
Can We Improve Energy Efficiency of Secure Disk Systems without
Modifying Security Mechanisms?

Xiaojun Ruan†, Adam Manzanares†, Shu Yin†, Mais Nijim‡, and Xiao Qin†*

† Department of Computer Science
and Software Engineering

Auburn University, Auburn AL, 36849-5347
{ xzr0001, acm0008, szy0004, xqin}@auburn.edu

‡ School of Computing
University of Southern Mississippi

Hattiesburg, MS 39406
mais.nijim@usm.edu

Abstract—Improving energy efficiency of security-aware
storage systems is challenging, because security and energy
efficiency are often two conflicting goals. The first step
toward making the best tradeoffs between high security
and energy efficiency is to profile encryption algorithms to
decide if storage systems would be able to produce energy
savings for security mechanisms. We are focused on
encryption algorithms rather than other types of security
services, because encryption algorithms are usually
computation-intensive. In this study, we used the XySSL
libraries and profiled operations of several test problems
using Conky - a lightweight system monitor that is highly
configurable. Using our profiling techniques we concluded
that although 3DES is much slower than AES encryption,
it more likely to save energy in security-aware storage
systems using 3DES than AES. The CPU is the bottleneck
in 3DES, allowing us to take advantage of dynamic power
management schemes to conserve energy at the disk level.
After profiling several hash functions, we noticed that the
CPU is not the bottleneck for any of these functions,
indicating that it is difficult to leverage the dynamic power
management technique to conserve energy of a single disk
where hash functions are implemented for integrity
checking.

I. INTRODUCTION

 In the past decade, energy efficiency has become an ever
increasing priority in computer science research [2].
Computers have traditionally been designed with performance
metrics being the main focus of the design. Since our sources
of energy to power computers are not limitless, it is imperative
to design energy efficient computer architectures. Disk
systems tend to be large consumers of energy consumption [4]
and; therefore, we have designed an energy efficient parallel
disk framework (see [3] for details of our disk framework).
Apart from high energy efficiency, security mechanisms are
equally important for disk systems to support a wide range of
data-intensive applications that are security sensitive.
Although previous research has focused on producing a
relationship between energy efficiency and security strength
for mobile devices (see, for example, [1]), it is challenging to
make good tradeoffs between high security and energy

efficiency for storage systems in general and for disk systems
in particular.
 The long-term goal of this research is to develop energy-
efficient security mechanisms for disk systems without
significantly degrading disk performance. Similar design goals
can be found in the literature (see, for example, [4] and [5]).
This study started off with having a goal of developing a
matrix that would outline the tradeoffs between energy
efficiency and security in the context of large-scale disk
systems.
 Generally speaking, there are two approaches to
implementing energy-efficient security-aware disk systems.
The first one is to improve the energy efficiency of security
mechanisms in disk systems (see, for example, [1]); the
second approach advocates for integrating conventional
security services with energy-efficient disk architectures. The
first approach makes an effort to implement energy-efficient
security mechanisms in traditional disk systems, whereas the
second one is focused on energy-efficient disk systems
without modifying existing security mechanisms. In this study,
we focus on the second general approach. Thus, we attempt to
answer an intriguing question of whether it is possible to
seamlessly integrate security services with energy-efficient
disk systems without modifying the source code of security
services.
 To determine if it is possible to conserve energy
consumption of existing security services using new energy-
efficient disk systems, we will have to investigate I/O access
patterns of encryption and integrity checking algorithms.
Studying I/O access patterns of disk requests issued by the
security services requires knowledge of encryption algorithms
and hash functions. In this research, we first investigate the
I/O characteristics of encryption algorithms and hash
functions. Next, we apply these I/O characteristics within the
energy-efficient buffer disk architecture or BUD (see [9] for
detailed information concerning BUD) to investigate the
possibility of leveraging BUD to reduce energy dissipation
caused by the existing encryption algorithms and hash
functions.
 Very recently, we had designed and implemented software
modules to separately handle read [17] and write [9] requests
within the BUD architecture, which will be briefly described
in the next Section. In addition, we had made some
generalizations about the BUD architecture. One of our

* Corresponding Author. xqin@auburn.edu http://www.eng.auburn.edu/~xqin

2009 IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-3741-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NAS.2009.71

409

2009 IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-3741-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NAS.2009.71

413

2009 IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-3741-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NAS.2009.71

413

2009 IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-3741-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NAS.2009.71

413

previous studies showed that the BUD architecture is
extremely sensitive to hard disks’ Break Even Time, which is
defined as the size of an idle time required for a disk to energy
efficiently transition from the active state to the standby state.
In hard disks, for example, the break even time often exceeds
10 seconds. Such a large disk break even time indicates that
the BUD architecture is maximally energy efficient in
applications that are not disk intensive. Any software module
that leaves an opportunity for these break even times to be met
allows the BUD architecture to save energy. Hence, security
modules that can take full advantage of BUD to conserve
energy should not bottlenecked at disk I/O operations. In other
words, disk requests issued by the security modules must be
sufficiently sparse to produce noticeable energy savings.

To answer the fundamental question of whether we can
improve energy efficiency of secure parallel disk systems
without modifying security mechanisms in the disk systems,
we choose the BUD disk architecture as target energy-efficient
disk systems. A vital part of this study is to profile encryption
algorithms and hash functions in the context of disk systems.
We intend to figure out if I/O access patterns of the encryption
algorithms and hash functions would allow the energy-
efficient BUD disk architecture to conserve energy. The key
I/O features we focused on were arrival patterns of disk
request operations issued by the encryption algorithms and
hash functions. We aimed to determine if the disk operations
can yield sufficient idle periods for the BUD disk architecture
to reduce disk energy consumption using the energy-efficient
data management strategies we have previously studied.

The rest of the paper is organized as follows. Section 2
gives a summary of the related work for this research. Section
3 provides an overview of an energy-efficient disk
architecture. Section 4 describes our test bed setup. Section 5
presents the experimental results and explanations of the
trends in our results. Finally we end with a conclusion and
some future work possibilities.

II. RELATED WORK

Chandramouli et al. investigated battery power-aware
Encryption algorithms [1]. The main conclusions they reached
was that the power consumption changes linearly with the
number of rounds of several popular cryptographic algorithms.
Their experimental test bed had a laptop connected to a power
supply. The power supply was connected to a computer
running the Lab VIEW software to graph changes in voltage
and current from the power supply. These changes were
graphed during the life of the encryption algorithms [1].
Chandramouli et al. paid attention on improving energy
efficiency of security mechanisms in mobile devices systems
[1]. Our research is radically different from theirs in the sense
that we are focused on energy-efficient disk systems without
modifying existing security mechanisms.

 Potlapally et. al characterized the energy consumption of
cryptographic algorithms and security protocols [2]. The work
undertaken by Potlapally et. al [2] was very similar to the
research project conducted by Chandramouli et al. [1].

Potlapally et. al used IPAQ PDA’s instead of using a laptop to
measure power consumption [2]. They connected the IPAQ to
a power supply that was connected to a computer running the
Lab VIEW software. This allowed them to measure the energy
differences between various cryptographic algorithms.
Potlapally et. al obtained an array of interesting results related
to the SSL Protocol processing. For example, they determined
that for small data sizes asymmetric algorithms dominated
symmetric algorithms in terms of energy consumption. For
large data sizes symmetric algorithms consume significantly
more energy than asymmetric algorithms. Network protocol
energy consumption, defined as non-cryptographic processing
necessary to establish the SSL protocol, does not vary much
for different data sizes. Their main observations are that
asymmetric algorithms consume the most energy with hash
algorithms having the smallest energy footprint. Potlapally et.
al also stated that asymmetric algorithms energy consumption
is dependent on the key size used. They also determined that
the level of security and energy consumption can be tuned
using key size and number of rounds [2].

Our research differs from the aforementioned research
because we are focused on the energy impact of encryption
algorithms and hash functions on disk systems rather than
mobile devices. Furthermore, the goal of our work is to
characterize the I/O behavior of encryption algorithms and
hash functions in the context of parallel disk systems (e.g., the
BUD architecture). We intended to find the existing security
mechanisms that produce the most energy savings in an
energy-efficient parallel disk system. Rather than
implementing energy-efficient security mechanisms by
updating the existing security services, we made the first step
towards seamlessly integrating security services with energy-
efficient disk systems without changing the source code of the
existing security mechanisms. More importantly, our research
is orthogonal to the above work in that energy-efficient
security mechanisms can be incorporated into our energy-
efficient parallel disk architecture to achieve both high
security and energy efficiency for parallel disk systems.

III. OVERVIEW of THE BUD DISK SYSTEMS

Although a significant amount of energy can be saved if
idle disks are turned to the standby mode, short idle periods
(i.e., smaller than the disk break even time) prevents idle disks
to be switched to standby to conserve energy. This problem
can be solved by aggregating smaller idle periods into idle
times that are larger than the disk break even time. We
implemented an idle time aggregation process in the buffer-
disk architecture or BUD (see Fig. 1 below) using buffer disks
to temporally buffer disk requests while keeping data disks to
standby as long as possible.

The buffer disk controller – a center piece in the BUD
architecture – is responsible for the dynamic power
management in both buffer and data disks. The two areas
where our previous studies have focused is the buffer disk
controller [3] and energy-efficient prefetching [17]. Moreover,
we have extensively investigated a disk write buffer strategy

410414414414

to improve parallel I/O energy efficiency [9]. There has been
work on load balancing the buffer disks and controlling writes
to the data disks [18]. For example, buffering write requests in
the buffer disks and writing out data when certain criteria are
met [9][18]. To further improve energy efficiency of parallel
disk systems, we have developed energy-efficient data
partitioning schemes, data placement strategies, and data
movement algorithms [19][20]. It is worth noting that the
BUD architecture embraces a security component, which not
only provides security services but also measures security
overhead imposed by the integrated security mechanisms. The
detailed information concerning the BUD architecture along
with a set of energy-efficient data management strategies can
be found in [3][9][17].

IV. EXPERIMENTAL SETUP

In the BUD architecture prefetching and data buffering are
closely related to total capacity of buffer disks as well as the
arrival rate of disk requests. The buffer disks can, literally
speaking, prefetch and buffer data aggressively until the disk
capacity is reached. When the buffer disks become full, either
a portion of buffered data must be moved to the standby data
disks or part of prefetched data has to be evicted from the
buffer disks. The time taken for the buffer disks to reach their
capacity largely depends on request arrival rates, data size, and
storage capacity. Since the total buffer disk storage space is
managed by with the BUD controller, this study was not
meant to address the issue of buffer disk capacity. Thus, let us
focus on access patterns (e.g., disk request arrival rates and
I/O processing time) to explore the possibilities of achieving
high energy efficiency in secure parallel disk systems without
modifying security mechanisms.

To capture access patterns of disk requests issued by
confidentiality and integrity services, we have to profile
encryption algorithms and hash functions. We chose to use a
Linux computer because of the open source nature of Linux
and availability of free software like GkrellM, Conky and

XySSL. The first software monitor used in our experiments is
GkrellM. Although GkrellM is capable of providing disk,
memory, and CPU usage statistics, we were unable to find a
quick method to produce the output in a text file. Hence, we
moved to using Conky, which is a lightweight system monitor
that is highly configurable and supports text output. After
making use of the XySSL libraries to evaluate an array of
security mechanisms, we generated disk trace files for further
analysis.

Our created a testbed using one Linux PC. The following
table outlines the important properties of the testbed.

Table 1 System Parameters of the Testbed

CPU Speed Pentium 4 2.4 GHZ
Memory 512 MB
Operating System Ubuntu 7.10
USB 1.1 12 Mb/s
HD Bus IDE

The CPU speed of the testbed is high enough that the CPU
will probably not be the performance bottleneck for the
evaluated security mechanisms. The bandwidth of the memory
component in our testbed is relatively low for a Pentium 4
computer. We chose to connect a flash drive to the testbed by
a USB port, because the USB interface was used to emulate a
network interface card in our experiments. A hard drive is
connected to a SCSI Bus with the bandwidth of at least
5MB/s.
 The Linux operating system was used to perform our
experiments, because it is probably a bit easier to find the
required software needed to profile encryption algorithms and
hash functions. The Linux-based software tools used in our
experiments allow us to make any changes to the software to
monitor and study access patterns of security services.
 Once we have our OS chosen, we are in a position to
identify software that allow us to test our encryption
algorithms and hash functions. An ideal software tool should
include the implementation of a wide range of popular

Fig. 1. The buffer-disk architecture or BUD for parallel disk systems.

 Data Partitioning

 Security Model

Load balancing

Power Management

Prefetching

Disk Requests

 Energy-Related Reliability Model

411415415415

encryption algorithms and hash functions. Apart from a
security software tool, we have to choose a software tool
enabling us to monitor the CPU, memory, and read/write
performance of the hard drive and flash drive connected to the
USB port. After we found software to fulfill the above
requirements, we were ready to profile encryption algorithms
and hash functions.
 The first software tool we chose to use is XySSL, which
implements a set of well-known encryption algorithms
accompanied by testing programs. In this study, we pay
particular attention to two encryption algorithms - 3DES [12]
and AES [14]. 3DES – slow in software - was developed in
response to the weakness of DES. 3DES is a strong encryption
algorithm, but it is typically slower than AES. 3DES uses a 64
bit block size to encrypt data [6]; it uses a 192 bit key that is
split into three different keys. In the 3DES algorithm, these
three 64 bit keys are required to encrypt and decrypt data
using DES. Each of these 64 bit keys uses 8 bits for parity
checking leaving 3DES with an effective key strength of 168
bits.

AES is the current standard for data encryption widely
adopted by the US Government [6]. AES is typically
employed with a 192-bit encryption key. Block size in AES is
128-bit in length, meaning that AES encrypts twice as much
data as 3DES at each call of the function implementing the
encryption. AES is not only fast in software but also requiring
a small amount of memory. In addition to encryption
algorithms, several hash functions were implemented in
XySSL. To this end, we decided to evaluate MD5 [10] and
SHA (1-2) [11]. MD5 is an algorithm that produces a hash
output value of 128 bits. SHA-1 generates 160-bit hash values,
whereas SHA-2 can provide a hash bit varying in size between
224 and 512 bits. We also evaluated RSA verification
implemented in XySSL. Please note that all of the
aforementioned encryption algorithms and hash functions,
except for 3DES, are coupled with testing programs in
XySSL. Thus, we had to implement a testing program for
3DES based on the AES testing program.
 To monitor our testbed computer, we take full advantage
of GKrellM - a software monitor that is capable of monitoring
the CPU, memory, and disk I/O subsystems. GKrellM seems
to be a promising software tool. The only problem with
GKrellM, however, is the lack of well defined text output.
There is no straightforward way to produce text output. Hence,
we would have to dig into the source code of GKrellM and
implement a module to deal with text output. Alternatively, we
would have to find another system monitor that has some
kinds of text output. We chose the second approach due to
time constraints and began our search for a system monitor
with text output. Fortunately, Conky - a lightweight system
monitor that is highly configurable - is able to yield a text
output file. There is a listing of all the variables that Conky
keeps track of. If we need to output of these variables to a text
file, we simply specify the variable in a configuration file. The
configuration file allows us to format output files, making it
possible for us to put our desired variables in the csv format
readable by Microsoft Excel. In our experiments, the variables

that are kept track of include events of CPU, memory, and
disk read/writes in the testbed. Since we substituted a USB-
based flash drive for a networked disk system, all data reads
are initiated from the USB drive. We were able to control the
testing programs in XySSL to guarantee all disk writes are
physically issued to the hard disk in our testbed. In doing so,
we are capable of separately monitoring I/O access patterns of
the flash drive and hard drive where the encryption algorithms
and hash functions are evaluated.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Now we are positioned to present experiment results and
analysis in the this sections. We evaluated three different types
of system events, namely, CPU usage, flash drive read
bandwidth, and hard disk write bandwidth. Recall that we
extensively investigated three hash-function algorithms, one
RSA signature verification algorithm, and two block and
stream encryption algorithms in our experiment.

In our experiment, we use a flash drive to emulate source
data retrieved from a remote disk system connected to the
testbed through a network. The size of the source data set is
900Mbyte; the data was organized and stored in 78 files
residing in the USB-based flash drive.

Fig. 2. CPU usage (measured in percentage) of the
testbed when MD5 is evaluated.

Fig. 3. Read/write bandwidth of the testbed when
MD5 is evaluated.

412416416416

MD5 used to be one of the most popular hash functions for
data integrity checking services. Although MD5 is no longer
considered as the most secure algorithm for integrity checking
[15], it is still a good representative hash function to be
considered in this research. Hence, we started our experiment
by exhibiting the workload of CPU and I/O of the testbed
when MD5 is running to ensure that a file has not been
tampered with. Fig. 2 shows the CPU usage when the testbed
is using MD5 for integrity checking. Since the MD5 hash
function is not CPU-intensive, we observed from Fig. 2 that
the CPU usage is almost always lower than 60% and very
rarely exceeds 80%. Hence, we concluded that CPU is not the
performance bottleneck of MD5.

Fig. 3 shows the read/write bandwidth of the disk
subsystem in the testbed. It is observed from Fig. 3 that
15MB/Sec. is the maximum I/O read bandwidth achieved by
the testbed MD5 is evaluated. Such a maximum read
bandwidth is apparently the upper bound of the bandwidth
exhibited by the USB-based flash drive. A second observation
drawn from Fig. 3 is that the average write bandwidth of the
disk subsystem is 32MB/Sec., which rarely reach the
maximum write bandwidth. More interestingly, the flash drive
experiences a limited number of idle periods during the
execution of MD5. Compared with read access patterns, write
access patterns contain more and longer idle times. Fig. 3
reveals that data read bandwidth becomes the performance
bottleneck of the disk system where MD5 is applied for data
integrity checking. More importantly, Fig. 3 suggests that
without modifying MD5, we can apply the BUD architecture
to reduce energy consumption of disk systems integrated with
MD5 for data integrity checking. BUD can conserve energy
for MD5, because many small idle periods in disks can be
grouped to form large idle periods, which in turn allow disks
to be switched to the standby mode .

Fig. 4. CPU usage (measured in terms of percentage)
of the testbed when SHA-1 is evaluated.

SHA-1is a second hash function evaluated in our testbed.
The access patterns of SHA-1 are very similar to those of
MD5. SHA-1 is more secure than MD5 (see [16] for detailed
comparisons), because SHA-1 is more complicated in
implementation than MD5. Fig. 4 indicates that the average

CPU usage of the testbed when SHA-1 is evaluated is higher
than that of the same testbed when MD5 is running.

Fig. 5. Read/write bandwidth of the testbed when
SHA-1 is evaluated.

Fig. 5 shows that in almost all the cases, the testbed keeps

reading data from the flash drive at the highest bandwidth.
There is only very small number of gaps among reading
events, meaning that idle periods rarely occur in SHA-1.
Unlike read requests, disk write operations (see Fig. 5) in
SHA-1 demonstrate more idle periods. This is mainly because
with respect to SHA-1, reading data from the flash drive is the
performance bottleneck of the testbed system. Like Fig. 3, Fig.
5 indicates that the SHA-1 can be seamlessly integrated with
the BUD architecture to achieve both high energy efficiency
and data integrity. Such integration can be straightforwardly
realized by employing a software module of the existing SHA-
1 service on top of BUD without even changing the source
code of SHA-1.

Fig. 6. CPU usage (measured in terms of percentage)
of the testbed when SHA-2 is evaluated.

SHA-2 is comprised of a group of hash functions. Without
loss of generality, in this experiment let us evaluate SHA-256,
which can be considered as one of the most secure hash
functions in this study. Fig. 6 shows that when SHA-2 is
evaluated, the CPU usage of the testbed system is slightly
higher than that of the same testbed with SHA-1. Fig. 7
indicates that disk I/O characteristics of SHA-2 are very close
to those of SHA-1. In other words, data read bandwidth of the

413417417417

flash drive is the performance bottleneck of SHA-2. An
implication of this result is that without changing the source
code of SHA-2, it is possible to leverage the BUD architecture
to improve energy efficiency of disk systems where SHA-2 is
employed.

Fig. 7. Read/write bandwidth of the testbed when
SHA-2 is evaluated.

Fig. 8. CPU usage (measured in terms of percentage)
of the testbed when RSA Verification is evaluated.

Fig. 9. Read/write bandwidth of the testbed when
RSA Verification is evaluated.

RSA - widely adopted as a public-key encryption scheme.
- has signature generation and verification functions. In this
experiment, we evaluate RSA’s signature and verification
functions in our testbed. Before we started the test, we
generated signature files for each file residing in the USB-

based flash drive. In this case, each input data file is coupled
with a corresponding signature file.

We observed from Figs. 8 and 9 that RSA processes the
input data set faster than the other three hash functions,
suggesting that the CPU and I/O load imposed by RSA
verification function is lower than those of the above studied
hash functions.

Since the CPU load in RSA is reduced compared with the
other three hash functions, Fig. 9 confirms that the read
bandwidth of the flash drive is the performance bottleneck of
the testbed. Due to the fact that very few idle periods exist in
the flash drive, it is unlikely to leverage the BUD architecture
to reduce energy dissipation of reads in RSA. Fortunately, the
results obtained from Fig. 9 indicate that executing RSA in the
BUD disk architecture can provide energy savings for writes
issued to the hard drive. The energy savings become possible
for writes in RSA, because there are a large number of small
idle periods that can be aggregated by BUD to form larger idle
periods.

Fig. 10. CPU usage (measured in terms of
percentage) of the testbed when AES is evaluated.

Fig. 11. Read/write bandwidth of the testbed when
AES is evaluated.

Next, let us study the access patterns of AES and 3DES -
two block/stream encryption algorithms. The AES (Advanced
Encryption Standard) is a block cipher standard published by
the US government in November 2001. After input data is
retrieved from the flash drive in the testbed, AES encrypts the
input data with 256-bit keys and stores cipher text on local
hard drive in the testbed. Results plotted in Figs. 10 and 11

414418418418

show that the CPU and I/O load caused by AES are very well
balanced. For example, the CPU usage, read/write bandwidth
of the testbed running AES tend to reach their upper bounds.
When it comes to reads, there is almost no idle period found
during the course AES’s execution. Although AES does not
issue writes as intensively as reads, idle periods in the hard
drive are smaller than those of cases for MD5, SHA-1/SHA-2,
and RSA.

Fig. 12. CPU usage (measured in terms of
percentage) of the testbed when 3DES is evaluated.

Fig. 13. Read/write bandwidth of the testbed when
3DES is evaluated.

3DES, CPU-intensive in nature, is very slow in software.
For example, it took approximately 190 Sec. for AES to
encrypt all the 78 files in the flash drive; 3DES spent more
than 25,000 Sec. in processing the same set of files. Fig. 12
clearly shows that the CPU load is extremely high and CPU
becomes the performance bottleneck in our testbed running
3DES. Results depicted in Fig. 13 suggest that the BUD disk
architecture can be seamlessly integrated with 3DES to cluster
small disk idle periods together in large idle time frames,
which enable disks to be operated in the standby mode for
long time intervals to save energy.

VI. CONCLUSIONS AND FUTURE WORK

Achieving both high energy efficiency and security in disk
systems is challenging, because energy efficiency and data
security are often two conflicting goals. There are two general

approaches to improving security and energy-efficiency in
disk systems. The first approach is to modify existing security
mechanisms to enhance energy efficiency of security services
in disk systems. In contrast, the second approach is to
seamlessly integrate security services with energy-efficient
disk systems without modifying security mechanisms. In this
research, we took the first step toward the second approach by
answering an intriguing question of whether we can improve
energy efficiency of security mechanisms in disk systems
without changing the source code of security services.

Target energy-efficient disk systems considered in this
study is the buffer disk architecture or BUD (see [9] for
detailed information regarding BUD). The BUD disk
architecture aims at aggregating many small idle periods in
disks into a few large idle intervals so that disks can be turned
into the standby mode and kept in standby as long as possible
to conserve energy. In this research, we first built a testbed
containing a disk subsystem, USB-based flash drive, Linux
operating systems, and six encryption modules and hash
functions. Next, we captured CPU usage and I/O access
patterns of a disk system where the encryption modules and
hash functions were tested and evaluated. Finally, we analyzed
the possibility of leveraging the BUD disk architecture to
reduce energy consumption incurred by the existing
encryption algorithms and hash functions in the context of
disk systems.

Table 2 Summary of the CPU usage, read/write load
of the testbed running the six encryption algorithms
and hash functions. The two rightmost columns
show possibilities of employing the BUD
architecture to save energy for secure disk systems
without modifying the security mechanisms. (L:
Low, M: Medium, H: High, VH: Very High EH:
Extremely High)

 CPU
Load

Read
Load

Write
Load

Save Energy
for Reads?

Save Energy
for Writes?

MD5 M H M Unlikely Yes
SHA1 M VH M Unlikely Yes
SHA2 M VH M Unlikely Yes
RSA M VH M No Yes
AES VH VH M No Yes
3DES EH M L Yes Yes

Table 2 summarizes the CPU utilization and read/write
bandwidth of the testbed running the six security services.
Table 2 shows that except for 3DES, the CPU is not a
performance bottleneck for the other five security services.
Among the six evaluated security services, 3DES is the only
one that can make use of BUD to improve energy efficiency
for disk reads and writes. This is mainly because 3DES is very
slow in software, leaving many small idle periods in the hard
disks and flash drive. Although we are unable to conclude that
3DES is the most energy efficient security service on BUD, it
is certain that 3DES is a good representative security
mechanism that can benefit a whole lot from BUD.

415419419419

Furthermore, BUD can be employed to reduce energy
consumption of writes issued by the MD5, SHA-1, SHA-2,
RSA, AES modules (see the rightmost column in Table 2). It
is unlikely to minimize energy consumption of reads for MD5,
SHA-1, SHA-2 using BUD. Even worse, it is almost
impossible for BUD to reduce energy consumption of reads
for RSA and AES. Now we are positioned to conclude that
the BUD disk architecture can provide an ideal energy-
efficient data storage platform for security mechanisms, which
have high CPU usage and issue sparse disk requests.

As part of future work, we will take full advantage from
the generated I/O traces to drive our BUD disk simulator,
which allows us to quantitatively study how BUD can produce
energy savings for security mechanisms. Currently, we are in a
process of building a cluster storage system based on the BUD
architecture to investigate if BUD can be applied to clusters to
conserve energy. For a large cluster storage system with
sufficiently large CPU and disk capacities, it is intriguing to
evaluate the energy efficiency of a variety of hash functions
and encryption algorithms on the BUD-based cluster storage
system. For the I/O-intensive security services, we will
implement a dynamic resource manager in BUD to keep
parallel data disks active to achieve high aggregated read
bandwidth while allocating a limited number of CPUs to
perform integrity checking. In doing so, BUD will be capable
of conserving energy dissipation in processors in the cluster
storage system. When it comes to CPU-intensive security
services, the dynamic resource manager will save energy by
keeping all CPUs active to carry out encryption while force a
small number of buffer disks to buffer data.

ACKNOWLEDGMENTS
This work was made possible partially thanks to NSF awards
CCF-0845257 (CAREER), CNS-0757778 (CSR), CCF-
0742187 (CPA), CNS-0831502 (CyberTrust), OCI-0753305
(CI-TEAM), DUE-0837341 (CCLI), and DUE-0830831
(SFS), and an Intel gift (number 2005-04-070) as well as an
Auburn University startup grant.

REFERENCES
[1] R. Chandramouli, S. Bapatla, K. P. Subbalakshmi, and R.

N. Uma, “Battery Power-Aware Encryption,” ACM
Trans. Information and System Security, pp. 162-180,
May 2006.

[2] N. Potlapally, N., S. Ravi, A. Raghunathan, and N. Jha,
2006. “A Study of the Energy Consumption
Characteristics of Cryptographic Algorithms and Security
Protocols,” IEEE Trans. Mobile Computing, pp. 128-143,
Feb. 2006.

[3] Z. –L. Zong, M. Briggs, N. O’Connor, and X. Qin, “An
Energy-Efficient Framework for Large-Scale Parallel
Storage Systems,” Proc. 21st Int’l Symp. Parallel and
Distributed Processing, March 2007.

[4] L. Lu and P. Varman, “DiskGroup: Energy Efficient disk
Layout for RAID1 Systems,” IEEE Int’l Conf.
Networking, Architecture, and Storage, pp. 233-242, Jul.
2007.

[5] B. Mao, D. Feng, H. Jiang, S. Wu, J. Chen, and L. Zeng,

“GRAID: A Green RAID Storage Architecture with
Improved Energy Efficiency and Reliability”, Proc.
IEEE/ACM Int’l Symp. Modelling, Analysis and
Simulation of Computer and Telecommunication Sys.,
pp.1-8, Sept. 2008.

[6] C. Parikh and P. Patel, “Performance Evaluation of AES
algorithm on Various Development Platforms,” IEEE
Int’l Symp. Consumer Electronics, pp. 1-6, Jun. 2007.

[7] P. Hamalainen, M. Hannikainen, T. Hamalainen, and J.
Saarinen, “Configurable Hardware Implementation of
Triple-DES Encryption Algorithm for Wireless Local
Area Network,” Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal, pp. 1221-1224, May. 2001.

[8] A. Nadeem and Y. Javed, “A Performance Comparison of
Data Encryption Algorithms,” Proc. Int’l Conf.
Information and Comm. Tech., pp. 84-89, Aug. 2005.

[9] X.–J. Ruan, A. Manzanares, K. Bellam, X. Qin, and Z. –L.
Zong, “DARAW: A New Write Buffer to Improve
Parallel I/O Energy-Efficiency,” Proc. 24th Annual ACM
Symp. Applied Comp., Mar. 2009.

[10] R. L. Rivest, The MD5 Message-Digest Algorithm, RFC
1321, MIT Laboratory for Comp. Sci. and RSA Data
Security, Inc., Apr. 1992.

[11] Federal Information Processing Standards. Secure Hash
Standard. FIPS PUB 180-2. Aug. 2002.

[12] “Data Encryption Standard,” Federal Information
Processing Standards (FIPS) Publication 46-7, National
Institute of Standards and Technology (NIST), USA,
1999.

[13] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997.

[14] National Institute of Standard and Technology. Advanced
Encryption Standard FIPS 197 [S]. Nov. 2001.

[15] X.–Y. Wang and H. Yu, “How to Break MD5 and Other
Hash Functions,” EUROCRYPT 2005, pp. 19-25, May.
2005.

[16] X.–Y. Wang, Y. Yin, and H. Yu, “Finding Collisions in
the Full SHA-1,” Proc. Crypto, pp. 17-36, 2005.

[17] A. Manzanares, K. Bellam, and X. Qin, “A Prefetching
Scheme for Energy Conservation in Parallel Disk
Systems,” Proc. NSF Next Generation Software Program
Workshop, April 2008.

[18] D. Narayanan, A. Donnelly, and A. Rowstron, "Write
Off-Loading: Practical Power Management for Enterprise
Storage," Proc. 6th USENIX Conf. File and Storage
Technologies, Feb. 2008.

[19] M. Nijim, A. Manzanares, and X. Qin, “An Adaptive
Energy-Conserving Strategy for Parallel Disk Systems,”
Proc. 12th IEEE Int'l Symp. Distributed Simulation and
Real Time Applications, Oct. 2008.

[20] C. Liu, X. Qin, S. Kulkarni, C.-J. Wang, S. Li, A.
Manzanares, and S. Baskiyar, “Distributed Energy-
Efficient Scheduling for Data-Intensive Applications with
Deadline Constraints on Data Grids,” Proc. 27th IEEE
Int’l Performance Comp. and Communications Conf.,
Dec. 2008.

416420420420

