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Abstract

Solid-state disks (SSDs) with high I/O performance
are increasingly becoming popular. To extend the life
time of flash memory, one can apply wear-leveling
strategies to manage data blocks. However, wear-
leveling strategies certainly inevitably degrade write
performance. In addition to low write performance,
wear-leveling strategies make one block unwritable
when one bit of this block is invalid. Although data
reconstruction techniques have been widely employed
in disk arrays, the reconstruction techniques has not
been studied in the context of solid-state disks. In this
paper, we present a new fine-grained data-
reconstruction algorithm for solid-state disks. The
algorithm aims to provide a simple yet efficient wear-
leveling strategy that improves both I/O performance
and reliability of solid-state disks. Simulation
experiments show that all data blocks have very
similar in terms of erasure times. The number of extra
erasures incurred by our algorithm is very marginal.

Keywords: data reconstruction; area wear-leveling
strategies, solid-state disc; disdegrading mechanism,
high reliability.

1. Introduction

Flash memory - a common storage medium – can be
used as a non-volatile, shock-proof, energy-saving
storage device. Typically, a flash memory is composed
of a number of flash memory blocks, each of which is
divided into a number of physical page. One block is
the smallest unit of erase operations; one page is a unit

for reading and writing operations. Prior to rewriting a
physical page, one must have the entire block erased.
One major drawback of flash memory is that the
number of erase times is as low as anywhere from
100,000 to 1,000,000 [1][2]. If there is a single block

Figure 1. Data reconstruction for RAID-5.
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reaching its erase time limit, data stored in this block
becomes unreliable.

Redundant array of independent disks or RAIDs
have low cost, high I/O performance, and high
reliability. As such, RAID has been widely applied to
support data-intensive computing applications. In this
study, we focus on data reconstruction processes in
disk arrays of level 5 or RAID-5. A data reconstruction
process is triggered if one disk fails. During the process
of data reconstruction, the disk array is transitioned
into a degraded mode. Fig. 1 depicts the data
reconstruction process of RAID-5 [3].

RAID-5 makes no distinction among failure
accesses when a disk array is in the degraded mode. In
this paper, we pay attention to a way of integrating data
reconstruction mechanism into solid-state disks by
designing a fine-grained data reconstruction algorithm.
Experimental results show that the life time of a
physical block can be significantly extended (see, for
example, [4]). Our simulation results demonstrate that
our new data reconstruction algorithm is conducive to
improve the reliability of flash-based solid-state disks.

2. Fine-Grained Data Reconstruction

NAND flash reads and writes in units of pages (256
or 512 Bytes per page); data in flash memory is erased
in units of block (4KB, 8KB, or 16KB per block).
Since bit-error rates of NAND flash chips are relatively
high, ECC checks on memory are highly recommended.
As a result, it is desirable for flash-based solid-state
disks to reserves redundant blocks to save ECC check
bits, the size of which is approximately 1% of that of
the data bits. After a data error occurs in a block, the
failed block will be marked followed by replacing the
redundant block with a new block. Note that
replacements are handled by disk controllers. It is
common that small NAND flash chips contain 32 pages,
each of which consists 4224 bits (i.e., 512 + 16 Bytes =
4,224 bits per page). Unlike small chips, large flash
chip contains 64 pages of 16,896 bits (i.e., 2048 + 64
Bytes = 16,896 bits per page). When one bit of 16,896
bits is inaccessible, the entire block will be marked
accordingly. The downside of doing this is the low
usage of storage space.

To address the above low usage problem of flash-
based solid-state disks, we design the following data
reconstruction strategy to efficiently use disk space
when errors occur. Let us consider a disk request that
attempt to read or write a data block in a solid-state
disk. The following steps are carried out to process the
request.

Figure 2. Structure of a block.

The fine-grained data reconstruction strategy:

a) In each block, we reserve one page as a hot spare
page and one page as a check bit page. Figure 2
shows the structure of each block with a hot spare
page and a check bit page.

b) Process a read or write access request.
c) Predict whether the access operation is successful.

If the operation fails, go to step d); otherwise
return the correct data or write the data.

d) Predict whether this block should be reconstructed.
If data must be reconstructed, go to step f);

e) Predict whether the block should be mark as a bad
block. If the block is a bad block, go to step g);

f) Copy the valid data of the failed page to the hot
spare page; then reconstruct failure data using the
valid pages as well as the check bit page. Next,
reconstructed data are copied to the hot spare page.
Note that reconstructing and copying are the two
main steps of generating data for a failed block. In
this step of data reconstruction, we make use of a
virtual page in main memory or RAM to improve
the performance of our data reconstruction
mechanism. Using the access position, the
reconstruction algorithm predicts whether the
failure data is to be changed by this write operation.
If the failure data will be modified, the write
operation modifies data to the hot spare page.
Otherwise, the reconstructed data should be
written to the page. If a page is empty, the
algorithm simply writes 1 to the page. This step is
outlined in Figure 3 below.

g) If the number of total failure data bits is beyond
the data reconstruction capability, the block will be
marked bad block. Accordingly, the wear-leveling
strategy chooses a new block to replace this bad
block by copying all data to a new block and
modifying the pointer to the new block.
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Figure 3. Reconstruction process (see step f in
the data reconstruction algorithm)

In step c) where the algorithm predicts whether
operations will succeed, we set a threshold to definite
maximum number of failed bits in one page. The
threshold value should be carefully decided upon the
computational performance of solid-state disks. For
example, if the computing capability is very high, the
threshold value should be great, otherwise the threshold
value should be small [5].

Figure 4 outlines the read and write processing
procedure for the data reconstruction algorithm, which
can alleviate the problem of low read or write
performance due to failed blocks. Our scheme
improves read/write performance because our
algorithm only needs to reconstruct failed bits. Thus,
other non-failed data can be directly read or write while
failed bits are reconstructed. RAID-5 uses only XOR
operation - an easy way to be implemented by FPGA or
system-on-chip (SOC) to reconstruct data. Our
approach improves the reliability of solid-state disks at
the cost of marginal performance degradation, because
a block is marked as a bad block if only two or more
pages have failed bits. If one page is reserved in the
first place, the data reconstruction algorithm can rely
on the reserved page to replace a failed page. We argue
that the fault tolerance of flash-based solid-state disk is
expected to be improved by our data reconstruction
algorithm, since only blocks with three or more bad
pages are treated as inaccessible. Thus, applying our
algorithm to solid-state disks can reduce the number of
bad blocks. The details on the data construction
procedure can be found in Figure 4.

Figure 4. Read/Write process

Recall that in our fine-grained data reconstruction
algorithm the basic storage unit is page. Without loss of
generality, we assume that all pages in a block are
identical in the sense that the pages have the same
number of erasure times. To simplify the design of our
reconstruction algorithm, we adopt and extend the
conventional data reconstruction algorithm built for
RAID-5.

(1)

We use data check bits to detect and correct any
error and; therefore, it is indispensable to maintain data
consistency in our reconstruction algorithm. When data
is written or updated in a page, the disk controller
calculates check bits by performing a bit-wise XOR
operation (see the upper expression in Equation 1).
Similarly, using a bit-wise XOR operation leads to a
perfect reconstruction of a failed bit.

Below we show the detailed implementation of the
algorithm geared to the reconstruction of bad blocks.
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static int NANDFlashReadPage(U32 block,U32
page,U8 *buffer){

   int i,j; 
   unsigned int blockPage; 
   U8 ecc0,ecc1,ecc2;
   U8 *bufPt=buffer;
   U8 se[16]; 
   page=page&0x1f;
   // each block has 32 pages 
   blockPage = (block << 5) + page;
   initialize parameter
   for(i=0;i<10;i++);//wait
   NANDFlashWAITRB();//Wait tR
   for(i = 0; i < 512;i++){ 

if (i == badbyte) { 
  for (j = 0;j < page; j++)
  *bufPt++ 

XOR=NANDFlashReadPage(block,i,buffer)[i];
  for (j = page; j < 62; j++)
  // 64-1hot spare pages-1check bit

      // page 
  *bufPt++ XOR=

     NANDFlashReadPage(block,i,buffer)[i];
}

    // Read one page 
*bufPt++=NANDFlashRDDATA();

   } 
   ecc0=rNFECC0;
   ecc1=rNFECC1;
   ecc2=rNFECC2;
   for(i=0;i<16;i++){
      //Read spare array 
      se[i]=NANDFlashRDDATA();
   }
   NANDFlashnFCE_H();
   if(ecc0==se[0] && ecc1==se[1] &&
      ecc2==se[2]){
   Uart_Printf("[ECC
     OK:%x,%x,%x]\n",se[0],se[1],se[2]);
   return 1; 
   } 
   else { 
   Uart_Printf("[ECC

ERROR(RD):read:%x,%x,%x, reg:%x,%x,%x]\n",
   se[0],se[1],se[2],ecc0,ecc1,ecc2);
   return 0; 
   }
}

In order to improve the error correction capability,
one may use either the run-length limited code (RLL)
or the low density parity check code (LDPC). RLL
coding is a high efficiency coding; LDPC coding has
good performance. LDPC coding not only is close to
the theoretical Shannon limit, but also has flexible
structure. Thus, the decoding complexity of LDPC is
fairly low.

3. A Simplified Wear-Leveling Strategy

A compelling feature of our fine-grained data
reconstruction algorithm is that there is no pressing
need of wear leveling, because in our strategy blocks
identified as bad blocks are available for access. The
fine-grained reconstruction algorithm can be used in

conjunction with a simplified rather than a complicated
wear-leveling strategy. Therefore, in this section we
present a simple yet powerful wear-leveling strategy
(see Step g in Section 2) that takes advantage of
relative rank difference in a zone.

Most existing wear-leveling strategies make solid-
state disks keep number of write for all blocks. If a
solid-state disk has eight pieces of NAND flash chips
each of which has 16K blocks, then every block has to
use 17 bits to keep track of the number of writes.
Therefore, the solid-state disk has to reserve 272
KBytes (ie., 17*16k*8 = 272 KBytes) to record a list of
numbers of writes. Such a large list, of course, not only
has a negative impact on the searching speed of the
solid-state disk, but also wastes the storage capacity of
the solid-state disk. Apart from the above drawbacks,
the existing wear-leveling strategies compare relative
numbers that count writes. Thus, the D-values of two
numbers are more useful than the two numbers
themselves.

In our simplified wear-leveling scheme, we define
relative rank value Δ as the number of erasures
between two blocks. We define the erasure number of
the first block in a zone as the base value of this zone.
Let us use an example to explain a way of setting
relative rank values. If one block has a large number of
erasures than the first block, then the relative rank
value is set to 2 (i.e., Δ = 2). If one block and the first
block have the same number of erasures, then the
relative rank value is set to 1 (i.e., Δ = 1). Otherwise,
the relative rank value is 0 (i.e., Δ = 0). Besides relative
rank values, the total erasure number of each zone is
counted by our simplified wear-leveling strategy.
Recall that our fine-grained data reconstruction
algorithm triggers the wear-leveling strategy (see Step
g in Section 2). We design a the following data
reconstruction strategy that . 

The data reconstruction strategy:

a) Save the erasure number of every block in a
zone;

b) Randomly select a zone as a target zone;
c) If the total erasure numbers of the target zone is

larger than the current block, the target zone is
used more, go to step b);

d) If the corresponding block in the target zone Δ =
2, go to step b);

e) Select the corresponding block in the target zone
as the target block.

Although relative rank values only represent the
theoretical approximations of true values, the mean
error of relative rank values in the same zone are
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usually very small. As such, we believe that the
approximations are accurate in the majority of blocks.

Relative rank values can be used for dynamic wear
leveling as long as an operating system scans each zone
in a solid-state disk on a regular basis. When the total
erasure number increases sharply, the simplified wear-
leveling strategy chooses a less used zone to swap.

To demonstrate the effectiveness of our data
reconstruction and wear-leveling strategies, we decided
to leverage the simulated annealing algorithm. Previous
studies show that molecularities satisfy the Boltzmann
probability distribution at temperature T. Thus we have:

. (2)

where E(r) represents state r’s energy, kB > 0 denotes a
Boltzmann constant, E

—

is a random variable for a
molecular, Z(t) represents a normalization factor of the
probability distribution. If one chooses two parameters
E1 and E2 (e.g., E1 < E2), the following Equations can
be derived from the above Equation 2:

(3)

(4)
(5)

(6)

In this study, we are particularly concerned with the
lowest energy state. Let rmin be the lowest energy state,
we can simplify the above Equations in the case where
the lowest energy state is rmin . Thus, the following
Equations can be derived from Equation 6 as:

(8)

(9)

R = (10)

To evaluate our data reconstruction and wear-
leveling strategies, we simply consider a case where the
temperature T approaches to zero. Using Equations 8 –
10, the Boltzmann probability distribution (see
Equation 2) can be rewritten as below:

. (11)

4. Reliability Analysis

Three typical metrics used to measure the reliability
of a disk system include mean time to failure or MMTF,
mean time between failures or MTBF, and mean time
to data loss or MTTDL. Patterson et al., developed a
general framework for evaluating the mean time to
failure of disk arrays (see [6] for the details of the
evaluation framework). It is assumed that disk failures -
following an exponential distribution - are independent
of each other. Let t be time, M be the average life
expectancy of disk systems. The reliability Rexp(t) of
disk systems can be expressed as a function of time t
and average life expectancy M [5]. Thus, reliability
Rexp(t) is calculated as below.

(12)

If time t is much less than life expectancy M, then
reliability Rexp(t) can be approximated as Equation 13.

M
tetR M

t

−≈= 1)(exp
(M= average life). (13)

Disk failure rate – the probability that a disk fails
before time t or Prob(malfunction before time t) – is
derived from reliability Rexp(t) expressed by Equation
13. Thus, Prob(malfunction before time t) can be
written as:

Prob(malfunction before time t) = 1 - Rexp(t) t/M.

Let λ be the failure rate of a solid-state disk system,
and μ be the repair rate of the disk system. Failure rate
λ is inversely proportional to mean time to failure or
MTTFdisk (i.e., λ = 1/MTTFdisk). Similarly, repair rate μ
is inversely proportional to mean time to repair or
MTTRdisk (i.e., μ = 1/MTTRdisk).

The reliability of a single data striping group of the
RAID-5 model can be expressed as a Markov chain
shown in Figure 5, in which state 0 denotes normal
conditions, state 1 represents that one page is
breakdown, DL represents the data loss state, and N +
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1 denotes the number of disks. The probability that the
system transits from state 0 to 1 is the product of N + 1
and failure rate λ The probability of transitions from
state 1 to state 0 equals to repair rate μ.

Figure 5. Markov chain of RAID-5.

Let Wi be the probability that the ith disk fails and ζi

be the failure rate of the ith disk. Then the probability ζ
that one page is down (see state 1 in Fig. 5) is the
weighted sum of ζi (1 ≤ i ≤ N). Thus, we have

(14)

(15)

In the case where failure rate λ is far less than repair
rate μ, the mean time to data loss value or MTTDL for
RAID-5 can be expressed as Equation 16 (see [6][7]
for details on mean time to data loss).

MTTRNN
MTTF

NN
u

NN
uNMTTDL

)1()1(

)1(
)12(

2

+
=

+
≈

+
++

=

λ

λ
λ

(16)

5. Experimental Results

In this Section, we demonstrate that our new data
reconstruction strategy along with the simplified
wearing-leveling technique can extend the MTTF value
of solid-state disks by anywhere from 30% to 50%.

To evaluate the reliability of a solid-state disk
system equipped with our data reconstruction and
wearing-leveling techniques, we calculated the mean
time to failure values by applying both the model (see
Section 4) and a disk simulator using C++ on a Linux
platform.

In what follows, we first rely on the reliability
model to quantify MTTF values. Using the model
described in Section 4, Figure 5 shows the mean time

to failure (MTTF) values of a traditional data
construction strategy and our approach. The reliability
model indicates that under random access workload
conditions, both the traditional approach and our fine-
grained data reconstruction algorithm are very sensitive
to workload conditions. More specifically, regardless
of data construction algorithms, increasing workload
conditions reduces mean time to failure values. The
results suggest that the reliability of solid-state disk
systems is lowered by high workloads. Furthermore,
Figure 5 shows that the MTTF values of the traditional
strategy are smaller than those of our data construction
algorithm, indicating that our approach significantly
improves the reliability of solid-state disk systems.

Figure 5. Mean time to failure values are derived
from the reliability model presented in Section 4.

Random I/O accesses are considered.

To valid the reliability model used to calculate the
mean time to failure values plotted in Figure 5, we
conducted extensive simulation studies to
quantitatively evaluate the performance of our new
techniques designed for solid-state disks under a wide
variety of workload conditions. We augmented the
DiskSim storage system simulator [8] with our data
reconstruction mechanism. We used random I/O access
patterns and the simulated annealing algorithm to
evaluate the effectiveness of our proposed data
reconstruction algorithm.

56



Figure 6. The simulated Annealing algorithm used
to valid the reliability model described in Section 4.

In the simulated annealing algorithm, we consider
the following simulated annealing parameters: initial
temperature t, the temperature change rate a, the length
of a Markov chain that is set to 1, and the maximum
number of iterations n.

Figure 6 shows the simulation results for both the
traditional and our data reconstruction algorithm. The
simulation results plotted in Figure 6 are consistent
with the modeling results depicted in Figure 5. Thus,
the reliability model described in Section 4 is
experimentally validated.

Figure 7. Read/write rate of a solid-state disk
equipped with the fine-grained data reconstruction

scheme.

After investigating the reliability of a solid-state
disk equipped with our data reconstruction scheme, we
focus on I/O performance of the solid-state disk. Figure
7 shows the read and write rates of the solid-state disk.
The performance results illustrated in Figure 7 indicate
that our fine-grained data reconstruction algorithm
introduces approximately 5% to 10% overhead in terms
of the read and write performance. These results
confirm that our approach significantly improves the
reliability of solid-state disks with marginal
performance overhead.

Figure 8 Impacts of the number of writes on the
percentage of bad blocks.

A certain percentage of bad blocks can be used as a
preliminary metric to evaluate the reliability of solid-
state disks. Now we investigate impacts of the number
of writes on the percentage of bad blocks. Figure 8
shows bad block percentages of our strategy and the
two alternative approaches as functions of the time of
writes. Figure 8 clearly demonstrates that compared a
solid-state disk without employing wear-leveling, the
wear-leveling technique improves the reliability of
solid-state disks by significantly reducing the
percentage of bad blocks. This observation is
consistent with the results reported in [11][12]. More
importantly, the results potted in Figure 8 show that the
reliability of the solid-state disk can be further
improved if our fine-grained data reconstruction
algorithm is integrated with the wear-leveling
technique.

High reliability, of course, comes at the cost of
performance. Figure 9 shows the impact of I/O load
measured in terms of I/O operations per second on
response time. The results indicates that the fine-
grained data reconstruction algorithm increased the
average response time by approximately 10%. These
results are consistent with those reported in Figure 7.
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Figure 9. Impact of I/O load on average response
time measured in millisecond.

Figure 10. Expired probe

Figure 10 shows the correlations between lifetimes
and expired probes in the context of solid-state disks.
Details on expired probes can be found in [13]. We
observe from Figure 10 that our simplified strategy
described in Section 3 can substantially extend
lifetimes of solid-state disks.

5. Conclusions

Recognizing that traditional coarse-grained data
reconstruction approaches are inadequate for solid-
state disk, we developed in this study a new find-
grained data reconstruction. A compelling feature of

our fine-grained data reconstruction algorithm is that
there is no pressing need of wear leveling, because in
our strategy blocks identified as bad blocks are
available for access. We designed a simplified rather
than a complicated wear-leveling strategy. The
simplified wear-leveling scheme was integrated with
the fine-grained data reconstruction algorithm.
Experimental results show that our fine-grained data-
reconstruction algorithm coupled with the a simple yet
efficient wear-leveling strategy can improve both
reliability and I/O performance of solid-state disks. For
example, all data blocks have very similar in terms of
erasure times. The number of extra erasures incurred
by our algorithm is very marginal.

As a future research direction, we will integrate
coding techniques other than ECC into our data
reconstruction scheme. Future coding techniques to be
addressed include RLL, Turbo or even LDPC coding.
We firmly believe that these coding techniques can
further improve reliability of solid-state disks.
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