented to fetch blocks that have the highest
energy savings. We also quantitatively compare PRE-BUD
with existing techniques employed in parallel disk systems.

The rest of the paper is organized as follows. Section 2
summarizes related work in the area of energy-efficient disk
systems. Section 3 presents a prefetching module and an
energy-saving calculation module to facilitate the development
of energy-efficient parallel disk systems with buffer disks. In
Section 4 we experimentally compare PRE-BUD with existing
approaches found in the literature. The conclusion of the paper
and future research directions are discussed in Section 5.

II. RELATED WORK

A. Strengths/Limitations of Previous Work
Almost all energy efficient strategies rely on DPM

techniques [1]. These techniques assume a disk will have
several power states. Lower power states have lower
performance, so the goal is to place a disk in a lower power
state if there are large idle times. There are several different
approaches to generate larger idle times for individual disks.
There are also several approaches to prefetch data, although
many techniques have focused on low power disks.

Memory cache techniques – Energy efficient prefetching
was explored by Papathanasiou and Scott [15]. Their
techniques relied on changing prefetching and caching
strategies within the Linux kernel. PB-LRU is another energy
efficient cache management strategy [24]. This strategy
focused on providing more opportunities for underlying disk
power strategies to save energy. Flash drives have also been
proposed for use as buffers for disk systems [4]. Energy
efficient caching and prefetching in the context of mobile
distributed systems have also been extensively studied [11]
Error! Reference source not found.. These three research
papers focus on mobile disk systems, whereas we focus on
large parallel disk systems. All the previously mentioned
techniques are limited in the fact that caches, memory, and
flash disk capacities are typically smaller than disk capacities.

We propose strategies that use a disk as a cache to prefetch
data into. The break even times of disk drives are usually very
high and prefetch data accuracy and size become a critical
factor in energy conservation.

Multi-speed/low power disks – Many researchers have
recognized the fact that large break-even times limit the
effectiveness of energy efficient power management
strategies. One approach to overcome large break-even times
is to use multi-speed disks [18] [22]. Energy efficient
techniques have also relied on replacing high performance
disks with low energy disks [2]. Mobile computing systems
have also been recognized as platforms where disk energy
should be conserved [4][13]. The mobile computing platforms
use low power disks with smaller break-even times. The
weakness of using multi-speed disks is that there are no
commercial multi-speed disks currently available. Low power
disk systems are an ideal candidate for energy savings, but
they may not always be a feasible alternative. Our strategies
will work with existing disk arrays and do not require any
changes in the hardware.

Disk as cache – MAID was the original paper to propose
using a subset of disk drives as cache for a larger disk system
[6]. MAID designed mass storage systems with the
performance goal of matching tape-drive systems. PDC was
proposed to migrate sets of data to different disk locations
[16]. The goal is to load the first disk with the most popular
data, the second disk with the second most popular data, and
continue this process for the remaining disks. The main
difference between our work and MAID is that our caching
policies are significantly different. MAID caches blocks that
are stored in a LRU order. Our strategy attempts to analyze the
request look-ahead window and pre-fetch any blocks that will
be capable of reducing the total energy consumption of the
disk system. PDC is a migratory strategy and can cause large
energy overheads when a large amount of data must be moved
within the disk system. PDC also requires the overhead of
managing metadata for all of the blocks in the disk system,
whereas our strategy only requires metadata for the blocks in
the buffer disk.

B. Observations
With the previously mentioned limitations of energy

efficient research we propose a novel prefetching strategy. Our
research differs from the previous research on the following
key points.
(1) We develop a prefetching strategy that tries to move the
most popular data into a set of buffer disks without affecting
the data layout of any of the data disks.
(2) Our prefetching strategy is unique in the fact that it
prefetches blocks that will produce energy savings using
information in the look-ahead window. Previous techniques
prefetch blocks without consideration of the explicit energy
savings the prefetched block can produce. Our strategies also
have the added benefit of not requiring any changes to be
made to the overall architecture of an existing disk system.

Corresponding Author. xqin@auburn.edu

91

Previous work has focused on redesigning a disk system, or
replacing existing disks, to produce energy savings. Our
strategy will either add extra disks or use the current disk
system to produce energy savings under certain conditions.

III. ENERGY-EFFICIENT PREFETCHING STRATEGY

A. Prefetching Model
Before presenting the prefetching module of PRE-BUD,

we first summarize the notation for the description of the
prefetcher in Table 1. Fig. 1 outlines the prefetching module
in PRE-BUD. PRE-BUD is energy-efficient in nature, because

a request for data in a disk currently in the standby mode will
not have to be spun up to serve the request if the requested
block is present in the buffer disk (see Step 4). Buffer-disk-
resident blocks allow standby data disks to stay in the low-
power state for an increased period of time as long as accessed
blocks are present in the buffer disk.

There is a side effect of making the buffer disk perform
I/Os while placing data disks in the standby state longer; that
is, the buffer disk is likely to become a performance
bottleneck. To properly address the bottleneck issue, we
design the prefetcher in such a way that the load between the
buffer and data disks is balanced, if the active data disk can

TABLE I. NOTATION FOR THE DESCRIPTION OF THE PREFETCHING MODEL

Notation Description
R Current look-ahead. r ∈ R is a reference in the look-ahead

block(r) Block accessed in reference r ∈ R

disk(r) Disk in which block(r) is residing

A Subset of the look-ahead R; for any r in A, disk(r) is active, i.e., ∀ r∈A: disk(r) is active

G A set of blocks present in the buffer disk

Es(b) Energy saving contributed by prefetching block b

A+ For any b ∈ A+, we have disk(b) ∈A, Es(b)>0, b ∉ G, and ∃r ∈R: block(r)=b

G+ The set of blocks with the highest energy savings in A+ ∪ G

Input: a request r, parallel disk system with m disks
1 if block(r) is present in the buffer disk {
2 if disk(r) is active and TDisk(r) ≤ T0(r), where TDisk(r) and T0(r) are response time of r when
 serviced by disk(r) and the buffer disk, respectively
3 The request r is serviced by disk(r);
4 else the request r is serviced by the buffer disk;
 }
5 else { /* block(r) is not present in the buffer disk */
 /* Initiate the prefetching phase */
6 if disk(r) is in the standby state /* spin up disk(r) when it is standby */
7 spin up disk(r);
8 Compute the energy savings of references in A ⊆ R,
 where A is a subset of the look-ahead R, and ∀ r’∈A: disk(r’) is active;
9 Update the energy savings of blocks in the buffer disk;

 10 Fetch blocks in A+ ∩ G+;
 11 Evicting the blocks in G – G+ with the lowest energy savings as necessary,
 where G is the set of blocks present in the buffer disk;

 A+ is the set of blocks, such that if block b ∈ A+, then b is referenced by
 a request in the look-ahead, b is not present in the buffer disk, disk(b) is active
 (i.e., disk(b) ∈ A), and the energy saving Es(b) of b is larger than 0;

 G+ is the set of blocks with the highest energy saving in A+ ∪ G,
11.a such that

0
'

)'()'(Brtr
Gr

<⋅∑
+∈

λ /* Bandwidth constraint must be satisfied */

11.b
0

'

)'(Crs
Gr

≤∑
+∈

/* Capacity constraint must be satisfied */

 /* The request r is then serviced */
12 if block(r) has not been prefetched
13 The request r is serviced by disk(r);
14 else return block(r); /* block(r) was recently retrieved; no extra I/O is necessary */
 }

Figure 1. The energy-efficient prefetching module.

92

achieve a shorter response time than the buffer disk (see step
2). In addition to load balancing, utilization control is
introduced to prevent disk requests from experiencing
unacceptably long response times. In light of the utilization
control, the prefetching module ensures that the aggregated
required I/O bandwidth is lower than the maximum bandwidth
provided by the buffer disk (see Line 11.a in Fig. 1). To
improve the energy efficiency of PRE-BUD, we force PRE-
BUD to fetch blocks from data disks into the buffer disk on a
demand basis (see Line 5 in Fig. 1). Thus, block b is
prefetched in Step 10 only when the following four conditions
are met. First, a request r in the look-ahead is accessing the
block, i.e., ∃r∈R: block(r) = b. Second, the block is not
present in the buffer disk, i.e., b ∉ G. Third, fetching the
blocks and caching them into the buffer disk can improve
energy efficiency, i.e., Es(b)>0. Lastly, the block is residing in
an active data disk, i.e., disk(b)∈A. Note that set A+ (see Table
1) contains all the blocks that satisfy the above four criteria.

To maximize energy efficiency, we have to identify data-
disk-resident blocks with the highest energy savings potential.
This step is implemented by maintaining a set G+ of blocks
with the highest energy saving in A+ ∪ G. Thus, blocks in A+
∩ G+ are the candidate blocks to be fetched in the prefetching
phase. A tie of energy savings between a buffer-disk-resident
block and a data-disk-resident block can be broken in favor of
the buffer-disk-resident block. If two data-disk-resident blocks
have the same energy savings, the tie is broken in favor of the
block accessed earlier by a request in the look-ahead.

In the case that the buffer disk is full, blocks in G – G+
must be evicted from the buffer disk (see Step 11 in Fig. 1).
This is because G – G+ contains the blocks with the lowest
energy savings. We assign zero to the energy savings of

buffer-disk-resident blocks that will not be accessed by any
requests in the look-ahead. The buffer-disk-resident blocks
without any contribution to energy conservation will be among
the first to be evicted from the buffer disk, if a disk-resident
block with high energy saving must be fetched when the
buffer disk is full. Blocks that will not be accessed in the look-
ahead are evicted in the least-recently-used order.

PRE-BUD can conserve more energy by the virtue of its
on-demand manner, which defers prefetching decisions until
the last possible moment when the above criteria are satisfied.
Deferring the prefetching phase is beneficial, because (1) this
phase needs to spin up a corresponding disk if it is in the
standby state, and (2) late prefetching leads to a larger look-
ahead for better energy-aware prefetching decisions. The
prefetching module can be readily integrated with a disk
scheduling mechanism, which is employed to independently
optimize low-level disk access times in each individual disk.
This integration is implemented by batching disk requests and
offering each disk an opportunity to reschedule the requests to
optimize low-level disk access performance

B. Energy-Saving Calculation Model
We develop an energy-saving prediction model, based on

which we implement the energy-saving calculation module
invoked in Steps 8 and 9 in the prefetching module (see Fig.
1). The prediction model along with the calculation module
are critical for the prefetcher, because the energy savings of a
block represents the importance and priority of placing the
block in the buffer disk to reduce the energy consumption of
the disk system. The energy-saving calculation module can
predict the amount of energy conserved by fetching a block
from a data disk into a buffer disk. It also calculates the utility
of caching a buffer-disk-resident block rather than evicting it

TABLE II. NOTATION FOR THE DESCRIPTION OF THE ENERGY-SAVING CALCULATION MODULE.

Notation Description

R,j A set of references accessing blocks in the jth data disk.

Rk,j ⊆ R A set of references accessing the kth block bk,j in the jth data disk

bk,j The kth block in the jth data disk

TBE Break-even time. Minimum idle time required to compensate the cost of entering standby

Tij Active time period serving the ith request issued to the jth data disk

tij Time spent serving the ith request issued to the jth data disk

αij Time spent in the idle period prior to the ith request accessing a block in disk j

Iij An idle period prior to the ith request accessing a block in the jth data disk

nj The total number of requests (in the look-ahead) issued to the jth disk

Φj A set of disk access activities for references in Rj,

time(bk,j) Active time period to serve a request accessing block bk,j.

block(Tij) A block accessed during the active period Tij

TD Time to transition from active/idle to standby

TU Time to transition from standby to active mode

ED Energy overhead of transitioning from active/idle to standby

EU Energy overhead of transitioning from standby to active mode

PA, PI, PS Disk power in the active, idle, and standby mode

93

from the buffer disk. Table 2 summarizes the notation for the
description of the energy-saving calculation module. To
analyze circumstances in which prefetching blocks can yield
energy savings, we focus on a single referenced block stored
in a data disk. Let R,j ⊆ R be a set of references accessing
blocks in the jth data disk. Thus, R,j – a subset of the look-
ahead R – can be defined as

}.,,)(blockdisk datath)({ GjkbjkbrjrdiskRrrjR ∉∧=∧=∧∈=

Given a set Rk,j ⊆ R of references accessing the kth block bk,j in
the jth data disk, let us derive the energy saving Es(bk,j)
achieved by fetching bk,j from the data disk into the buffer
disk. Rk,j is comprised of all the requests referencing a
common block bk,j that is not present in the buffer disk;
therefore, Rk,j can be formally expressed as

})({ ,,, GbbrblockRrrR jkjkjk ∉∧=∧∈= .

Given a reference list Rj and a block bk,j, in what follows
we identify four cases where a reference in Rj can contribute to
positive energy savings by the virtue of prefetching block bk,j.
First, we introduce two energy saving principles utilized by
PRE-BUD.
Energy Saving Principle 1: To increase the length and number
of idle periods larger than disk break-even time TBE, which is
the minimum disk standby time required to compensate the
cost of entering the standby state. This principle can be
realized by combining two adjacent idle periods to form a
single idle period that is larger than TBE. PRE-BUD fetches in
advance a block accessed between two adjacent idle periods,
thereby possibly forming a larger inactivity time that allows
the disk to enter the standby state to conserve energy.
Energy Saving Principle 2: To reduce the number of power-
state transitions. The energy efficiency of a disk can be further
improved by minimizing the energy cost of spinning up and
down disks. Disk vendors can provide high quality disks with
low spin-up/down energy

Now we investigate cases which exploit the above energy
saving principles to conserve energy in disks. Let Φj = {I1j, T1j,
I2j, T2j,… Iij, Tij,… Inj,j, Tnj,j} be a set of disk accesses for
references in Rj, where for an active period Tij, tij is the time
spent serving the ith request issued to data disk j; for idle
period Iij, αij is the time spent in the idle period prior to the ith
request accessing a block in the jth data disk, and nj is the total
number of requests issued to the jth disk. We denote block(Tij)
as a block accessed during the active period Tij.

The first three cases demonstrate scenarios that apply the
energy saving principle 1 while the fourth case uses the energy
saving principle 2 to generate longer idle periods (i.e., longer
than TBE) by prefetching block(Tij) to combine the ith and
(i+1)th idle periods. Let us pay attention to the ith active
period Tij and the two periods Iij and I(i+1)j (i.e., the ones
adjacent to Tij). Cases 1-3 share two common conditions – (1)
both Iij and I(i+1)j are larger than zero and (2) the summation of
tij, αij, and α(i+1)j is larger than the break-even time TBE.
Case 1: Both the ith and (i+1)th idle periods are equal to or
smaller than the break-even time TBE. Thus, we have

BEij T≤< α0 , BEji T≤< +)1(0 α , and BEjiijij Tt >++ +)1(αα .

Case 2: The ith idle period is equal to or smaller than the
break-even time TBE; the (i+1)th idle period is larger than TBE.
Formally, we have BEij T≤< α0 , BEji T>+)1(α , and

BEjiijij Tt >++ +)1(αα .
Case 3: The ith idle period is larger than TBE; the (i+1)th idle
period is equal to or smaller than TBE. The conditions for case
3 can be expressed as: BEij T>α , BEji T≤< +)1(0 α , and

BEjiijij Tt >++ +)1(αα .

Case 4: In this case, both αij and α (i+1)j are larger than TBE,
meaning that the jth disk can be standby in these two time
intervals to conserve energy. Formally, we have BEij T>α ,

BEji T>+)1(α , and BEjiijij Tt >++ +)1(αα .

IV. EXPERIMENTAL RESULTS

For our experimental results we implemented a parallel
disk simulator in JAVA. The disk simulator implements the
algorithm presented in Fig. 1 and the energy saving calculator
in Fig. 2. The disk parameters used for our simulation results
are given in Table 3.

The first set of experiments we conducted varied the hit rate
and the data size of the requests. The hit rate in these
experiments is defined as the percentage of all the requests
that can be served by the buffer disk and the data size is
defined as the data size of each request. We generated random
disk requests and varied the inter-arrival delay of the requests.
The inter-arrival rate must be fairly low to produce energy
savings or disks will never be placed in the sleep state. If the
inter-arrival rate is high all disks must be active to serve the
requests. The results of the first set of experiments are
summarized in Fig. 3.

There are two main observations we can draw from this
figure, one being that as data size increases energy savings
increases, and second, as the hit rate is increased energy
savings increases. As the data size increases the time to serve
the request increases. If multiple requests can be served from
the buffer disk than the data disks have a greater opportunity
to transition to the sleep state. Similarly as the hit rate
increases the buffer disk serves a greater number of
consecutive hits allowing data disks to sit idle for longer
periods of time. The goal of our energy-efficient prefetcher is
to increase the number and length of idle periods to allow a
data disk to transition to the sleep state. This can be achieved
by increasing the hit rate or increasing the data size of
requests. This leads us to believe that many web and
multimedia applications would be suitable for our energy
saving techniques.

The second set of experiments conducted focuses on the
impact that varying disk power parameters has on the energy
savings. Fig. 4 varies the power characteristics of our
simulated IBM36Z15 disk. For each figure we only vary one
disk energy parameter. The number of disks was fixed at four
and the data size is 25MB. From Fig. 4 we realize that

94

TABLE III. DISK PARAMETERS USED FOR SIMULATIONS

Simulation Parameters
Transfer Rate PA PI PS TD TU ED EU
55 MB/S 13.5 W 10.2 W 2.5 W 1.5 S 10.9 S 13.0 J 135 J

 (a) (b)

 (c) (d)

Figure 3. Total Energy Consumption of Disk System while Data Size is varied for four different values of hit rate: (a) 85 %, (b) 90 %, (c) 95 %, and (d) 100 % hit
rate.

Input: block bk,j, disk j, a set Φj of disk access activities; Output: ES(bk,j)
1 Initialize ES(bk,j) to 0;
2 for (i = 1 to nj) {
3 if (BEjiijij Tt >++ +)1(αα) {

4 if (BEij T≤< α0) {

5 if (BEji T≤< +)1(0 α)

6 UDDUiijijSjiijIijSijS EETTtPPbEbE −−−−++⋅−+⋅+= ++)()()()()1()1(αααα ;

7 else)()()(ijijSijIijSijS tPPbEbE +⋅−⋅+= αα ;

8 }
9 else {
10 if (BEji T≤< +)1(0 α) /* Case 3, see Eq. (4.8) */

11)()()()1()1(ijjiSjiIijSijS TPPbEbE +⋅−⋅+= ++ αα ;

12 else).()()(ijUDSUDijSijS tTTPEEbEbE ++⋅−++=

13 }
14 } /* end Cases 1-4 */
15 else ijIijSijS tPbEbE ⋅−=)()(; /* Negative energy saving. */

16 } /* end for */
17 return)time()(jkAijS bPbE ⋅−

Figure 2. The energy-saving calculation module.

95

 (a) (b)

(c)

Figure 4. Total Energy consumption for various values of the following disk parameters: (a) power active, (b) power idle, and (c) power standby

lowering the Power Active, which is the energy consumed
while the disk is in the active state, will decrease the energy
consumption for all the strategies we compared. Lowering
Power Active also impacts the relative energy savings that the
PRE-BUD strategies are able to produce. If Power Active is
9.5W PRE-BUD2 saves 15.1 % energy over DPM. If it is
increased to 17.5W PRE-BUD2 only saves 13% energy over
DPM. Fig. 4 (a) is similar to Fig. 4 (b) but now we see that
Power Idle has a greater impact on energy savings as
compared to Power Active. If Power Idle, the energy
consumed while the disk is idle, is very low PRE-BUD 2 has a
negative impact, but if it’s increased to 14.2 W PRE-BUD 2
now saves 25 % of energy as compared to DPM. The last set
of experiments varied the Power Sleep parameter, which
represents the energy consumed while the disk is in the sleep
state, also has significant impact on PRE-BUD strategies. The
percentage change in energy savings starts at 16.3% and drops
to 11.7% with increasing Power Sleep.

The results illustrated in Fig. 4 indicate that parallel disks
with low active power, high idle power, and low standby
power can produce the best energy-savings benefit. This is
because PRE-BUD allows disks to be spun down to the
standby state during times they would be idle using DPM. The
greater the discrepancy between idle and standby power, the
more beneficial PRE-BUD becomes.

V. CONCLUSIONS AND FUTURE WORK
The use of large-scale parallel disk systems continues to

rise as the demand for information systems with large
capacities grows. Parallel disk systems combine smaller disks
to achieve large capacities. A challenging problem is that
large-scale disk systems can be extremely energy inefficient.
The energy consumption rates are rising as disks become
faster and disk systems are scaled up. The goal of this study is
to improve the energy efficiency of a parallel disk system

using a buffer disk to which frequently accessed data are
prefetched.

We proposed two different buffer disk configurations. The
first configuration added an extra disk to the parallel disk
system, whereas the second one used an existing disk as the
buffer disk. Placing popular data blocks in the buffer disk
provides ample opportunities to increase idle periods in data
disks, thereby facilitating long sleep times of disks. As sleep
times are increased the disk is able to save energy over being
in the idle state. Although the first prefetching strategy may
consume more energy due to the energy overhead introduced
by an extra disk, it does not compromise the capacity of the
disk system. We implemented a simulator and compared our
approaches against three existing approaches.

For the future research work we will investigate the
scalability of the energy-efficient prefetching algorithm by
adding more than one buffer disk to the disk system. The
number of buffer disks will have to be increased as the scale of
the disk system is increased. This will add the extra
requirements parallel applications demand and our strategies
will have to be modified to reflect these changes. There is also
a need to support write operations in the BUD architecture.
Furthermore, we plan to use traces from real-world
applications to evaluate the performance of PRE-BUD. Last
but not least, we will study the reliability impacts of buffer
disks on parallel disk systems.

Acknowledgement

This work was made possible partially thanks to NSF
awards CCF-0845257 (CAREER), CNS-0757778 (CSR),
CCF-0742187 (CPA), CNS-0831502 (CyberTrust), OCI-
0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFS), and an Intel gift number 2005-04-070 as well
as an Auburn University startup grant.

96

REFERENCES
[1] L. Benini, A. Bogliolo, and G. Michelini. “A Survey of Design

Techniques for System Level Dynamic Power Management,” IEEE
Trans. On Very Large Scale Integration (VLSI) Systems, Vol. 8, No. 3,
June 2000.

[2] E. Carrera, E. Pinheiro, and R. Bianchini. “Conserving Disk Energy in
Network Servers,” Proc. Int’l Conf. Supercomp., pp.86-97, 2003.

[3] J. Chase and Ron Doyle. “Energy Management for Server Clusters,”
Proc. the 8th Workshop Hot Topics Operating Sys., pp. 165, May 2001.

[4] F. Chen, S. Jiang, and W. Yu, “FlexFetch: A History-Aware Scheme for
I/O Energy Saving in Mobile Computing,” Int’l. Conf. on Parallel
Processing, Sept. 2007.

[5] F. Chen, S. Jiang, and X. Zhang, “SmartSaver: Turning Flash Drive Into
a Disk Energy Saver for Mobile Computers,” Int’l. Symp. on Low Power
Electronics and Design, Oct. 2006.

[6] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks for Storage
Archives. In Proceedings of Supercomputing, November 2002.

[7] F. Douglis, P. Krishnan, and B. Marsh, “Thwarting the Power-Hunger
Disk,” Proc. Winter USENIX Conf., pp.292-306, 1994.

[8] H. Eom and J.K. Hollingsworth. “Speed vs. accuracy in simulation for
I/O-intensive applications,” Proc. Int’l Symp. Parallel and Distri.
Processing Symp., pp. 315–322, May 2005.

[9] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Fanke,
“DRPM: Dynamic Speed Control for Power Management in Server
Class Disks,” Proc. Int’l Symp. Computer Architecture, pp. 169-179,
June 2003.

[10] J. Hawkins and M. Boden, M., “The applicability of recurrent neural
networks for biological sequence analysis,” IEEE/ACM Trans. Comp.
Biology and Bioinfo., vol. 2, no. 3, pp. 243 – 253, July-Sept. 2005..

[11] S. Huaping, M. Kuman, S. Das, Z. Wang. “Energy-Efficient Caching
and Prefetching with Data Consistency in Mobile Distributed Systems,”
Proc. Int'l Parallel and Distri. Proc. Symp., 2007.

[12] M. Kallahalla and P. Varman, “PC-OPT: Optimal Offline Prefetching
and Caching for Parallel I/O Systems,” IEEE Trans. Computers, vol. 51,
no. 11, pp. 1333-1344, Nov. 2002.

[13] Y-J. Kim, K-T Kwon, and J. Kim, “Energy-efficient disk replacement
and file placement techniques for mobile systems with hard disks,” ACM
Special Interest Group on Applied Computing, 2007.

[14] T.T. Kwan, R.E. McGrath, and D.A Reed, “NCSA's World Wide Web
Server: Design and Performance,” Computer, vol. 28, no. 11, pp. 68 –
74, Nov. 1995.

[15] A. E. Papathanasiou and M.L. Scott, “Energy Efficient Prefetching and
Caching,” USENIX 2004.

[16] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques for
Disk Array-Based Servers,” Proc. Int’l Conf. Supercomputing, pp. 68-
78, June 2004.

[17] E. Pinheiro, R. Bianchini, C. Dubnicki, “Exploiting Redundancy to
Conserve Energy in Storage Systems,” Proc. Sigmetrics and
Performance, Saint Malo, France, June 2006.

[18] S.W. Son, M. Kandemir, “Energy Aware Pre-Fetching for Multi Speed
Disks,” Proc. of the 3rd Conf. Comp. Frontiers, pp. 105-114, May 2006.

[19] S.W. Son, M. Kandemir, and A. Choudhary, “Software-Directed Disk
Power Management for Scientific Applications,” Proc. Int’l Symp.
Parallel and Distr. Processing, April, 2005.

[20] D.B. Trizna, “Microwave and HF Multi-Frequency Radars for Dual-Use
Coastal Remote Sensing Applications,” Proc. MTS/IEEE OCEANS, pp.
532 - 537, Sept. 2005.

[21] Z. Zong, M. Briggs, N. O’Conner, X. Qin. “An Energy-Efficient
Framework for Large-Scale Parallel Storage Systems,” Proc. Int'l
Parallel and Distributed Processing Symp., March 2007.

[22] Q. Zhu, Z. Chen, L. Tan, Y. Zhor, K. Keeton, J. Wikes. “Hibernator
Helping Disk Arrays Sleep Through The Winter,” Proc. ACM Symp.
Operating Sys. Principles, October. 2005.

[23] Q. Zhu, F. M. David, C. F. Devaaraj, Z. Li, Y. Zhou, and P. Cao,
“Reducing Energy Consumption of Disk Storage Using Power-Aware
Cache Management,” Proc. High-Performance Computer Arch., 2004.

[24] Q. Zhu, A. Shankar and Y. Zhou, “PB-LRU: A Self-Tuning Power
Aware Storage Cache Replacement Algorithm for Conserving Disk
Energy,” Int’l Conf. Supercomputing, 2005.

[25] X. Zhuang and S. Pande. “Power-Efficient Prefetching via Bit-
Differential Offset Assignment on Embedded Processors,” Proc. ACM
SIGPLAN/SIGBED Conf. Languages, Compilers, and Tools for
Embedded Sys., 2004.

97

