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Abstract—Improving energy efficiency of security-aware 
storage systems is challenging, because security and energy 
efficiency are often two conflicting goals. The first step 
toward making the best tradeoffs between high security 
and energy efficiency is to profile encryption algorithms to 
decide if storage systems would be able to produce energy 
savings for security mechanisms. We are focused on 
encryption algorithms rather than other types of security 
services, because encryption algorithms are usually 
computation-intensive. In this study, we used the XySSL 
libraries and profiled operations of several test problems 
using Conky - a lightweight system monitor that is highly 
configurable. Using our profiling techniques we concluded 
that although 3DES is much slower than AES encryption, 
it more likely to save energy in security-aware storage 
systems using 3DES than AES. The CPU is the bottleneck 
in 3DES, allowing us to take advantage of dynamic power 
management schemes to conserve energy at the disk level. 
After profiling several hash functions, we noticed that the 
CPU is not the bottleneck for any of these functions, 
indicating that it is difficult to leverage the dynamic power 
management technique to conserve energy of a single disk 
where hash functions are implemented for integrity 
checking. 

I. INTRODUCTION 

 In the past decade, energy efficiency has become an ever 
increasing priority in computer science research [2]. 
Computers have traditionally been designed with performance 
metrics being the main focus of the design. Since our sources 
of energy to power computers are not limitless, it is imperative 
to design energy efficient computer architectures. Disk 
systems tend to be large consumers of energy consumption [4] 
and; therefore, we have designed an energy efficient parallel 
disk framework (see [3] for details of our disk framework). 
Apart from high energy efficiency, security mechanisms are 
equally important for disk systems to support a wide range of 
data-intensive applications that are security sensitive. 
Although previous research has focused on producing a 
relationship between energy efficiency and security strength 
for mobile devices (see, for example, [1]), it is challenging to 
make good tradeoffs between high security and energy 

efficiency for storage systems in general and for disk systems 
in particular. 
 The long-term goal of this research is to develop energy-
efficient security mechanisms for disk systems without 
significantly degrading disk performance. Similar design goals 
can be found in the literature (see, for example, [4] and [5]). 
This study started off with having a goal of developing a 
matrix that would outline the tradeoffs between energy 
efficiency and security in the context of large-scale disk 
systems.  
 Generally speaking, there are two approaches to 
implementing energy-efficient security-aware disk systems. 
The first one is to improve the energy efficiency of security 
mechanisms in disk systems (see, for example, [1]); the 
second approach advocates for integrating conventional 
security services with energy-efficient disk architectures. The 
first approach makes an effort to implement energy-efficient 
security mechanisms in traditional disk systems, whereas the 
second one is focused on energy-efficient disk systems 
without modifying existing security mechanisms. In this study, 
we focus on the second general approach. Thus, we attempt to 
answer an intriguing question of whether it is possible to 
seamlessly integrate security services with energy-efficient 
disk systems without modifying the source code of security 
services.  
 To determine if it is possible to conserve energy 
consumption of existing security services using new energy-
efficient disk systems, we will have to investigate I/O access 
patterns of encryption and integrity checking algorithms. 
Studying I/O access patterns of disk requests issued by the 
security services requires knowledge of encryption algorithms 
and hash functions. In this research, we first investigate the 
I/O characteristics of encryption algorithms and hash 
functions. Next, we apply these I/O characteristics within the 
energy-efficient buffer disk architecture or BUD (see [9] for 
detailed information concerning BUD) to investigate the 
possibility of leveraging BUD to reduce energy dissipation 
caused by the existing encryption algorithms and hash 
functions.  
 Very recently, we had designed and implemented software 
modules to separately handle read [17] and write [9] requests 
within the BUD architecture, which will be briefly described 
in the next Section. In addition, we had made some 
generalizations about the BUD architecture. One of our 
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previous studies showed that the BUD architecture is 
extremely sensitive to hard disks’ Break Even Time, which is 
defined as the size of an idle time required for a disk to energy 
efficiently transition from the active state to the standby state. 
In hard disks, for example, the break even time often exceeds 
10 seconds. Such a large disk break even time indicates that 
the BUD architecture is maximally energy efficient in 
applications that are not disk intensive. Any software module 
that leaves an opportunity for these break even times to be met 
allows the BUD architecture to save energy. Hence, security 
modules that can take full advantage of BUD to conserve 
energy should not bottlenecked at disk I/O operations. In other 
words, disk requests issued by the security modules must be 
sufficiently sparse to produce noticeable energy savings. 

To answer the fundamental question of whether we can 
improve energy efficiency of secure parallel disk systems 
without modifying security mechanisms in the disk systems, 
we choose the BUD disk architecture as target energy-efficient 
disk systems. A vital part of this study is to profile encryption 
algorithms and hash functions in the context of disk systems. 
We intend to figure out if I/O access patterns of the encryption 
algorithms and hash functions would allow the energy-
efficient BUD disk architecture to conserve energy. The key 
I/O features we focused on were arrival patterns of disk 
request operations issued by the encryption algorithms and 
hash functions. We aimed to determine if the disk operations 
can yield sufficient idle periods for the BUD disk architecture 
to reduce disk energy consumption using the energy-efficient 
data management strategies we have previously studied. 

The rest of the paper is organized as follows. Section 2 
gives a summary of the related work for this research. Section 
3 provides an overview of an energy-efficient disk 
architecture. Section 4 describes our test bed setup. Section 5 
presents the experimental results and explanations of the 
trends in our results. Finally we end with a conclusion and 
some future work possibilities.  

II. RELATED WORK 

Chandramouli et al. investigated battery power-aware 
Encryption algorithms [1]. The main conclusions they reached 
was that the power consumption changes linearly with the 
number of rounds of several popular cryptographic algorithms. 
Their experimental test bed had a laptop connected to a power 
supply. The power supply was connected to a computer 
running the Lab VIEW software to graph changes in voltage 
and current from the power supply. These changes were 
graphed during the life of the encryption algorithms [1]. 
Chandramouli et al. paid attention on improving energy 
efficiency of security mechanisms in mobile devices systems 
[1]. Our research is radically different from theirs in the sense 
that we are focused on energy-efficient disk systems without 
modifying existing security mechanisms.  

  Potlapally et. al characterized the energy consumption of 
cryptographic algorithms and security protocols [2]. The work 
undertaken by Potlapally et. al [2] was very similar to the 
research project conducted by Chandramouli et al. [1]. 

Potlapally et. al used IPAQ PDA’s instead of using a laptop to 
measure power consumption [2]. They  connected the IPAQ to 
a power supply that was connected to a computer running the 
Lab VIEW software. This allowed them to measure the energy 
differences between various cryptographic algorithms. 
Potlapally et. al obtained an array of interesting results related 
to the SSL Protocol processing. For example, they determined 
that for small data sizes asymmetric algorithms dominated 
symmetric algorithms in terms of energy consumption. For 
large data sizes symmetric algorithms consume significantly 
more energy than asymmetric algorithms. Network protocol 
energy consumption, defined as non-cryptographic processing 
necessary to establish the SSL protocol, does not vary much 
for different data sizes. Their main observations are that 
asymmetric algorithms consume the most energy with hash 
algorithms having the smallest energy footprint. Potlapally et. 
al also stated that asymmetric algorithms energy consumption 
is dependent on the key size used. They also determined that 
the level of security and energy consumption can be tuned 
using key size and number of rounds [2]. 

Our research differs from the aforementioned research 
because we are focused on the energy impact of encryption 
algorithms and hash functions on disk systems rather than 
mobile devices. Furthermore, the goal of our work is to 
characterize the I/O behavior of encryption algorithms and 
hash functions in the context of parallel disk systems (e.g., the 
BUD architecture). We intended to find the existing security 
mechanisms that produce the most energy savings in an 
energy-efficient parallel disk system. Rather than 
implementing energy-efficient security mechanisms by 
updating the existing security services, we made the first step 
towards seamlessly integrating security services with energy-
efficient disk systems without changing the source code of the 
existing security mechanisms. More importantly, our research 
is orthogonal to the above work in that energy-efficient 
security mechanisms can be incorporated into our energy-
efficient parallel disk architecture to achieve both high 
security and energy efficiency for parallel disk systems.  

III. OVERVIEW of THE BUD DISK SYSTEMS 

Although a significant amount of energy can be saved if 
idle disks are turned to the standby mode, short idle periods 
(i.e., smaller than the disk break even time) prevents idle disks 
to be switched to standby to conserve energy. This problem 
can be solved by aggregating smaller idle periods into idle 
times that are larger than the disk break even time. We 
implemented an idle time aggregation process in the buffer-
disk architecture or BUD (see Fig. 1 below) using buffer disks 
to temporally buffer disk requests while keeping data disks to 
standby as long as possible. 

The buffer disk controller – a center piece in the BUD 
architecture – is responsible for the dynamic power 
management in both buffer and data disks. The two areas 
where our  previous studies have focused is the buffer disk 
controller [3] and energy-efficient  prefetching [17]. Moreover, 
we have extensively investigated a disk write buffer strategy 
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to improve parallel I/O energy efficiency [9]. There has been 
work on load balancing the buffer disks and controlling writes 
to the data disks [18]. For example, buffering write requests in 
the buffer disks and writing out data when certain criteria are 
met [9][18]. To further improve energy efficiency of parallel 
disk systems, we have developed energy-efficient data 
partitioning schemes, data placement strategies, and data 
movement algorithms [19][20]. It is worth noting that the 
BUD architecture embraces a security component, which not 
only provides security services but also measures security 
overhead imposed by the integrated security mechanisms. The 
detailed information concerning the BUD architecture along 
with a set of energy-efficient data management strategies can 
be found in [3][9][17]. 

IV. EXPERIMENTAL SETUP 

In the BUD architecture prefetching and data buffering are 
closely related to total capacity of buffer disks as well as the 
arrival rate of disk requests. The buffer disks can, literally 
speaking, prefetch and buffer data aggressively until the disk 
capacity is reached. When the buffer disks become full, either 
a portion of buffered data must be moved to the standby data 
disks or part of prefetched data has to be evicted from the 
buffer disks. The time taken for the buffer disks to reach their 
capacity largely depends on request arrival rates, data size, and 
storage capacity. Since the total buffer disk storage space is 
managed by with the BUD controller, this study was not 
meant to address the issue of buffer disk capacity. Thus, let us 
focus on access patterns (e.g., disk request arrival rates and 
I/O processing time) to explore the possibilities of achieving 
high energy efficiency in secure parallel disk systems without 
modifying security mechanisms. 

To capture access patterns of disk requests issued by 
confidentiality and integrity services, we have to profile 
encryption algorithms and hash functions. We chose to use a 
Linux computer because of the open source nature of Linux 
and availability of free software  like GkrellM, Conky and 

XySSL. The first software monitor used in our experiments is 
GkrellM. Although GkrellM is capable of providing disk, 
memory, and CPU usage statistics, we were unable to find a 
quick method to produce the output in a text file. Hence, we 
moved to using Conky, which is a lightweight system monitor 
that is highly configurable and supports text output. After 
making use of the XySSL libraries to evaluate an array of 
security mechanisms, we generated disk trace files for further 
analysis.  

Our created a testbed using one Linux PC. The following 
table outlines the important properties of the testbed. 

Table 1 System Parameters of the Testbed 

CPU Speed Pentium 4 2.4 GHZ 
Memory 512 MB 
Operating System Ubuntu 7.10 
USB 1.1 12 Mb/s 
HD Bus  IDE 

The CPU speed of the testbed is high enough that the CPU 
will probably not be the performance bottleneck for the 
evaluated security mechanisms. The bandwidth of the memory 
component in our testbed is relatively low for a Pentium 4 
computer. We chose to connect a flash drive to the testbed by 
a USB port, because the USB interface was used to emulate a 
network interface card in our experiments. A hard drive is 
connected to a SCSI Bus with the bandwidth of at least 
5MB/s.  
 The Linux operating system was used to perform our 
experiments, because it is probably a bit easier to find the 
required software needed to profile encryption algorithms and 
hash functions. The Linux-based software tools used in our 
experiments allow us to make any changes to the software to 
monitor and study access patterns of security services. 
 Once we have our OS chosen, we are in a position to 
identify software that allow us to test our encryption 
algorithms and hash functions. An ideal software tool should 
include the implementation of a wide range of popular 

Fig. 1. The buffer-disk architecture or BUD for parallel disk systems. 
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encryption algorithms and hash functions. Apart from a 
security software tool, we have to choose a software tool 
enabling us to monitor the CPU, memory, and read/write 
performance of the hard drive and flash drive connected to the 
USB port. After we found software to fulfill the above 
requirements, we were ready to profile encryption algorithms 
and hash functions. 
 The first software tool we chose to use is XySSL, which 
implements a set of well-known encryption algorithms 
accompanied by testing programs. In this study, we pay 
particular attention to two encryption algorithms - 3DES [12] 
and AES [14]. 3DES – slow in software - was developed in 
response to the weakness of DES. 3DES is a strong encryption 
algorithm, but it is typically slower than AES. 3DES uses a 64 
bit block size to encrypt data [6]; it uses a 192 bit key that is 
split into three different keys. In the 3DES algorithm, these 
three 64 bit keys are required to encrypt and decrypt data 
using DES. Each of these 64 bit keys uses 8 bits for parity 
checking leaving 3DES with an effective key strength of 168 
bits.  

AES is the current standard for data encryption widely 
adopted by the US Government [6]. AES is typically 
employed with a 192-bit encryption key. Block size in AES is 
128-bit in length, meaning that AES encrypts twice as much 
data as 3DES at each call of the function implementing the 
encryption. AES is not only fast in software but also requiring 
a small amount of memory. In addition to encryption 
algorithms, several hash functions were implemented in 
XySSL. To this end, we decided to evaluate MD5 [10] and 
SHA (1-2) [11]. MD5 is an algorithm that produces a hash 
output value of 128 bits. SHA-1 generates 160-bit hash values, 
whereas SHA-2 can provide a hash bit varying in size between 
224 and 512 bits. We also evaluated RSA verification 
implemented in XySSL. Please note that all of the 
aforementioned encryption algorithms and hash functions, 
except for 3DES, are coupled with testing programs in 
XySSL. Thus, we had to implement a testing program for 
3DES based on the AES testing program.  
 To monitor our testbed computer, we take full advantage 
of GKrellM - a software monitor that is capable of monitoring 
the CPU, memory, and disk I/O subsystems. GKrellM seems 
to be a promising software tool. The only problem with 
GKrellM, however, is the lack of well defined text output. 
There is no straightforward way to produce text output. Hence, 
we would have to dig into the source code of GKrellM and 
implement a module to deal with text output. Alternatively, we 
would have to find another system monitor that has some 
kinds of text output. We chose the second approach due to 
time constraints and began our search for a system monitor 
with text output. Fortunately, Conky - a lightweight system 
monitor that is highly configurable - is able to yield a text 
output file. There is a listing of all the variables that Conky 
keeps track of. If we need to output of these variables to a text 
file, we simply specify the variable in a configuration file. The 
configuration file allows us to format output files, making it 
possible for us to put our desired variables in the csv format 
readable by Microsoft Excel. In our experiments, the variables 

that are kept track of include events of CPU, memory, and 
disk read/writes in the testbed. Since we substituted a USB-
based flash drive for a networked disk system, all data reads 
are initiated from the USB drive. We were able to control the 
testing programs in XySSL to guarantee all disk writes are 
physically issued to the hard disk in our testbed. In doing so, 
we are capable of separately monitoring I/O access patterns of 
the flash drive and hard drive where the encryption algorithms 
and hash functions are evaluated.  

V. EXPERIMENTAL RESULTS AND ANALYSIS 

Now we are positioned to present experiment results and 
analysis in the this sections. We evaluated three different types 
of system events, namely, CPU usage, flash drive read 
bandwidth, and hard disk write bandwidth. Recall that we 
extensively investigated three hash-function algorithms, one 
RSA signature verification algorithm, and two block and 
stream encryption algorithms in our experiment.  

In our experiment, we use a flash drive to emulate source 
data retrieved from a remote disk system connected to the 
testbed through a network. The size of the source data set is 
900Mbyte; the data was organized and stored in 78 files 
residing in the USB-based flash drive. 

Fig. 2. CPU usage (measured in percentage) of the 
testbed when MD5 is evaluated.

Fig. 3. Read/write bandwidth of the testbed when 
MD5 is evaluated. 
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MD5 used to be one of the most popular hash functions for 
data integrity checking services. Although MD5 is no longer 
considered as the most secure algorithm for integrity checking 
[15], it is still a good representative hash function to be 
considered in this research. Hence, we started our experiment 
by exhibiting the workload of CPU and I/O of the testbed 
when MD5 is running to ensure that a file has not been 
tampered with. Fig. 2 shows the CPU usage when the testbed 
is using MD5 for integrity checking. Since the MD5 hash 
function is not CPU-intensive, we observed from Fig. 2 that 
the CPU usage is almost always lower than 60% and very 
rarely exceeds 80%. Hence, we concluded that CPU is not the 
performance bottleneck of MD5.  

Fig. 3 shows the read/write bandwidth of the disk 
subsystem in the testbed. It is observed from Fig. 3 that 
15MB/Sec. is the maximum I/O read bandwidth achieved by 
the testbed MD5 is evaluated. Such a maximum read 
bandwidth is apparently the upper bound of the bandwidth 
exhibited by the USB-based flash drive. A second observation 
drawn from Fig. 3 is that the average write bandwidth of the 
disk subsystem is 32MB/Sec., which rarely reach the 
maximum write bandwidth. More interestingly, the flash drive 
experiences a limited number of idle periods during the 
execution of MD5. Compared with read access patterns, write 
access patterns contain more and longer idle times. Fig. 3 
reveals that data read bandwidth becomes the performance 
bottleneck of the disk system where MD5 is applied for data 
integrity checking. More importantly, Fig. 3 suggests that 
without modifying MD5, we can apply the BUD architecture 
to reduce energy consumption of disk systems integrated with 
MD5 for data integrity checking. BUD can conserve energy 
for MD5, because many small idle periods in disks can be 
grouped to form large idle periods, which in turn allow disks 
to be switched to the standby mode . 

Fig. 4. CPU usage (measured in terms of percentage)  
of the testbed when SHA-1 is evaluated. 

SHA-1is a second hash function evaluated in our testbed. 
The access patterns of SHA-1 are very similar to those of 
MD5. SHA-1 is more secure than MD5 (see [16] for detailed 
comparisons), because SHA-1 is more complicated in 
implementation than MD5. Fig. 4 indicates that the average 

CPU usage of the testbed when SHA-1 is evaluated is higher 
than that of the same testbed when MD5 is running.

Fig. 5. Read/write bandwidth of the testbed when 
SHA-1 is evaluated. 

  
Fig. 5 shows that in almost all the cases, the testbed keeps 

reading data from the flash drive at the highest bandwidth. 
There is only very small number of gaps among reading 
events, meaning that idle periods rarely occur in SHA-1. 
Unlike read requests, disk write operations (see Fig. 5) in 
SHA-1 demonstrate more idle periods. This is mainly because 
with respect to SHA-1, reading data from the flash drive is the 
performance bottleneck of the testbed system. Like Fig. 3, Fig. 
5 indicates that the SHA-1 can be seamlessly integrated with 
the BUD architecture to achieve both high energy efficiency 
and data integrity. Such integration can be straightforwardly 
realized by employing a software module of the existing SHA-
1 service on top of BUD without even changing the source 
code of SHA-1. 

Fig. 6. CPU usage (measured in terms of percentage)  
of the testbed when SHA-2 is evaluated.

SHA-2 is comprised of a group of hash functions. Without 
loss of generality, in this experiment let us evaluate SHA-256, 
which can be considered as one of the most secure hash 
functions in this study. Fig. 6 shows that when SHA-2 is 
evaluated, the CPU usage of the testbed system is slightly 
higher than that of the same testbed with SHA-1. Fig. 7 
indicates that disk I/O characteristics of SHA-2 are very close 
to those of SHA-1. In other words, data read bandwidth of the 
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flash drive is the performance bottleneck of SHA-2. An 
implication of this result is that without changing the source 
code of SHA-2, it is possible to leverage the BUD architecture 
to improve energy efficiency of disk systems where SHA-2 is 
employed. 

Fig. 7. Read/write bandwidth of the testbed when 
SHA-2 is evaluated.

Fig. 8. CPU usage (measured in terms of percentage) 
of the testbed when RSA Verification is evaluated. 

Fig. 9. Read/write bandwidth of the testbed when 
RSA Verification is evaluated.  

RSA - widely adopted as a public-key encryption scheme. 
- has signature generation and verification functions. In this 
experiment, we evaluate RSA’s signature and verification 
functions in our testbed. Before we started the test, we 
generated signature files for each file residing in the USB-

based flash drive. In this case, each input data file is coupled 
with a  corresponding signature file. 

We observed from Figs. 8 and 9 that RSA processes the 
input data set faster than the other three hash functions, 
suggesting that the CPU and I/O load imposed by RSA 
verification function is lower than those of the above studied 
hash functions.  

Since the CPU load in RSA is reduced compared with the 
other three hash functions, Fig. 9 confirms that the read 
bandwidth of the flash drive is the performance bottleneck of 
the testbed. Due to the fact that very few idle periods exist in 
the flash drive, it is unlikely to leverage the BUD architecture 
to reduce energy dissipation of reads in RSA. Fortunately, the 
results obtained from Fig. 9 indicate that executing RSA in the 
BUD disk architecture can provide energy savings for writes 
issued to the hard drive. The energy savings become possible 
for writes in RSA, because there are a large number of small 
idle periods that can be aggregated by BUD to form larger idle 
periods.  

Fig. 10. CPU usage (measured in terms of 
percentage) of the testbed when AES is evaluated.

Fig. 11. Read/write bandwidth of the testbed when 
AES is evaluated.  

Next, let us study the access patterns of  AES and 3DES - 
two block/stream encryption algorithms. The AES (Advanced 
Encryption Standard) is a block cipher standard published by 
the US government in November 2001. After input data is 
retrieved from the flash drive in the testbed, AES encrypts the 
input data with 256-bit keys and stores cipher text on local 
hard drive in the testbed. Results plotted in Figs. 10 and 11 
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show that the CPU and I/O load caused by AES are very well 
balanced. For example, the CPU usage, read/write bandwidth 
of the testbed running AES tend to reach their upper bounds. 
When it comes to reads, there is almost no idle period found 
during the course AES’s execution. Although AES does not 
issue writes as intensively as reads, idle periods in the hard 
drive are smaller than those of cases for MD5, SHA-1/SHA-2, 
and RSA.  

Fig. 12. CPU usage (measured in terms of 
percentage) of the testbed when 3DES is evaluated.  

Fig. 13. Read/write bandwidth of the testbed when 
3DES is evaluated.  

3DES, CPU-intensive in nature, is very slow in software. 
For example, it took approximately 190 Sec. for AES to 
encrypt all the 78 files in the flash drive; 3DES spent more 
than 25,000 Sec. in processing the same set of files. Fig. 12 
clearly shows that the CPU load is extremely high and CPU 
becomes the performance bottleneck in our testbed running 
3DES. Results depicted in Fig. 13 suggest  that the BUD disk 
architecture can be seamlessly integrated with 3DES to cluster 
small disk idle periods together in large idle time frames, 
which enable disks to be operated in the standby mode for 
long time intervals to save energy.

VI. CONCLUSIONS AND FUTURE WORK 

Achieving both high energy efficiency and security in disk 
systems is challenging, because energy efficiency and data 
security are often two conflicting goals. There are two general 

approaches to improving security and energy-efficiency in 
disk systems. The first approach is to modify existing security 
mechanisms to enhance energy efficiency of security services 
in disk systems. In contrast, the second approach is to 
seamlessly integrate security services with energy-efficient 
disk systems without modifying security mechanisms. In this 
research, we took the first step toward the second approach by 
answering an intriguing question of whether we can improve 
energy efficiency of security mechanisms in disk systems 
without changing the source code of security services. 

Target energy-efficient disk systems considered in this 
study is the buffer disk architecture or BUD (see [9] for 
detailed information regarding BUD). The BUD disk 
architecture aims at aggregating many small idle periods in 
disks into a few large idle intervals so that disks can be turned 
into the standby mode and kept in standby as long as possible 
to conserve energy. In this research, we first built a testbed 
containing a disk subsystem, USB-based flash drive, Linux 
operating systems, and six encryption modules and hash 
functions. Next, we captured CPU usage and I/O access 
patterns of a disk system where the encryption modules and 
hash functions were tested and evaluated. Finally, we analyzed 
the possibility of leveraging the BUD disk architecture to 
reduce energy consumption incurred by the existing 
encryption algorithms and hash functions in the context of 
disk systems. 

Table 2 Summary of the CPU usage, read/write load 
of  the testbed running the six encryption algorithms 
and hash functions. The two rightmost columns 
show possibilities of employing the BUD 
architecture to save energy for secure disk systems 
without modifying the security mechanisms. (L: 
Low, M: Medium, H: High, VH: Very High EH: 
Extremely High) 

 CPU 
Load 

Read 
Load 

Write 
Load 

Save Energy 
for Reads? 

Save Energy 
for Writes? 

MD5 M H M Unlikely Yes 
SHA1 M VH M Unlikely Yes 
SHA2 M VH M Unlikely Yes 
RSA M VH M No Yes 
AES VH VH M No Yes 
3DES EH M L Yes Yes 

Table 2 summarizes the CPU utilization and read/write 
bandwidth of the testbed running the six security services. 
Table 2 shows that except for 3DES, the CPU is not a 
performance bottleneck for the other five security services. 
Among the six evaluated security services, 3DES is the only 
one that can make use of BUD to improve energy efficiency 
for disk reads and writes. This is mainly because 3DES is very 
slow in software, leaving many small idle periods in the hard 
disks and flash drive. Although we are unable to conclude that 
3DES is the most energy efficient security service on BUD, it 
is certain that 3DES is a good representative security 
mechanism that can benefit a whole lot from BUD.  
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Furthermore, BUD can be employed to reduce energy 
consumption of writes issued by the MD5, SHA-1, SHA-2, 
RSA, AES modules (see the rightmost column in Table 2). It 
is unlikely to minimize energy consumption of reads for MD5, 
SHA-1, SHA-2 using BUD. Even worse, it is almost 
impossible for BUD to reduce energy consumption of reads 
for  RSA and AES. Now we are positioned to conclude that 
the BUD disk architecture can provide an ideal energy-
efficient data storage platform for security mechanisms, which 
have high CPU usage and issue sparse disk requests.  

As part of future work, we will take full advantage from 
the generated I/O traces to drive our BUD disk simulator, 
which allows us to quantitatively study how BUD can produce 
energy savings for security mechanisms. Currently, we are in a 
process of building a cluster storage system based on the BUD 
architecture to investigate if BUD can be applied to clusters to 
conserve energy. For a large cluster storage system with 
sufficiently large CPU and disk capacities, it is intriguing to 
evaluate the energy efficiency of a variety of hash functions
and encryption algorithms on the BUD-based cluster storage 
system. For the I/O-intensive security services, we will 
implement a dynamic resource manager in BUD to keep 
parallel data disks active to achieve high aggregated read 
bandwidth while allocating a limited number of CPUs to 
perform integrity checking. In doing so, BUD will be capable 
of conserving energy dissipation in processors in the cluster 
storage system. When it comes to CPU-intensive security 
services, the dynamic resource manager will save energy by 
keeping all CPUs active to carry out encryption while force a 
small number of buffer disks to buffer data.  
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