
Secure Fragment Allocation in a Distributed
Storage System with Heterogeneous Vulnerabilities
Yun Tian, Shu Yin, Jiong Xie

Ji Zhang, Xiao Qin
Department of Computer Science

and Software Engineering
Auburn University

Auburn, Alabama 36849-5347
http://www.eng.auburn.edu/∼xqin

Mohammed I. Alghamdi

Al-Baha University
Al-Baha City

Kingdom of Saudi Arabia
Email: mialmushilah@bu.edu.sa

Meikang Qiu
Department of Electrical

and Computer Engineering
University of Kentucky

Lexington, Kentucky
Email: mqiu@engr.uky.edu

Yiming Yang

Intel Corporation
NM 87124

Email: yiming.yang@intel.com

I. ABSTRACT

Abstract—There is a growing demand for large-scale dis-
tributed storage systems to support resource sharing and fault
tolerance. Although heterogeneity issues of distributed systems
have been widely investigated, little attention has yet been paid
to security solutions designed for distributed storage systems
with heterogeneous vulnerabilities. This fact motivates us to
investigate a fragment allocation scheme called S-FAS to improve
security of a distributed system where storage sites have a wide
variety of vulnerabilities. In the S-FAS approach, we integrate file
fragmentation with the secret sharing technique in a distributed
storage system with heterogeneous vulnerabilities. Storage sites
in a distributed systems are classified into a variety of different
server types based on vulnerability characteristics. Given a file
and a distributed system, S-FAS allocates fragments of the file
to as many different types of nodes as possible in the system.
Data confidentiality is preserved because fragments of a file
are allocated to multiple storage nodes. We develop storage
assurance and dynamic assurance models to evaluate the quality
of security offered by S-FAS. Analysis results show that fragment
allocations made by S-FAS lead to enhanced security because of
the consideration of heterogeneous vulnerabilities in distributed
storage systems.

II. INTRODUCTION

A. Security Problems in Distributed Systems

There is an increasing demand to develop large-scale dis-
tributed storage systems supporting data-intensive services that
provide resource sharing and fault tolerance. The confiden-
tiality of security-sensitive files must be preserved in modern
distributed storage systems, because distributed systems are
exposed to an increasing number of attacks from malicious
users [9].

Although there exist many security techniques and mecha-
nisms (for example, [6] and [17]), it is quite challenging to
secure data stored in distributed systems. In general, secu-
rity mechanisms need to be built for each component in a
distributed system, then a secure way of integrating all the
components in the system must be implemented. It is critical
and important to maintain the confidentiality of files stored
in a distributed storage system when malicious programs and
users compromise some storage nodes in the system.

In addition to cryptographic systems, secret sharing is an
approach to providing data confidentiality by distributing a file
among a group of n storage nodes, to each of which a fragment
of the file is allocated. The file can be reconstructed only
when a sufficient number (e.g., more than k) of the fragments
are available to legitimate users. Attackers are unable to
reconstruct a file using the compromised fragments, if a group
of servers are compromised and fewer than k fragments are
disclosed.

B. Heterogeneous Vulnerabilities

Although heterogeneity issues of distributed systems have
been widely investigated, little attention has been paid to
security solutions designed for distributed storage systems with
heterogeneous vulnerabilities. This problem motivates us to
focus on heterogeneity issues concerning security mechanisms
of distributed storage systems.

In a large-scale distributed system, different storage sites
have a variety of ways to protect data. The same security policy
may be implemented in various mechanisms. Data encryption
schemes may vary; even with the same encryption scheme,
key lengths may vary across the distributed system. The above
mentioned factors can contribute to different vulnerabilities
among storage sites. Although security mechanisms deployed
in multiple storage sites can be implemented in a homogeneous
way, different vulnerabilities may exist due to heterogeneities
in computational units.

We start to address security heterogeneity issues by dividing
storage servers into different server-type groups. Each server
type represents a level of security vulnerability. In a server-
type group, storage servers with the same vulnerability share
the same weakness that allows attackers to reduce the servers’
information assurance. Although it may be difficult to classify
all servers in a system into a large number of groups, a
practical way of identifying server types is to organize these
with similar vulnerabilities into one group.

In light of the server types and heterogeneous vulnerabili-
ties, we investigate, in this study, a fragment allocation scheme
called S-FAS in order to improve security of a distributed sys-
tem where storage sites have a wide variety of vulnerabilities.

2011 Sixth IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-4509-7/11 $26.00 © 2011 IEEE

DOI 10.1109/NAS.2011.14

170

C. File Fragmentation and Allocation

The file fragmentation technique is often used in many
distributed and parallel systems to improve availability and
performance. Several file fragmentation schemes have been
proposed to achieve high assurance and availability in a
large distributed system [7][15]. In real-world distributed sys-
tems, the fragmentation technique is usually combined with
replication to achieve better performance at the cost of in-
creased security risk to data stored in the systems. A practical
distributed system normally contains multiple heterogeneous
servers providing services with various vulnerabilities. Unfor-
tunately, the existing fragmentation algorithms do not take the
heterogeneity issues into account.

To address the above mentioned limitations, we focus on the
development of a file fragmentation and allocation approach
to improving the assurance and scalability of a heterogeneous
distributed system. If one or more fragments of a file have
been compromised, it is still very hard for a malicious user
to reconstruct the file from the compromised fragments. Our
solution is different from those previously explored, because
our approach utilizes heterogeneous features regarding vulner-
abilities among servers.

To evaluate our method for fragment allocations, we develop
static and dynamic assurance models to quantify the assurance
of a heterogeneous distributed storage system handling data
fragments. Experimental results show that increasing hetero-
geneity levels can improve file assurance in a distributed
storage system.

D. Main Contributions

The following are four main contributions that we have
made with this study:

• We address the heterogeneous vulnerability issue by di-
viding storage nodes of a distributed system into different
server-type groups based on their vulnerabilities. Each
server-type group - representing a level of vulnerability
- contains storage nodes with the same security vulnera-
bility.

• We propose a secure fragmentation allocation scheme
called S-FAS to improve security of a distributed system
where storage nodes have a wide variety of vulnerabili-
ties.

• We develop storage assurance and dynamic assurance
models to quantify information assurance and to evaluate
the proposed S-FAS scheme.

• We discover principles to improve assurance levels of
heterogeneous distributed storage systems. The principles
are general guidelines to help designers achieve a secure
fragment allocation solution for distributed systems.

E. The Organization of this Paper

The rest of the paper is organized as follows: In Section III,
we review the related work. Section IV presents the system
and threat models of this study. Section V describes S-FAS
- a secure fragmentation allocation scheme. In Section VI,
we develop an assurance model and a dynamic assurance

model for distributed storage systems. In Sections VII, we
quantitatively evaluate the proposed S-FAS scheme in the
context of distributed systems. Section VIII summarizes this
paper and outlines our future work.

III. RELATED WORK

A. Security Techniques for Distributed Systems

Much research has been performed to improve security of
distributed and high-performance computing systems such as
Grids. For example, Pourzandi et al. proposed a structured
security approach that incorporates both distributed authenti-
cation and distributed access control mechanisms [9].

Intrusion detection techniques have been widely used to
provide basic assurance of security in distributed systems.
However, most intrusion detection techniques are inadequate
to protect data stored in distributed systems [3]. One of the
most effective approaches to improving information assurance
in distributed systems is intrusion tolerance [2] [13] [15].
To enhance security assurance, researchers have developed a
range of intrusion-tolerant tools and mechanisms. The frag-
mentation technique summarized below is one of the intrusion
tolerance methods that can be used in combination with
intrusion detection techniques.

B. Fragmentation Techniques

A fragmentation technique partitions a security sensitive file
into multiple fragments that are distributed across different
storage servers in a distributed system. A lot of fragmentation
schemes have been proven to be valuable tools to improve
security of data stored in distributed systems (see, for example,
[14][4][5][7][10][11]).

Many fragmentation approaches aim to improve availability
and performance of distributed systems by applying data repli-
cation methods. For example, Dabek et al. developed a wide-
area cooperative storage system in which they implemented a
fragmentation scheme to improve availability and to facilitate
load balancing [1].

Although combining a fragmentation scheme and a replica-
tion scheme can enhance performance and availability, data
replications may impose security risks due to an increas-
ing number of file fragments handled by distributed storage
servers. A file is more likely to be compromised when more
replications of the file are stored in a distributed storage
system.

All existing file fragmentation technologies are inadequate
to address the issue of heterogeneous vulnerabilities in large-
scale distributed systems. Our preliminary results show that
security can be improved in a distributed storage system
when a fragmentation scheme incorporates the heterogeneous-
vulnerability feature.

C. Secret Sharing

Secret sharing - independently invented by Shamir and
Blakley - is a method of distributing a secret among a
group of participants, each of which is allocated a share of
the secret. The secret can be successfully reconstructed only

171

when a sufficient number of shares are given and combined
together [8][11].

Shamir proposed the (k, n) secret sharing scheme that
divides data D into n pieces in such a way that D can be
easily reconstructed from any k pieces. If fewer than k pieces
are disclosed, no one can reconstruct D from the revealed
pieces.

The (k, n) secret sharing scheme was proposed as a robust
key management approach with n = 2k− 1. A key can be
recovered even when �n/2� = k − 1 of the n pieces that are
destroyed. Attackers cannot reconstruct the key even when
security breaches expose �n/2� = k − 1 of the remaining k
pieces [11].

The secret sharing scheme has been extended and employed
in different application domains [12]. For example, Bigrigg et
al. proposed an architecture called PASIS for secure storage
systems. The PASIS architecture integrates the secret shar-
ing scheme with information dispersal to improve security,
integrity and availability [16][18]. In a storage system with
PASIS, the confidentiality of data stored in the system is
still preserved, even if an attacker compromises a limited
(i.e., fewer than the threshold) subsets of storage nodes.
The aforementioned secret-sharing solutions designed for dis-
tributed storage systems ignore the issue of heterogeneous
vulnerabilities. This fact motivates us to extend the secret
sharing scheme by considering heterogeneity in vulnerabilities,
in the context of distributed storage systems.

D. Comparison of Our Work with Existing Solutions

Our fragment allocation solution we describe in this paper
is entirely different from the existing fragment allocation
schemes found in the literature. Our approach aims to incor-
porate the vulnerability heterogeneity feature of distributed
storage systems into file fragment allocation. Our solution
captures heterogeneous features regarding vulnerabilities of
the nodes in order to improve the security level of the data
stored in a distributed system. In this study, the data replication
technique is not considered, because fragment allocation and
data replication are independent of each other. Thus, the
reliability and performance of fragment allocation schemes can
be improved when data replication modules are integrated.

IV. SYSTEM AND THREAT MODEL

We outline, in this section, the system and threat models
that capture main characteristics of distributed storage systems.
The system model is used as a basis to design the S-FAS
fragmentation allocation scheme, whereas the threat model
helps us identify vulnerabilities and certain potential attacks
in distributed storage systems.

A. System Model

The S-FAS fragmentation allocation scheme was designed
for a distributed storage system (see Fig. 1) where each storage
site is a cluster storage subsystem. Different cluster storage
subsystems may be connected within some subnetworks to
form a larger scale distributed storage sysytem.

Cluster Storage
1

Cluster
Storage 3

Cluster
Storage

2

Cluster
Storage

4
Cluster
Storage

5

Fig. 1. A distributed storage system is comprised of a set of cluster storage
subsystems. Multiple fragments of a file can be stored either in storage nodes
within a single cluster storage subsystem or in nodes across multiple cluster
storage subsystems. See Fig. 2 for details on a cluster storage subsystem.

Master node or
Gateway of the
cluster storage

Fig. 2. A cluster storage subsystem consists of a number of storage nodes
and a gateway. Storage nodes are divided into different server-type groups,
each of which represents a level of security vulnerability.

Fig. 2 depicts a cluster storage subsystem, which consists
of a number of storage nodes and a gateway. Considering
heterogeneous vulnerability in large-scale storage systems, we
divide storage nodes into different server-type groups, each of
which represents a level of security vulnerability .

Before presenting details on the system model, let us
summarize all notations used throughout this paper in Table I.

In this study, we consider a distributed storage system
containing L cluster storage subsystems, i.e., R1, R2, ..., RL.
Cluster storage subsystems Ri consists of Hi storage nodes,
i.e., Ri = {ri1, ri2, ..., riHi}. All the storage nodes connected
in cluster Ri have heterogeneous vulnerabilities.

Since all the nodes, including a master node, are fully
connected in a cluster storage subsystem, we model the
topology of a cluster storage system as a general graph. Cluster
storage subsystem Ri has a gateway, which hides the cluster’s
internal architecture from users by forwarding file requests to
storage nodes.

Data in cluster storage subsystem Ri can be accessed

172

TABLE I
NOTATION USED IN THE SYSTEM AND THREAT MODELS.

Notations Meaning
N Number of server nodes in the system
U The whole system considered
L Number of subsystems in the whole system
Hi Number of server nodes in the subsystem i
F A file stored in the system
Fi Fragment i of file F
Tj Server type j in the system
K The total number of server types
Sj The size of a certain server type in a cluster
m Threshold for the secret sharing scheme
n The total number of fragments for each file

in the secret sharing scheme
Ri Cluster storage subsystem
rij Node j in subsystem i
X The event that a set of storage nodes is

chosen to be attacked
Y The event that if X occurs, at least m fragments

can be compromised using the same attack method.
Z The event of a successful attack to a certain

fragment of a file
V The event file F is compromised

under one attack method
PN The successful probability of an attack on a node
Pf The successful probability to compromise

a fragment in a compromised node
P (X) The probability of event X occurring
P (Y) The probability of event Y occurring
P (Z) The probability of event Z occurring
P (V) The probability of event V occurring
α An allocation mapping of file F
SA(α) The storage assurance of an allocation

mapping α of file F
DA(α) The dynamic assurance of an allocation

mapping α of file F
q Number of fragments needed to reconstruct a file

transmitted from outside of the subsystem
g Number of fragments compromised out of the q fragments

transmitted from outside of the subsystem
PL The probability that a fragment is

intercepted during its transmission
PD The probability that a file F is intercepted

because of the compromised transmitted fragments

through its master node. When a read request is submitted to
cluster Ri, the master node is responsible for reconstructing
file fragments and returning the file to users. When a write
request of a file is issued, the master node updates all the
fragments of the file.

Legitimate users access cluster storage subsystems through
master nodes; malicious users may bypass the master nodes
to access storage nodes without being authorized. See Sec-
tion IV-B below for details on the threat model.

B. Threat Model

It is not reasonable to assume that if a malicious user breaks
into a storage node, fragments of a file stored on the node are
thereby compromised. Normally, a malicious user needs two
steps to compromise fragments of a file stored on a server.
First, the malicious user must successfully attack the server.
Second, fragments are retrieved by the malicious user.

Let PN be the probability that a storage server is success-
fully attacked; let Pf be the probability that authorized users

retrieve fragments stored on the server, provided that the server
has been compromised. We define event Z as a successful
attack on a fragment (i.e., unauthorized disclosure of the
fragment). Since the above two consecutive attack steps are
independently, the probability that event Z occurs is a product
of probability PN and probability Pf . Thus, the probability
that a fragment is disclosed to an unauthorized attacker can
be expressed as:

P (Z) = PN ∗ Pf . (1)

In a dynamic allocation environment, a malicious user can
use a compromised node to collect other needed fragments of
the file when the fragments are passing through the compro-
mised node.

If encryption keys are disclosed to attackers, unauthorized
interceptions of encrypted files stored on the attacked node
may occur. Given two storage nodes with different vulner-
abilities, successful attacks of the nodes are not correlated.
This statement is true for many potential threats, because
compromising one storage node does not necessarily lead to
the successful attack of the second one.

V. S-FAS: A SECURE FRAGMENT ALLOCATION SCHEME

In this section, we first outline the motivation for addressing
the heterogeneity issues in the vulnerability of distributed stor-
age systems. Next, we describe a security problem addressed
in this study. Last, we present a secure fragment allocation
scheme called S-FAS for distributed storage systems.

A. Heterogeneity in the Vulnerability of Data Storage

Since the existing security techniques (see Section III)
developed for distributed systems are inadequate for dis-
tributed systems with heterogeneity in vulnerabilities, the
focus of this study is heterogeneous vulnerabilities in large-
scale distributed storage systems. Vulnerabilities of storage
nodes in a distributed system are heterogeneous in nature
due to the following four main reasons. First, storage nodes
have different ways to protect data. Second, a security policy
can be implemented in a variety of mechanisms. Third, the
key length of an encryption scheme may vary across multiple
storage nodes. Fourth, heterogeneities exist in computational
units of storage sites. We believe that future security mecha-
nisms for distributed systems must be aware of vulnerability
heterogeneities.

B. A Motivational Example

If the above heterogeneous vulnerability features are not
incorporated into fragment allocation schemes for distributed
storage systems, a seemingly secure fragment allocation deci-
sion can lead to a breach of data confidentiality. The following
motivational example illustrates a security problem caused by
ignoring vulnerability heterogeneities.

Let us consider a file F with three partitioned fragments: fa,
fb, and fc, and a distributed storage system (see Fig. 3) that
contains 16 storage nodes divided into 4 server-type groups (or
server groups for short), i.e., T1, T2, T3, and T4. Storage nodes
in each server group offer similar services with the same level

173

:Server Group 11T
1 95 13

:Server Group 33T

:Server Group 44T

:Server Group 2
2T

2 14106

3 11 157

4 16128

Fig. 3. A distributed storage system contains 16 storage nodes, which are
divided into 4 server-type groups (or server groups for short), i.e., T1, T2, T3,
and T4. Servers in each group have the same level of security vulnerability.

of vulnerability. In this example, server group T1 consists of
nodes r1, r5, r9, r13, i.e., T1 = {r1, r5, r9, r13}. Similarly, we
define the other three server groups as: T2 = {r2, r6, r10, r14},
T3 = {r3, r7, r11, r15}, and T4 = {r4, r8, r12, r16}.

Fig. 4 shows that it is possible to make insecure fragment
allocation decisions that do not take vulnerability heterogene-
ity into account. The decision made using a hashing function
(see Eq. 11 in [7]) randomly allocates the three fragments of
file F to three different nodes, each of which belongs to one
of the three server sets illustrated in Fig. 4. For example, the
three fragments fa, fb, and fc are stored on nodes r1, r6, and
r8, respectively. This fragment allocation happens to be a good
solution, because r1, r6, and r8 have different vulnerabilities
as the three nodes belong to different server groups (i.e., T1,
T2, and T4). A malicious user must launch three successful
attacks (one for each server group) in order to compromise all
three fragments.

The above fragment allocation scheme fails to address the
threat described in Section IV. This is because an attacker
can first retrieve one fragment of F by compromising a
single node, then the attacker simply waits for the other
two fragments to be passed through the compromised node.
To solve this security problem, Zanin et al. developed a
static algorithm to decide whether a particular storage node
is authorized to handle a file fragment of F [18]. Zanin’s al-
gorithm can generate an insecure fragment allocation because
heterogeneous vulnerabilities are not considered. For example,
the three fragments are respectively stored on nodes r4, r8,
and r12, which share the same vulnerability in server group
T4 (see Fig. 4). Rather than three attacks, one successful attack
against server group T4 allows unauthorized users to access
the three fragments of file F . Two other insecure fragment
allocations are: (1) allocating fa, fb, fc to nodes r1, r5, and r9,
respectively; and (2) allocating fa, fb, fc to nodes r7, r11 and
r15, respectively. These three fragment allocation decisions are
unacceptable, because the fragments are assigned to a group
of storage nodes with the same vulnerability, meaning that an
attacker who comprised one node within a group can easily

Server Set1 That Handles Fragment

Server Set2 That Handles Fragment

Server Set3 That Handles Fragment

1 1374 1610

af

bf

5 118 142

cf

93 15126

Fig. 4. Possible insecure file fragment allocation decision made using a
hashing function (see Eq. 11 in [7]): Server set 1 handles fragment fa, server
set 2 handles fragment fb, and server set 3 handles fragment fc. Server set
1 contains storage nodes r1, r4, r7, r10, r13, and r16; server set 2 contains
storage nodes r2, r5, r8, r11, and r14; and server set 3 contains storage
nodes r3, r6, r9, r12, and r15. It is possible that fragments fa, fb, and fc
may be allocated to storage nodes that belong to the same server-type group.
For example, the three fragments are respectively stored on nodes r4, r8, and
r12, which share the same vulnerability in server group T4. Rather than three
attacks, one successful attack against server group T4 allows unauthorized
users to access the three fragments of file F .

compromise the other nodes in the group. The attacker can
reconstruct F from fa, fb, and fc stored on the comprised
server group.

C. Design of the S-FAS Scheme

To solve the above security problem, we have to incorporate
vulnerability heterogeneities into fragment allocation schemes.
Specifically, we design a simple yet efficient approach to
allocating fragments of a file to storage nodes with various
vulnerabilities. Since allocating fragments of a file into dif-
ferent storage clusters can degrade performance, our S-FAS
scheme attempts to allocate fragments to storage nodes within
a cluster. If the number of nodes with different vulnerabilities
cannot meet the aforementioned criterion, file fragments must
be allocated across multiple clusters. To improve the assur-
ance of a distributed storage system while maintaining high
I/O performance, each cluster storage subsystem has to be
built with high vulnerability heterogeneity. This causes the
fragments of a file to be less likely distributed across multiple
storage clusters.

Because of the following two reasons, the S-FAS scheme
can significantly improve data security when fragments are
stored in a large-scale distributed storage system. First, S-FAS
integrates the fragmentation technique with secret sharing.
Second, S-FAS addresses the issue of heterogeneous vulner-
abilities when file fragments are allocated to a distributed
storage system.

The S-FAS scheme makes fragment allocation decisions by
following the four policies below:

174

• Policy 1: All the storage nodes in a distributed storage
system are classified into multiple server-type groups
(server group for short) based upon their various vul-
nerabilities. Each server group consists of storage nodes
with the same vulnerability level.

• Policy 2: To improve security of a distributed storage
system, S-FAS allocates fragments of a file to storage
nodes belonging to as many different server groups as
possible. In doing so, it is impossible to compromise the
file’s fragments using a single successful attack method.

• Policy 3: The fragments of a file are trying to be allocated
to nodes with a wide range of vulnerability levels all
within a single cluster storage subsystem. The goal of this
policy is to improve performance of the storage system by
making the fragments less likely to be distributed across
multiple clusters.

• Policy 4: The (m,n) secret sharing scheme is integrated
with the S-FAS allocation mechanism.

If a file’s fragment-allocation decisions are guided by the
above four policies, successful attacks against less than m
server groups have little chance to gain unauthorized accesses
of files stored in a distributed system. In other words, if the
number of compromised fragments of a file is less than m,
attackers are unable to reconstruct the file from the fragments
that are accessed by the unauthorized attackers. The S-FAS
scheme can improve information assurance of files stored in
a distributed storage system without enhancing confidential-
ity services deployed in cluster storage subsystems of the
distributed system, because S-FAS is orthogonal to security
mechanisms that provide confidentiality for each server group
in a distributed storage system. Thus, S-FAS can be seam-
lessly integrated with any confidentiality service employed in
distributed storage systems in order to offer enhanced security
services.

VI. ASSURANCE MODELS

We developed assurance models to quantitatively evaluate
the security of a heterogeneous distributed storage system in
which S-FAS handles fragment allocations.

A. Storage Assurance Model

For encrypted files, their encryption keys are partitioned and
allocated using the same strategy that handle file fragments.
Once a storage node in set U is compromised, file fragments
and encryption key fragments stored on the node are both
breached. If a malicious user wants to crack a file, at least m
nodes within U must be successfully attacked.

We first investigate the probability that a file is compromised
using one attack method. Let X be the event that a set of
storage nodes is chosen to be attacked. Let Y be the event that
if X occurs, at least m fragments can be compromised using
the same attack method. As we already defined in Section IV,
event Z represents a successful attack to a certain fragment
of a file. Applying the multiplication principle, we calculate
the probability that V - an event that file F is compromised

under one attack - occurs as:

P(V) =
k∑

j=1

P(X)P(Y)P(Z) (2)

where P (X), P (Y) and P (Z) are probabilities that events X ,
Y and Z occur when the total number of different server-type
groups (server group for short) is K . The probability P (V)
is proportional to probability P (Z), which largely depends on
the quality of security mechanisms deployed in the storage
system, as well as the attacking skills of hackers.

Note that when k equals 1, there is no vulnerability differ-
ence among storage nodes. Supposing that all the fragments of
a file can be compromised using one successful attack method,
the probability that Y occurs becomes 1. Then, we can express
P (V) as:

P(V) =
k∑

j=1

P(X)P(Z) (3)

Let Sj be the number of storage nodes in server type Tj

set and N be the total number of nodes in a distributed system.
The probability that nodes in set Tj are randomly attacked can
be derived as P(X) =

Sj

N .
Probability P (Y) in Eq. 2 can be calculated as follows:

P (Y) =

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

, (j = 2, . . .K) (4)

where Cn
N is the total number of possibilities of allocating

fragments of a file, and the product of Ci
Sj

and Cn−i
N−Sj

is
the number of possibilities that a file is compromised using a
successful attack method which means at least m (It may be
m+ 1, m+ 2, ..., n) fragments of the file are compromised.

To simplify the model, one may assume that security
mechanisms and attacking skills have no significant impacts on
information assurance of the entire distributed storage system.
This assumption is reasonable because of two factors. First, S-
FAS is independent of security mechanisms that provide con-
fidentiality for server groups in a distributed storage system.
Second, if empirical studies can provide values for probability
P (Z), the probability P (V) can be derived from P (Z) and
the model (see Eq. 4) that calculates P (Y). Since the study of
the distribution of P (Z) is not within the range of this work,
in Section VII the impact of probability P (Z) on P (V) is
ignored by setting the value of P (Z) to 1.

Now we can derive Eq. 2 from Eq. 4 as below:

P(V) =
K∑
j=1

(
Sj
N
P(Z)

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

)
(5)

The confidentiality of file F is assured if F is not com-
promised. Thus, we can derive the assurance SA(α) of the
storage system from Eq. 5 as:

SA (α) = 1− P (V)

= 1−
K∑
j=1

(
Sj

NP(Z)
n∑

i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

)
(6)

175

B. Dynamic Assurance Model.

During read and write operations, some fragments of a
file may be transmitted among different storage clusters or
subnetworks. We assume that data transmissions within a
cluster are secure, while connections among clusters and
subnetworks may be insecure. Let PL be the probability that a
fragment is intercepted during its transmission on an insecure
link. We consider a common case in which some fragments of
file F are allocated outside a cluster. The probability PD that
a fragment of F is intercepted during its transmission can be
expressed as:

PD = μ1μ2PL + μ3 [1− PL] PL (7)

where μ1 = 1 indicates that connections among storage
clusters are insecure and μ1 = 0 means the connections are
secure. μ2 = 1 indicates that fragments are transferred among
different clusters, otherwise μ2 = 0. Similarly, μ3 = 1 means
that fragments are transmitted across different subnetworks.
When μ1, μ2, and μ3 equal to 0, there is no fragment transmis-
sion risk. If q fragments need to be collected outside a cluster
processing read/write operations, then probability Pq(g) that
g out of q fragments are intercepted can be expressed as:

Pq (g) = Cg
qPD

g(1− PD)
q−g (8)

Now we model the dynamic assurance of an allocation
mapping α of file F . For simplicity, let us focus on a time
period during which there is only one attempt to attack storage
nodes where F is stored. During this time period, we assume
that only one read or write operation is issued to access F .
There are two cases where file F can be compromised. First,
a malicious user can reconstruct F from m compromised
fragments using the same attack method. Second, although
less than m fragments are compromised, other g fragments are
intercepted during their transmissions. Hence, we can derive
the dynamic assurance DA(α) from the storage risk (see Eq. 5)
and the transmission risk (see Eq. 8), as shown here:

DA(α) = 1−(
P (V) +

(
q∑

g=(m−i)

Pq(g)

)
K∑
j=1

(
Sj

N ×
m−1∑
i=0

Ci

Sj
Cn−i

N−Sj

Cn
N

))
(9)

VII. EVALUATION OF SYSTEM ASSURANCE

The assurance models described in Section VI indicate that
system assurance is affected by the number K of storage types,
the number N of storage nodes in the system, and the number
Sj of nodes in the jth storage type. In addition, threshold m
and the number n of fragments in a file also have an impact on
system assurance. Now, we quantitatively evaluate the impacts
of these factors on the information assurance of distributed
storage systems. We first obtain a comprehensive evaluation of
S-FAS in terms of data storage assurance (see Sections VII-A
to VII-E). Then, we consider dynamic assurance of S-FAS (see
Sections VII-F and VII-G).

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold m

st
or

ag
e

as
su

ra
nc

e

The impact of the number of server types K on security assurance

N=60, K=1
N=60, K=4
N=60, K=5
N=60, K=6

Fig. 5. Heterogeneous system and homogeneous system using secret sharing
scheme. In all the four test cases, N is set to 60. K is set to 1, 4, 5, and 6,
respectively. When K is 1, there is only one server group in the system.

45 50 55 60 65 70

0.4

0.5

0.6

0.7

0.8

0.9

1

the size of the system N

st
or

ag
e

as
su

ra
nc

e

The impact of the size of the system N on storage assurance

k=3, n=12, m=4
k=3, n=12, m=5
k=3, n=12, m=6
k=3, n=12, m=7
k=3, n=12, m=8

Fig. 6. The impact of the system size N on storage assurance.

We compare our approach with a traditional fragment al-
location scheme that does not consider vulnerability hetero-
geneities. We evaluated a distributed storage system with the
threshold value m. The default number n of fragments of a
file is set to 12 and Sj=N

K for all j from 1 to K .

A. Impact of Heterogeneity on Storage Assurance

If all storage nodes in the evaluated distributed system
are identical in terms of vulnerability, the probability that
fragments of a file can be compromised using one successful
attack method is 1. Fig. 5 shows the impact of the number
K of storage types on system assurance. Results plotted in
Fig. 5 suggest that for a distributed system with homogeneous
vulnerability, threshold m has no impact on system assurance.
When it comes to a distributed system with heterogeneous vul-
nerabilities, the system assurance increases significantly with
the increasing values of K and threshold m (see Fig. 5). Such
a trend implies that a high heterogeneity level of vulnerability
gives rise to high confidentiality assurance.

B. Impact of System Size on Storage Assurance

To quantify the impact of system size N on data assurance
of a file stored in the system, we gradually increase system

176

12 13 14 15 16 17 18

0.4

0.5

0.6

0.7

0.8

0.9

1

number of each server type−assume each type has the same number of servers

st
or

ag
e

as
su

ra
nc

e

The impact of the size of each type Sj on assurance.

k=3, n=12, m=4
k=3, n=12, m=5
k=3, n=12, m=6
k=3, n=12, m=7

Fig. 7. The impact of server-group size on data storage assurance. The
server-group size means the number of storage nodes in a server-type group.
Note that the storage nodes within a server group share the same level of
vulnerability. The server-group size varies from 12 to 18 with an increment
of 1.

size from 45 to 70 by increments of 5. We keep k at 3 and also
vary m from 4 to 8. Fig. 6 reveals that the storage assurance of
the system is not very sensitive to the system size, indicating
that storage assurance largely depends on the vulnerability
heterogeneity level rather than system size. Thus, large-scale
distributed storage systems with low levels of vulnerability
heterogeneities may not have higher assurance than small-
scale distributed systems. These results suggest that one way
to improve system assurance is to increase vulnerability het-
erogeneity while increasing the scale of a distributed storage
system. A high heterogeneity level in vulnerability helps in
increasing threshold m, making it harder for attackers to
compromise multiple server groups and reconstruct files.

C. Impact of Size of Server Groups on Storage Assurance

Fig. 7 illustrates the impact of server-group size on data
storage assurance. Note that the server-group size is the
number of storage nodes in a server-type group, in which all
the storage nodes share the same level of vulnerability. We
vary the server-group size from 12 to 18 with an increment of
1. We observe from Fig. 7 that when threshold m is small (e.g,
m = 4), the assurance of systems with large server-group sizes
is slightly higher than that of systems with small server-group
sizes. Interestingly, the opposite is true when the threshold
m is large (e.g, m > 4). Given a fixed number of storage
nodes in a distributed storage system, increasing the server-
group size can decrease the number of server groups, which
in turn tends to reduce vulnerability heterogeneity. The results
shown in Fig. 7 match the results in the previous experiments
in which a low level of vulnerability heterogeneity (or larger
server-group sizes) results in degraded storage assurance.

D. Impact of Number n of File Fragments on Storage Assur-
ance

Fig. 8 illustrates the impact of the number n of fragments
of a file on storage assurance. In this experiment, we increase
the number n of fragments from 11 to 20 and measured data

11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the number of fragments n of a file in the used scheme

st
or

ag
e

as
su

ra
nc

e

Storage Assurance of System with Different Scheme number n

k=3, N=75, m=4
k=3, N=75, m=5
k=3, N=75, m=6
k=3, N=75, m=7

Fig. 8. The impact of the number n of fragments of a file on storage
assurance. The number n of fragments increases from 11 to 20. The
parameters k and N are set to 3 and 75, respectively.

storage assurance using our model. The parameters k and N
are set to 3 and 75, respectively. We also vary threshold m
from 4 to 7. Results depicted in Fig. 8 confirm that the system
assurance is reduced with the increasing value of fragment
number n. The results indicate that a large number of file
fragments leads to low data storage assurance of the file.
This assurance trend is reasonable because more fragments
are likely to be allocated to storage nodes with the same
vulnerability. If one storage node is compromised by an
attacker, fragments stored on nodes with the same vulnerability
can also be collected by the attacker, who is more likely to be
able to reconstruct the file from the disclosed fragments.

In addition, Fig. 8 shows that increasing the value of thresh-
old m can improve storage assurance. This pattern is consistent
with the results obtained in the previous experiments.

E. Impact of Threshold m on Storage Assurance

Figs. 5-8 clearly show the impact of threshold m on storage
assurance of a distributed system. More specifically, regardless
of other system parameters, the storage assurance always
goes up with the increasing threshold value m. The results
indicate that the more fragments an attacker needs in order
to reconstruct a file, the higher data storage assurance can
be preserved for the file in distributed storage systems. These
results suggest that to improve data storage assurance of a file,
one needs to partition the file and allocate fragments in such
a way that an attacker must compromise more server groups
(the best case is m server groups) in order to reconstruct the
file.

F. Impact of PL on Dynamic Assurance

Now we are in a position to evaluate dynamic assurance of
distributed storage systems. The three parameters μ1, μ2, and
μ3 in Eq. 7 have an important impact on dynamic assurance
because these parameters indicate whether there is risk during
fragment transmissions. Please refer to Sections VII-A to
VII-E for details on the impacts of a set of parameters on
data storage assurance.

177

0 1 2 3 4 5 6 7 8

x 10−3

0.99

0.992

0.994

0.996

0.998

1

1.002

PL−−probability of a fragment is intercepted in network

dy
na

m
ic

 a
ss

ur
an

ce

Dynamic Assurance with Different Network Security Level

N=72, k=4, Sj=18, n=12, q=4, m=7
N=72, k=4, Sj=18, n=12, q=4, m=8
N=72, k=4, Sj=18, n=12, q=4, m=9
N=72, k=4, Sj=18, n=12, q=4, m=10

Fig. 9. Impact of PL - the probability that a fragment might be intercepted
by an attacker during the fragment’s transmission through an insecure link.
PL is varied from 0 to 8 ∗ 10−3 by increments of 1 ∗ 10−3. Threshold m
is varied from 7 to 10

PL - the probability that a fragment might be intercepted
by an attacker during the fragment’s transmission through an
insecure link - has a noticeable impact on dynamic assurance
of a distributed storage system provided that threshold m
is small (e.g., smaller than 9). Fig. 9 shows the dynamic
assurance of a distributed system when PL is varied from 0 to
8∗10−3 by increments of 1∗10−3. We also vary threshold m
(i.e., m is varied from 7 to 10) to evaluate the sensitivity of
dynamic assurance on parameter PL under different threshold
m.

Fig. 9 demonstratively confirms that when threshold m is
equal to or smaller than 8, a large value of PL results in low
dynamic assurance of the system. The results are expected
since a high value of PL means that the transmitted fragments
are likely to be intercepted by an attacker. Once the attacker
has collected enough fragments of a security-sensitive file,
the file could be reconstructed. When threshold m is larger
than 8, the dynamic assurance is not noticeably sensitive to
the probability PL that a fragment is compromised during its
network transfer.

G. Impact of q on Dynamic Assurance

Like parameter PL, the number q of fragments transmitted
to and from a storage cluster also has an impact on the dynamic
assurance of a distributed storage system. Intuitively, Fig. 10
shows that when the number of fragments of a file that must be
transmitted through insecure links is increasing, the dynamic
assurance of the file drops. Interestingly, when threshold m is
larger than 8, the dynamic assurance becomes very insensitive
to the number q of fragments. This observation suggests that
when the threshold is small, the S-FAS fragment allocation
scheme must pay particular attention to lower the value of q
in order to maintain a high dynamic assurance level.

In addition, we observe from Fig. 10 that dynamic assurance
is always lower than the corresponding storage assurance
(where q=0 in Fig. 10). This trend is always true because in
a dynamic environment, file fragments have to be transmitted

0 1 2 3 4 5 6
0.99

0.992

0.994

0.996

0.998

1

1.002

q−−the number of fragments transmitted across different storage clusters to serve a request

dy
na

m
ic

 a
ss

ur
an

ce

The Impact of q on Dynamic Assurance

N=72, k=4, Sj=18, n=12, Pl=0.004, m=7
N=72, k=4, Sj=18, n=12, Pl=0.004, m=8
N=72, k=4, Sj=18, n=12, Pl=0.004, m=9
N=72, k=4, Sj=18, n=12, Pl=0.004, m=10

Fig. 10. Impact of q - the number q of fragments transmitted to and from
a storage cluster. q is chosen from 0 to 6 with an increment of 1. Threshold
m is set from 7 to 10)

through insecure network links where malicious users may
intercept the fragments in order to reconstruct files.

VIII. CONCLUSION AND FUTURE WORK

It is critical to maintain the confidentiality of files stored in
a distributed storage system, even when some storage nodes
in the system are compromised by attackers. Secret sharing is
an efficient way to preserve data confidentiality by distributing
a file among a group of n storage nodes, to each of which a
fragment of the file is stored. The file can be reconstructed
from at least k fragments. If fewer than k fragments are
disclosed to attackers, the file’s confidentiality can still be
preserved. In recognizing that storage nodes in a distributed
system have heterogeneous vulnerabilities, we investigate a
secure fragment allocation scheme by incorporating secret
sharing and heterogeneous vulnerability to improve security
of distributed storage systems.

We addressed the security heterogeneity issue by classifying
storage servers into different server-type groups (or server
group for short), each of which represents a level of security
vulnerability. With heterogeneous vulnerabilities in place, we
developed a fragment allocation scheme called S-FAS to
improve security of a heterogeneous distributed system. S-
FAS allocates fragments of a file in such a way that even if
attackers compromised a number of server groups and fewer
than k fragments are disclosed, the file cannot be reconstructed
by the attackers from the compromised fragments.

To evaluate the S-FAS scheme, we built the static and
dynamic assurance models in order to quantify the assurance
of a heterogeneous distributed storage system processing file
fragments. We demonstrate that S-FAS incorporates the vul-
nerability heterogeneity feature into file fragment allocation
for distributed storage systems. Experimental results show that
increasing heterogeneity levels can improve file assurance in
a distributed storage system.

There are three future research directions of this study. First,
we will make an effort to improve the performance of the S-
FAS fragment allocation scheme in a heterogeneous distributed

178

system. Second, we will integrate the data replication tech-
nique with S-FAS to enhance reliability and performance of
the fragment allocation scheme for distributed systems. Third,
we will implement a distributed storage system prototype
where S-FAS is deployed. In this prototype, we will evaluate
performance of S-FAS in a real-world system.

ACKNOWLEDGMENT

The work reported in this paper was supported by the U.S.
National Science Foundation under Grants CCF-0845257 (CA-
REER), CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-
0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251
(CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and
DUE-0830831 (SFS), as well as Auburn University under a
startup grant and a gift (Number 2005-04-070) from the Intel
Corporation.

REFERENCES

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages 202–215, New
York, NY, USA, 2001. ACM.

[2] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed
computing systems. In Research in Security and Privacy, 1991. Proceed-
ings., 1991 IEEE Computer Society Symposium on, pages 110 –121, May
1991.

[3] D. L. Kewley and J. F. Bouchard. Darpa information assurance program
dynamic defense experiment summary. IEEE Trans. on Systems, Man
and Cybernetics, Part A: Systems and Humans, 31(4):331 –336, Jul
2001.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: an architecture for global-scale persistent storage.
SIGPLAN Not., 35:190–201, November 2000.

[5] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive
security for stored data. IEEE Trans. on Parallel and Distributed
Systems, 14(9):818 – 828, 2003.

[6] H. Mantel. On the composition of secure systems. In 2002 IEEE
Symposium on Security and Privacy., 2002.

[7] A. Mei, L. V. Mancini, and S. Jajodia. Secure dynamic fragment and
replica allocation in large-scale distributed file systems. IEEE Trans. on
Parallel and Distributed Systems, 14(9):885 – 896, Sept. 2003.

[8] T. P. Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’91, pages
129–140, London, UK, 1992. Springer-Verlag.

[9] M. Pourzandi, D. Gordon, W. Yurcik, and G. A. Koenig. Clusters
and security: distributed security for distributed systems. In Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International
Symposium on, volume 1, pages 96 – 104 Vol. 1, May 2005.

[10] M. O. Rabin. Efficient dispersal of information for security, load
balancing, and fault tolerance. J. ACM, 36:335–348, April 1989.

[11] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[12] G. J. Simmons. How to (really) share a secret. In CRYPTO ’88:
Proceedings of the 8th Annual International Cryptology Conference on
Advances in Cryptology, pages 390–448, London, UK, 1990. Springer-
Verlag.

[13] B. M. Thuraisingham and J. A. Maurer. Information survivability
for evolvable and adaptable real-time command and control systems.
Knowledge and Data Engineering, IEEE Transactions on, 11(1):228 –
238, 1999.

[14] M. Tu, P. Li, I-Ling Yen, B. M. Thuraisingham, and L. Khan. Secure
data objects replication in data grid. IEEE Trans. on Dependable and
Secure Computing, 7(1):50 –64, 2010.

[15] T. Wu, M. Malkin, and D. Boneh. Building intrusion tolerant appli-
cations. In SSYM’99: Proceedings of the 8th conference on USENIX
Security Symposium, pages 7–7, Berkeley, CA, USA, 1999. USENIX
Association.

[16] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote,
and P. K. Khosla. Survivable information storage systems. Computer,
33(8):61 –68, Aug 2000.

[17] W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid. Cluster security as
a unique problem with emergent properties: Issues and techniques. In 5th
LCI International Conference on Linux Clusters: The HPC Revolution
2004, pages 18–20, 2004.

[18] G. Zanin, A. Mei, and L. V. Mancini. Towards a secure dynamic
allocation of files in large scale distributed file systems. In HOT-P2P
’04: Proceedings of the 2004 International Workshop on Hot Topics
in Peer-to-Peer Systems, pages 102–107, Washington, DC, USA, 2004.
IEEE Computer Society.

179

