
J. Parallel Distrib. Comput. 72 (2012) 666–677
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Online optimization for scheduling preemptable tasks on IaaS cloud systems
Jiayin Li a, Meikang Qiu a, Zhong Ming b,∗, Gang Quan c, Xiao Qin d, Zonghua Gu e

a Department of Elec. and Comp. Engr., University of Kentucky, Lexington, KY 40506, USA
b College of Computer Science and Software, Shenzhen University, Shenzhen 518060, China
c College of Engr. and Comp., Florida International University, Miami, FL 33174, USA
d Department of Comp. Sci. and Software Engr., Auburn University, Auburn, AL 36849, USA
e College of Computer Science, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Article history:
Received 22 January 2011
Received in revised form
26 January 2012
Accepted 1 February 2012
Available online 16 February 2012

Keywords:
Cloud computing
Online scheduling
Feedback
Preemptable scheduling

a b s t r a c t

In Infrastructure-as-a-Service (IaaS) cloud computing, computational resources are provided to remote
users in the form of leases. For a cloud user, he/she can request multiple cloud services simultaneously.
In this case, parallel processing in the cloud system can improve the performance. When applying
parallel processing in cloud computing, it is necessary to implement a mechanism to allocate resource
and schedule the execution order of tasks. Furthermore, a resource optimization mechanism with
preemptable task execution can increase the utilization of clouds. In this paper, we propose two online
dynamic resource allocation algorithms for the IaaS cloud systemwith preemptable tasks. Our algorithms
adjust the resource allocation dynamically based on the updated information of the actual task executions.
And the experimental results show that our algorithms can significantly improve the performance in the
situation where resource contention is fierce.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

In cloud computing, a cloud is a cluster of distributed computers
providing on-demand computational resources or services to the
remote users over a network [14]. In an Infrastructure-as-a-Service
(IaaS) cloud, resources or services are provided to users in the
form of leases. The users can control the resources safely, thanks
to the free and efficient virtualization solutions, e.g., the Xen
hypervisor [37]. One of the advantages of the IaaS clouds is that the
computational capacities providing to end-users are flexible and
efficient. The virtual machines (VMs) in Amazon’s Elastic Compute
Cloud are leased to users at the price of ten cents per hour. Each
VM offers an approximate computational power of a 1.2 GHz
Opteron processor, with 1.7 GBmemory and 160GB disk space. For
example, when a user needs to maintain a database with a certain
disk space for a month, he/she can rent a number of VMs from the
cloud, and return them after that month. In this case, the user can
minimize the costs. And the user can add or remove resources from
the cloud tomeet peak or fluctuating service demands andpay only
the capacity used.

Cloud computing is emerging with growing popularity and
adoption [1]. However, there is no data center that has unlimited

∗ Corresponding author.
E-mail addresses: jli6@engr.uky.edu (J. Li), mqiu@engr.uky.edu,

qiumeikang@yahoo.com (M. Qiu), mingz@szu.edu.cn (Z. Ming),
Gang.Quan@fiu.edu (G. Quan), xqin@auburn.edu (X. Qin), zgu@zju.edu.cn (Z. Gu).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.02.002
capacity. Thus, in case of significant client demands, it may be nec-
essary to overflow some workloads to another data center [11].
These workload sharing can even occur between private and pub-
lic clouds, or among private clouds or public clouds. The workload
sharing is able to enlarge the resource pool and provide evenmore
flexible and cheaper resources. To collaborate the execution across
multiple clouds, the monitoring and management mechanism is
a key component and requires the consideration of provisioning,
scheduling, monitoring, and failure management [11]. Traditional
monitoring and management mechanisms are designed for enter-
prise environments, especially a unified environment. However,
the large scale, heterogeneous resource provisioning places seri-
ous challenges for the management and monitoring mechanism
in multiple data centers. For example, the Open Cirrus, a cloud
computing testbed, consists of 14 geographically distributed data
center in different administrative domains around the world. Each
data center manages at least 1000 cores independently [3]. The
overall testbed is a heterogeneous federated cloud system. It is im-
portant for the monitoring and management mechanism to pro-
vide the resource pool, which includes multiple data centers, to
clients without forcing them to handle issues, such as the hetero-
geneity of resources and the distribution of the workload. Virtu-
alization in cloud computing, such as VMs, has been intensively
studied recently. However, scheduling workloads across multiple
heterogeneous clouds/data centers has not beenwell studied in the
literature. To the best of our knowledge, this is the first paper to ad-
dress the scheduling issue in the federated heterogeneous multi-
cloud system.

http://dx.doi.org/10.1016/j.jpdc.2012.02.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:jli6@engr.uky.edu
mailto:mqiu@engr.uky.edu
mailto:qiumeikang@yahoo.com
mailto:mingz@szu.edu.cn
mailto:Gang.Quan@fiu.edu
mailto:xqin@auburn.edu
mailto:zgu@zju.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2012.02.002

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 667
A large number of applications running on cloud systems
are those compute on large data corpora [22]. These ‘‘big
data’’ applications draw from information source such as digital
media collections, virtual worlds, simulation traces, data obtain
from scientific instruments, and enterprise business databases.
These data hungry applications require scalable computational
resources. Fortunately, these applications exhibit extremely good
parallelism [22]. Using a ‘‘map/reduce’’ approach in the cloud
application development, large batch processes can be partitioned
into a set of discrete-linked processes, which we call tasks. These
tasks can be executed in parallel to improve response time [4]. In
Fedex’s data center, a four-hour batch process can be successfully
runs in 20 min after the ‘‘map/reduce’’ [4]. When applying parallel
processing in executing these tasks, we need to consider the
following questions: (1) how to allocate resources to tasks; (2) in
what order the clouds should execute tasks, since tasks have data
dependencies; (3) how to schedule overheads when VMs prepare,
terminate or switch tasks. Resource allocation and scheduling
can solve these three problems. Resource allocation and task
scheduling have been studied in high performance computing [8,
16] and in embedded systems [30,29]. However, the autonomic
feature and the resource heterogeneity within clouds [14] and
the VM implementation require different algorithms for resource
allocation and task scheduling in the IaaS cloud computing,
especially in the federated heterogeneous multi-cloud system.

The two major contributions of this paper are:

• We present a resource optimization mechanism in heteroge-
neous IaaS federated multi-cloud systems, which enables pre-
emptable task scheduling. This mechanism is suitable for the
autonomic feature within clouds and the diversity feature of
VMs.
• We propose two online dynamic algorithms for resource

allocation and task scheduling. We consider the resource
contention in the task scheduling.

In Section 2, we discuss works related to this topic. In Section 3,
models for resource allocation and task scheduling in IaaS cloud
computing system are presented, followed by an motivation
example in Section 4. We propose our algorithms in Section 5,
followed by experimental result in Section 6. Finally, we give the
conclusion in Section 7.

2. Related works

Cloud system has been drawing intensive research interests
in the recent years. A number of public clouds are available for
customer and researchers, such as Amazon AWS [38], GoGrid [39],
and Rackspace [40]. Some other companies also provide cloud
services, such asMicrosoft [41], IBM [42], Google [43], and HP [44].
To benefit the cloud research, open source cloud services are
under way, such as Eucalyptus [45], Open Nebula [25], Tashi [22],
RESEVOIR [46], and Open Cirrus [3]. Open Cirrus is a cloud
testbed consists of 14 distributed data centers among the world.
Essentially, it is a federated heterogeneous cloud system, which is
similar to the target cloud system in our paper.

Data intensive applications are the major type of applications
running in the cloud computing platform. Most of the data in-
tensive applications can be modeled by MapReduce programming
model [7]. In MapReduce model, user specify the map function
that can be executed independently, and the reduce function that
gather results from the map function and generate the final re-
sult. The runtime system automatically parallelizes the map func-
tion and distributes them in the cloud system. Apache Hadoop
is a popular framework, inspired by MapReduce, for running the
data-intensive application in IaaS cloud systems [15]. Both reliabil-
ity and data motion are transparently provided in Hadoop frame-
work. MapReduce programming model and Hadoop distributed
file system are implemented in the open-source Hadoop frame-
work. All-pairs, an high level abstraction, was proposed to allow
the easy expression and efficient execution of data intensive appli-
cations [26]. Liu et al. designed a programming model, GridBatch,
for large scale data intensive batch applications [23]. In GridBatch,
user can specify the data partitioning and the computation task
distribution, while the complexity of parallel programming is hid-
den. A dynamic split model was designed to enhance the resource
utilization inMapReduce platforms [48]. A priority-based resource
allocation approach as well as a resource usage pipeline are im-
plemented in this dynamic split model. Various scheduling meth-
ods for data-intensive services were evaluated [6], with both soft
and hard service level agreements (SLA). However, the problem of
scheduling workloads in heterogeneous multi-cloud platform was
not considered in the related work mentioned above.

Virtualization is an important part in cloud computing.
Emeneker et al. propose an image caching mechanism to reduce
the overhead of loading disk image in virtual machines [9].
Fallenbeck et al. present a dynamic approach to create virtual
clusters to deal with the conflict between parallel and serial
jobs [10]. In this approach, the job load is adjusted automatically
without running time prediction. A suspend/resumemechanism is
used to improve utilization of physical resource [36]. The overhead
of suspending/resume ismodeled and scheduled explicitly. But the
VM model considered in [36] is homogeneous, so the scheduling
algorithm is not applicable in heterogeneous VMs models.

Computational resource management in cloud computing has
been studied in the literature recently. To make resource easy for
users tomanage collectively, CloudNet [50] provides virtual private
clouds from enterprise machines and allocates them via public
clouds. Computation-intensive users can reserve resources with
on-demand characteristics to create their virtual private clouds
[2,12,5,47,21,19]. However, CloudNet focuses on providing secure
links to cloud for enterprise users, resource allocation is not an
objective in CloudNet. Lease-based architecture [19,35] is widely
used in reserving resource for cloud users. In [19], applications can
reserve group of resources using leases and tickets from multiple
sites. Haizea [35] supports both the best-effort and the advanced
reservation leases. The priorities of these two kinds of leases are
different. The utilization of the whole system is improved. The
model of job in these two paper is a batch job model, which mean
every application is scheduled as independent. Data dependencies
are not considered. Thus this method cannot be ‘‘map/reduce’’ and
parallelized amongmultiple data centers. In our proposed resource
allocation mechanism, we model the data dependencies among
an application, and distribute the application amongmultiple data
centers at the task level, leading tomore flexible andmore efficient
resource allocation schedules.

Wilde et al. proposed Swift, a scripting language for distributed
computing [49]. Swift focuses on the concurrent execution, compo-
sition, and coordination of large scale independent computational
tasks. A workload balancing mechanism with adaptive schedul-
ing algorithms is implemented in Swift, based on the availabil-
ity of resources. A dynamic scoring system is designed to provide
an empirically measured estimate of a site’s ability to bear load,
which is similar to the feedback information mechanism proposed
in our design. However, the score in the Swift is decreased only
when the site fails to execute the job. Our approach has a differ-
ent use of the feedback information. The dynamic estimated fin-
ish time of remote site is based on the previous executions on this
site in our approach. Therefore, even a ‘‘delayed but successful’’ fin-
ish of a job leads to a longer estimated finish time in the next run
in our approach. ReSS is used in the Swift as the resource selec-
tion service [13]. ReSS requires a central information repository to
gather information from different nodes or clusters. However, our
approach is a decentralized approach that does not need any cen-
tral information repository.

668 J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677
A system that can automatically scale its share of infrastructure
resources is designed in [33]. The adaptation manager monitors
and autonomically allocating resources to users in a dynamic way,
which is similar to themanager server in our proposedmechanism.
However, this centralized approach cannot fit in the future multi-
provider cloud environment, since different providers may not
want to be controlled by such a centralized manager. Another
resource sharing system that can trade machines in different
domains without infringing autonomy of them is developed
in [32]. A machine broker of a data center is proposed to trade
machines with other data centers, which is a distributed approach
to share resource among multiple data centers. However, the
optimization of resource allocation is not considered in this paper.
Our proposed resource allocation mechanism is a distributed
approach. A manager server of a cloud communicates with others,
and shares workloadswith our dynamic scheduling algorithm. Our
approach can improve federated heterogeneous cloud systems.
Moreover, it can be adapted in the future multi-provider cloud
system.

3. Model and background

3.1. Cloud system

In this paper, we consider an infrastructure-as-a-service (IaaS)
cloud system. In this kind of system, a number of data center
participates in a federated approach. These data centers deliver
basic on-demand storage and compute capacities over Internet.
The provision of these computational resources is in the form
of virtual machines (VMs) deployed in the data center. These
resources within a data center form a cloud. Virtual machine is an
abstract unit of storage and compute capacities provided in a cloud.
Without loss of generality, we assume that VMs from different
clouds are offered in different types, each of which has different
characteristics. For example, they may have different numbers
of CPUs, amounts of memory and network bandwidths. As well,
the computational characteristics of different CPU may not be the
same.

For a federated cloud system, a centralized management
approach, in which a super node schedule tasks among multiple
clouds,may be an easyway to address the scheduling issues in such
system. However, as authors in [3,11] have indicated, the future
cloud computing will consist of multiple cloud providers. In this
case, the centralized management approach may be accepted by
different cloud providers. Thus we propose a distributed resource
allocation mechanism that can be used in both federated cloud
system or the future cloud system with multiple providers.

As shown in Fig. 1, in our proposed cloud resource allocation
mechanism, every data center has a manager server that knows
the current statuses of VMs in it own cloud. And manager servers
communicate with each other. Clients submit their tasks to the
cloud where the dataset is stored. Once a cloud receives tasks, its
manager server can communicate with manager servers of other
clouds, and distribute its tasks across the whole cloud system by
assigning them to other clouds or executing them by itself.

When distributing tasks in the cloud system, manager servers
should be aware of the resource availabilities in other clouds, since
there is not a centralized super node in the system. Therefore,
we need the resource monitoring infrastructure in our resource
allocation mechanism. In cloud systems, resource monitoring
infrastructure involves both producers and consumers. Producers
generate status of monitored resources. And consumers make
use of the status information [17]. Two basic messaging methods
are used in the resource monitoring between consumers and
producers: the pull mode and the pushmodel [51]. Consumers pull
information from producers to inquire the status in the pull mode.
In the push mode, when producers update any resource status,
they push the information to the consumers. The advantage of the
push mode is that the accuracy is higher when the threshold of a
status update, i.e., trigger condition, is defined properly. And the
advantage of the pull mode is that the transmission cost is less
when the inquire interval is proper [17].

In our proposed cloud system resource allocation mechanism,
we combine both communication modes in the resource monitor-
ing infrastructure. In our proposedmechanism, when themanager
server of cloud A assigns an application to another cloud B, the
manager server of A is the consumer. And the manager server of
B is the producer. manager server of A needs to know the resource
status from themanager server of B in two scenarios: (1) when the
manager server of A is considering assigning tasks to cloud B, the
current resource status of cloud B should be taken into considera-
tion. (2) When there is an task is assigned to cloud B by manager
server of A, and this task is finished, manager server of A should be
informed.

We combine the pull and the push mode as the following:

• A consumer will pull information about the resource status
from other clouds, when it is making scheduling decisions.
• After an application is assigned to another cloud, the consumer

will no longer pull information regarding to this application.
• When the application is finished by the producer, the producer

will push its information to the consumer. The producerwill not
push any information to the consumer before the application is
finished.

In a pull operation, the trigger manager server sends a task
check inquire to manager servers of other clouds. Since different
cloud providers may not be willing to share detailed information
about their resource availability, we propose that the reply of
a task check inquire should be as simple as possible. Therefore,
in our proposed resource monitoring infrastructure, these target
manager servers give only responses at the earliest available time
of required resources, based on its current status of resources.
And no guarantee or reservation is made. Before target manager
servers check their resource availability, they first check the
required dataset locality. If the required dataset is not available in
their data center, the estimated transferring time of the dataset
from the trigger cloud will be included in the estimation of the
earliest available time of required resources. Assuming the speed
of transferring data between two data centers is Sc , and the size of
the required dataset isMS , then the preparation overhead isMS/Sc .
Therefore, when a target cloud already has the required dataset in
its data center, it is more likely that it can respond sooner at the
earliest available time of required resources, which may lead to
an assignment to this target cloud. In a push operation, when B is
the producer and A is the consumer, the manager server of B will
inform the manager server of A the time when the application is
finished.

When a client submits his/her workload, typically an applica-
tion, to a cloud, the manager server first partitions the application
into several tasks, as shown in Fig. 2. Then for each task, the man-
ager server decides which cloud will execute this task based on
the information from all other manager servers and the data de-
pendencies among tasks. If the manager server assigns a task to
its own cloud, it will store the task in a queue. And when the re-
sources and the data are ready, this task is executed. If themanager
server of cloud A assigns a task to cloud B, the manager server of
B first checks whether its resource availabilities can meet the re-
quirement of this task. If so, the task will enter a queue waiting for
execution. Otherwise, the manager server of B will reject the task.

Before a task in the queue of a manager server is about to be
executed, the manager server transfers a disk image to all the
computing nodes that provide enough VMs for task execution.

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 669
Fig. 1. An example of our proposed cloud resource allocation mechanism. Heterogeneous VMs are provided by multiple clouds. And clouds are connected to the Internet
via manager servers.
Fig. 2. When an application is submitted to the cloud system, it is partitioned, assigned, scheduled, and executed in the cloud system.
We assume that all required disk images are stored in the data
center and can be transferred to any clouds as needed. We use the
multicasting to transfer the image to all computing nodes within
the data center. Assuming the size of this disk image is SI , wemodel
the transfer time as SI/b, where b is the network bandwidth.When
a VM finishes its part of the task, the disk image is discarded from
computing nodes.

3.2. Resource allocation model

In cloud computing, there are two different modes of renting
the computing capacities from a cloud provider.

• Advance Reservation (AR): Resources are reserved in advance.
They should be available at a specific time.
• Best-effort: Resources are provisioned as soon as possible.

Requests are placed in a queue.

A lease of resource is implemented as a set of VMs. And
the allocated resources of a lease can be described by a tuple
(n,m, d, b), where n is number of CPUs,m ismemory inmegabytes,
d is disk space in megabytes, and b is the network bandwidth in
megabytes per second. For the AR mode, the lease also includes
the required start time and the required execution time. For the
best-effort and the immediate modes, the lease has information
about how long the execution lasts, but not the start time of
execution. The best-effort mode is supported by most of the
current cloud computing platform. The Haizea, which is a resource
lease manager for OpenNebula, supports the AR mode [37]. The
‘‘map’’ function of ‘‘map/reduce’’ data-intensive applications are
usually independent. Therefore, it naturally fits in the best-effort
mode. However, some large scale ‘‘reduce’’ processes of data-
intensive applicationsmay needsmultiple reducers. For example, a
simple ‘‘wordcount’’ application with tens of PBs of data may need
a parallel ‘‘reduce’’ process, in which multiple reducers combine
the results of multiple mappers in parallel. Assuming there are N
reducers, in the first round of parallel ‘‘reduce’’, each of N reducers
counts 1/N results from the mappers. Then N/2 reducers receive
results from the other N/2 reducers, and counts 2/N results from
the last round of reducing. It repeats log2 N + 1 rounds. Between
two rounds, reducers need to communicatewith others. Therefore,
an AR mode is more suitable for these data-intensive applications.

When supporting the AR tasks, it may leads to a utilization
problem, where the average task waiting time is long, and
machine utilization rate is low. Combining AR and best-effort in
a preemptable fashion can overcome this problems [35]. In this
paper, we assume that a few of applications submitted in the cloud
system are in the ARmode, while the rest of the applications are in

670 J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677
the best-effort mode. And the applications in ARmode have higher
priorities, and are able to preempt the executions of the best-effort
applications.

When an AR task A needs to preempt a best-effort task B, the
VMs have to suspend task B and restore the current disk image of
task B in a specific disk space before the manager server transfers
the disk image of tasks A to the VMs. When the task A finishes, the
VMs will resume the execution of task B. We assume that there is
a specific disk space in every node for storing the disk image of
suspended task.

There are two kinds of AR tasks: one requires a start time in
future, which is referred to as ‘‘non-zero advance notice’’ AR task;
the other one requires to be executed as soon as possible with
higher priority than the best-effort task, which is referred to as
‘‘zero advance notice’’ AR task. For a ‘‘zero advance notice’’ AR task,
it will start right after the manager server makes the scheduling
decision and assign it a cloud. Since our scheduling algorithms,
mentioned in Section 5, are heuristic approaches, this waiting time
is negligible, compared to the execution time of task running in the
cloud system.

3.3. Local mapping and energy consumption

From the user’s point of view, the resources in the cloud system
are leased to them in the term of VMs. Meanwhile, from the cloud
administrator’s point of view, the resources in the cloud system is
utilized in the termof servers. A server can provide the resources of
multiple VMs, and can be utilized by several tasks at the same time.
One important function of the manager server of each cloud is to
schedule its tasks to its server, according to the number of required
VMs. Assuming there are a set of tasks T to schedule on a server S,
we define the remaining workload capacity of a server S is C(S),
and the number of required VM by task ti is wl(ti). The server can
execute all the tasks in T only if:

C(S) ≥

ti∈T

(wl(ti)). (1)

We assume servers in the cloud system work in two different
modes: the active mode and the idle mode. When the server is
not executing any task, it is switched to the idle mode. When tasks
arrive, the server is switched back to the active mode. The server
consumesmuch less energy in the idlemode than that in the active
mode.

3.4. Application model

In this paper, we use the Directed Acyclic Graphs (DAG) to
represent applications. A DAG T = (V , E) consists of a set of
vertices V , each of which represents a task in the application, and a
set of edges E, showing the dependences among tasks. The edge set
E contains edges eij for each task vi ∈ V that task vj ∈ V depends
on. The weight of a task represents the type of this task. Given an
edge eij, vi is the immediate predecessor of vj, and vj is called the
immediate successor of vi. A task only starts after all its immediate
predecessors finish. Tasks with no immediate predecessor are
entry-node, and tasks without immediate successors are exit-
node.

Although the compute nodes from the same cloud may equip
with different hardware, themanager server can treat its cloud as a
homogeneous system by using the abstract compute capacity unit
and the virtual machine. However, as we assumed, the VMs from
different clouds may have different characteristics. So the whole
cloud system is a heterogeneous system. In order to describe the
difference between VMs’ computational characteristics, we use an
M × N execution time matrix (ETM) E to indicate the execution
time of M types of tasks running on N types of VMs. For example,
a

b

c

Fig. 3. (a) The DFG of three applications, (b) the execution time table, and (c) two
different task assignments, where ‘‘RR’’ is the round-robin approach, and ‘‘Sch’’ is
using the list scheduling.

the entry eij in E indicate the required execution time of task type
i when running on VM type j. We also assume that a task requires
the same lease (n,m, d, b) nomatter on which type of VM the task
is about to run.

4. Motivational example

4.1. An example of task scheduling in CMP

First we give an example for resource allocation in a cloud
system. We schedule three applications in a three-cloud system.
The DFGs representing these applications are shown in Fig. 3(a).
Application 1 and 3 are best-effort applications, and Application 2
is AR applications. For simplicity, we assume that every cloud only
execute one task at a time, and that the time to load an image of
a task is negligible. We will relax these assumptions in the later
part of this paper. The execution times (t) of each task in these
applications running on different cloud are shown in Fig. 3(b).

4.2. Round-robin vs. list scheduling

The round-robin algorithm is one of the load balancing
algorithms used in cloud systems, such as the GoGrid [31]. As
shown in the ‘‘RR’’ row of Fig. 3(c), the tasks are assigned to
the clouds evenly, regardless of the heterogeneous performance
across different clouds. The execution orders of three clouds are
presented in Fig. 4(a). In this schedule, task G preempts task B at
time 7, since task G is an AR task. And task J is scheduled as soon
as possible, starting at time 9, pausing at time 15, and resuming
right after previously assigned tasks, i.e., tasks I and D. The total
execution time is 32. We assume the execution time of a given
application starts from the time when the application is submitted
to the time when the application is done. With this scheduling, the
average of three application execution time is 22.67 time unit.

By using our CLS algorithm, we generate a schedule with the
consideration of the heterogeneous performance in the cloud
system. The tasks assignment is shown in the ‘‘Sch’’ row of Fig. 3(c).
And the execution order of three clouds are shown in Fig. 4(b).
In this schedule, tasks are likely assigned to the cloud that can
execute them in the shortest time. Task F and G preempt task C
and B, respectively. The total execution time is only 21 time unit,

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 671
a

b

Fig. 4. (a) The execution orders of three clouds with the round-robin schedule,
(b) the execution orders of three clouds with the list-schedule.

which is 34% faster than the round-robin schedule. And the average
execution time is 13.33, 41% faster than the round-robin schedule.

In this motivational example, we show the significant improve-
ment by simply using CLS algorithm, even without considering the
dynamic adapting scheduling. We will present the details of our
algorithms in the following section.

5. Resource allocation and task scheduling algorithm

Since the manager servers neither know when applications
arrive, nor whether other manager servers receive applications,
it is a dynamic scheduling problem. We propose two algorithms
for the task scheduling: dynamic cloud list scheduling (DCLS) and
dynamic cloud min–min scheduling (AMMS).

5.1. Static resource allocation

When a manager server receives an application submission, it
will first partition this application into tasks in the form of a DAG.
Then a static resource allocation is generated offline. We proposed
two greedy algorithms to generate the static allocation: the cloud
list scheduling and the cloud min–min scheduling.

5.1.1. Cloud list scheduling (CLS)
Our proposed CLS is similar to CPNT [16]. Some definitions used

in listing the task are provided as follow. The earliest start time (EST)
and the latest start time (LST) of a task are shown as in Eqs. (2) and
(3). The entry-tasks have EST equals to 0. And The LST of exit-tasks
equal to their EST.

EST (vi) = max
vm∈pred(vi)

{EST (vm)+ AT (vm)} (2)

LST (vi) = min
vm∈succvi

{LST (vm)} − AT (vi). (3)

Because the cloud system concerned in this paper is heteroge-
neous, the execution times of a task on VMs of different clouds
are not the same. AT (vi) is the average execution time of task vi.
The critical node (CN) is a set of vertices in the DAG of which EST
and LST are equal. Algorithm 1 shows a function forming a task list
based on the priorities.

Once the list of tasks is formed, we can allocate resources to
tasks in the order of this list. The task on the top of this list will be
assigned to the cloud that can finish it at the earliest time. Note that
the task being assigned at this moment will start execution only
when all its predecessor tasks are finished and the cloud resources
allocated to it are available. After assigned, this task is removed
from the list. The procedure repeats until the list is empty. An static
resource allocation is obtained after this assigning procedure that
is shown in Algorithm 2.
Algorithm 1 Forming a task list based on the priorities
Require: A DAG, Average execution time AT of every task in the

DAG.
Ensure: A list of tasks P based on priorities.
1: The EST of every tasks is calculated.
2: The LST of every tasks is calculated.
3: Empty list P and stack S, and pull all tasks in the list of task U .
4: Push the CN task into stack S in the decreasing order of their

LST
5: while the stack S is not empty do
6: if top(S) has un-stacked immediate predecessors then
7: S ←the immediate predecessor with least LST
8: else
9: P ← top(S)

10: pop top(S)
11: end if
12: end while

Algorithm 2 The assigning procedure of CLS
Require: A priority-based list of tasks P , m different clouds, ETM

matrix
Ensure: A static resource allocation generated by CLS
1: while The list P is not empty do
2: T = top(P)
3: Pull resource status information from all other manager

servers
4: Get the earliest resource available time for T , with the

consideration of the dataset transferring time response from
all other manager servers

5: Find the cloud Cmin giving the earliest estimated finish time
of T, assuming no other task preempts T

6: Assign task T to cloud Cmin
7: Remove T from P
8: end while

5.1.2. Cloud min–min scheduling (CMMS)
Min–min is another popular greedy algorithm [18]. The original

min–min algorithm does not consider the dependences among
tasks. So in the dynamic min–min algorithm used in this paper,
we need to update the mappable task set in every scheduling step
to maintain the task dependences. Tasks in the mappable task set
are the tasks whose predecessor tasks are all assigned. Algorithm
3 shows the pseudo codes of the DMMS algorithm.

5.1.3. Energy-aware local mapping
Amanager server uses a slot table to record execution schedules

of all resources, i.e., servers, in its cloud. When an AR task is
assigned to a cloud, themanager server of this cloudwill first check
the resource availability in this cloud. Since AR tasks can preempt
best-effort tasks, the only case where an AR task is rejected is that
most of the resources are reserved by some other AR tasks at the
required time, no enough resources left for this task. If the AR
task is not rejected, which means there are enough resources for
this task, a set of servers will be reserved by this task, using the
algorithm shown in Algorithm 4. The time slots for transferring
the disk image of the AR task and the task execution are reserved
in the slot tables of those servers. The time slots for storing and
reloading the disk image of the preempted task are also reserved if
preemption happens.

When a best-effort task arrives, the manager server will put it
in the execution queue. Every timewhen there are enough VMs for
the task on the top of the queue, a set of servers are selected by the
algorithm shown in Alg. 5. And the manager server also updates
the time slot table of those servers.

672 J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677
Algorithm 3 Cloud min–min scheduling (CMMS)
Require: A set of tasks,m different clouds, ETM matrix.
Ensure: A schedule generated by CMMS.
1: Form a mappable task set P .
2: while there are tasks not assigned do
3: Update mappable task set P .
4: for i: task vi ∈ P do
5: Pull resource status information from all other manager

servers.
6: Get the earliest resource available time, with the consid-

eration of the dataset transferring time response from all
other manager servers.

7: Find the cloud Cmin(vi) giving the earliest finish time of vi,
assuming no other task preempts vi

8: end for
9: Find the task-cloud pair(vk, Cmin(vk)) with the earliest finish

time in the pairs generated in for-loop.
10: Assign task vk to cloud Dmin(vk).
11: Remove vk from P .
12: Update the mappable task set P
13: end while

Algorithm 4 Energy-aware local mapping for AR tasks
Require: A set of AR tasks T , which require to start at the same

time. A set of servers S.
Ensure: A local mapping
1: for ti ∈ T do
2: Calculate wlm(ti)
3: if wl(ti)− wlm(ti) <


si∈idle

(C(si)) then
4: Schedule wl(ti)− wlm(ti) to the idle servers
5: else
6: First schedule a part of wl(ti)−wlm(ti) to the idle servers
7: Schedule the rest of wl(ti) − wlm(ti) to the active servers,

preempting the best-effort tasks
8: end if
9: end for

10: Sort tasks in T in the descending order of marginal workload,
form list Ld.

11: Sort tasks in T in the ascending order of marginal workload,
form list La

12: while T is not empty do
13: ta = top(Ld)
14: if there exists a server j: C(j) = wlm(ta) then
15: Schedule the wlm(ta) to server j
16: end if
17: sa = maxsi∈S(C(si)).
18: Schedule ta to sa, delete ta from T , Ld, and La
19: for k: tk ∈ La do
20: if C(sa) > 0 and C(sa) ≥ wlm(tk) then
21: Schedule tk to sa, delete tk from T , Ld, and La
22: else
23: Break
24: end if
25: end for
26: end while

The objectives of Algorithms 4 and 5 are to minimize the
number of active servers as well as the total energy consumption
of the cloud.When every active server is fully utilized, the required
number of active servers is minimized. When task ti is assigned to
cloud j, we define the marginal workload of this task as:

wlm(ti) = wl(ti) mod C(Sj) (4)

where Sj represents the kind server in cloud j, and C(Sj) is the
workload capacity of server Sj. To find the optimal local mapping,
Algorithm 5 Energy-aware local mapping for best-effort task
Require: A set of best-effort tasks T , which can start at the same

time. A set of servers S
Ensure: A local mapping
1: for ti ∈ T do
2: Calculate wlm(ti).
3: Schedule wl(ti)− wlm(ti) to the idle servers.
4: end for
5: Form a set of active servers Sg that C(si) > 0, ∀si ∈ Sg .
6: Sort tasks in T in the descending order of marginal workload,

form list Ld
7: Sort tasks in T in the ascending order of marginal workload,

form list La
8: while T is not empty do
9: ta = top(Ld)

10: if there exists a server j in Sg : C(j) = wlm(ta) then
11: Schedule the wlm(ta) to server j
12: end if
13: sa = maxsi∈Sg (C(si))
14: if C(sa) < wlm(ta) then
15: sa = anyidleserver
16: end if
17: Schedule ta to sa, delete ta from T , Ld, and La
18: for k: tk ∈ La do
19: if C(sa) > 0 and C(sa) ≥ wlm(tk) then
20: Schedule tk to sa, delete tk from T , Ld, and La
21: else
22: Break
23: end if
24: end for
25: end while

we group all the tasks that can be executed simultaneously, and
sort them in the descending order of their marginal workloads. For
each of the largemarginal workload task, we try to find some small
marginal workload tasks to fill the gap and schedule them on a
server.

5.1.4. Feedback information
In the two static scheduling algorithms presented above, the

objective function whenmaking decision about assigning a certain
task is the earliest estimated finish time of this task. The estimated
finish time of task i running on cloud j, τi,j, is as below:

τi,j = ERATi,j + SI/b+ ETMi,j. (5)

SI is the size of this disk image, b is the network bandwidth.
ERATi,j is the earliest resource available time based the information
from the pull operation. It is also based on the current task queue
of cloud j and the schedule of execution order. But the estimated
finish time from (5) may not be accurate. For example, as shown
in Fig. 5(a), we assume there are three clouds in the system. The
manager server of cloud A needs to assign a best-effort task i to a
cloud. According to Eq. (5), cloud C has the smallest τ . So manager
server A transfers task i to cloud C . Then manager server of cloud B
needs to assign an AR task j to a cloud. Task j needs to reserve the
resource at 8. Cloud C has the smallest τ again. manager server B
transfers task j to cloud C . Since task j needs to start when i is not
done, task j preempts task i at time 8, as shown in Fig. 6. In this
case, the actual finish time of task i is not the same as expected.

In order to reduce the impacts of this kind of delays, we use
a feedback factor in computing the estimated finish time. As
discussed previously in this paper, we assume once a task is done,
the cloud will push the resource status information to the original
cloud. Again, using our example in Fig. 5,when task i is done at time
Tact_fin(=14), manager server C informsmanager server A that task

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 673
a

b

Fig. 5. Example of resource contention. (a) Two tasks are submitted to a heterogeneous clouds system. (b) The earliest resource available times (ERAT), the image transferring
time (SI/b), and the execution time (EMT) of two tasks on different clouds.
Fig. 6. The estimated and the actual execution order of the cloud C .

i is done.With this information, themanager server A can compute
the actual execution time 1τi,j of task i on cloud j:

1τi,j = Tact_fin − ERATi,j. (6)

And the feedback factor fdj of cloud j is :

fdj = α ×
1τi,j − SI/b− ETMi,j

SI/b+ ETMi,j
(7)

α is a constant between 0 and 1. So a feedback estimated earliest
finish time τfdi,j of task i running on cloud j is as follows:

τfdi,j = ERATi,j + (1+ fdj)× (SI/b+ ETMi,j). (8)

In our proposed dynamic cloud list scheduling (DCLS) and
dynamic cloud min–min scheduling (DCMMS), every manager
server stores feedback factors of all clouds. Once a manager server
is informed that a task originally from it is done, it will update
the value of the feedback factor of the task-executing cloud. For
instance, in the previous example, when cloud C finishes task i and
informs that to the manager server of cloud A, this manager server
will update its copy of feedback factor of cloud C . When the next
task k is considered for assignment, the τfdk,C is computed with the
new feedback factor and used as objective function.
Table 1
The mapping of job traces to applications.

Parameter in our model Values in job traces

Task id Job ID
Application arrival time Min(job start time)
Task execution time Job end time–job start time
of CPU required by a task Length(node list) * cpu per node

6. Experimental results

6.1. Experiment setup

We evaluate the performance of our dynamic algorithms
through our own written simulation environment that acts like
the IaaS cloud system. We stimulates workloads with job traces
from the ParallelWorkloads Archive [28].We select three different
job traces: LLNL-Thunder, LLNL-Atlas, and LLNL-uBGL. For each
job tracer, we extract four values: the job ID, the job start time,
the job end time, and the node list. However, job traces from
the Parallel Workloads Archive do not include information about
data dependencies. To simulate data dependencies, we first sort
jobs by their start time. Then we group up to 64 adjacent jobs
as one application, represented by a randomly generated DAG.
Table 1 shows howwe translate those values from job traces to the
parameter we use in our application model. Note that we map the
earliest job start time in an application as the arrival time of this
application, since there is no record about job arrival time in these
job traces. There are three data center in our simulation: (1) 1024
node cluster, with 4 Intel IA-64 1.4 GHz Itanium processors, 8 GB
memory, and 185 GB disk space per node; (2) 1152 node cluster,
with 8 AMD Opteron 2.4 GHz processors, 16 GB memory, and 185
GB disk space per node; (3) 2048 processors BlueGene/L system
with 512 MB memory, 80 GB memory. We select these three data
center configuration based on the clusters where LLNL-Thunder,
LLNL-Atlas, and LLNL-uBGL job traces were obtained. Based on the
information in [24], we compare the computational power of these
three data center in Table 2. With the normalized performance per
core, we can get the execution time of all tasks on three different

674 J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677
Fig. 7. Average application execution time in the loose situation.
data centers. Among these applications, 20% applications are in
the AR modes, while the rest are in the best-effort modes. We
assume the bandwidth between two data centers are 1 Gbps [20],
the bandwidth of nodes inside the data center are 4 GBps [24], and
the size of every dataset is 1 TB [27]. We run these three jobs trace
separately in our simulation.

We set the arrival of applications in two different ways. In the
first way, we use the earliest start time of an application in the
original job trace as the arrival time of this application. We also
set the required start time of an AR application as a random start
time no later than 30 min after it arrives. In most of the cast,
applications do not need to contend resources in this setting. We
call this a loose situation. In the other way, we set the arrival time
of applications close to each other. In this setting, we reduce the
arrival time gap between two adjacent application by 100 time.
It means that applications usually need to wait for resources in
cloud. We call this a tight situation. In both these two setting, we
tunes the constant α to show how the dynamic procedure impacts
the average application execution time. We define the execution
time of an application as the time elapses from the application is
submitted to the application is finished.

6.2. Result
Fig. 7 shows the average application execution time in the

loose situation. We compare our two dynamic algorithms with
the First-Come-First-Serve (FCFS) algorithm [34]. We find out that
the DCMMS algorithm has the shorter average execution time.
And the dynamic procedure with updated information does not
impact the application execution time significantly. The reason
the dynamic procedure do not has a significant impact on the
application execution time is that the resource contention is not
significant in the loose situation. Most of the resource contentions
occurs when an AR application preempts a best-effort application.
So the estimated finish time of an application is usually close
to the actual finish time, which limits the effect of the dynamic
procedure. And the manager server does not call the dynamic
procedure in most of the cases.

Fig. 8 shows that DCMMS still outperforms DCLS and FCFS.
And the dynamic procedurewith updated informationworksmore
significantly in the tight situation than it does in the loose situation.
Because the resource contentions are fiercer in tight situation, the
actual finish time of a task is often later than estimated finish time.
And the best-effort task is more likely preempted some AR tasks.
The dynamic procedure can avoid tasks gathering in some fast
clouds. We believe that the dynamic procedure works even better
in a homogeneous cloud system, in which every task runs faster in
some kinds of VMs than in some other kinds.
Table 2
Comparison of three data center. The job trace LLNL-uBGLwas obtained froma small
uBGL, which has the same single core performance as the one shown in this table.

Data center Peak performance
(TFLOP/s)

Number of
CPUs

Normalized
performance per core

Thunder 23 4096 1
Altas 44.2 9 216 0.85
uBGL(big) 229.4 81920 0.50

Table 3
Feedback improvements in different cases.

Arrival
gap
reduce
times

DLS FDLS
(α = 1)

Feedback
improv.
(%)

DMMS FDMMS
(α = 1)

Feedback
improv. (%)

1 237.82 253.59 −6.63 206.31 223.47 −8.32
20 309.35 286.55 7.37 262.66 255.44 2.75
40 445.74 397.15 10.9 385.48 336.52 12.7
60 525.32 420.83 19.89 448.04 343.60 23.31
80 729.56 537.28 26.36 648.37 440.05 32.13

100 981.41 680.22 30.69 844.33 504.66 40.23

Table 4
Average application execution time with various percentages of AR applications in
the loose situation (α = 0.8).

0% 20% 50% 80% 100%

FCFS 1 1 1 1 1
DCLS 0.81 0.75 0.61 0.55 0.49
DCMMS 0.77 0.56 0.52 0.46 0.44

In order to find out the relationship between resource
contention and feedback improvement, we increase the resource
contention by reducing the arrival time gap between two adjacent
applications. We reduce this arrival time gap by 20, 40, 60, 80, and
100 times, respectively. In the setting with original arrival time
gap, an application usually come after the former application is
done. Resource contention is light. And when arrival time gaps
are reduced by 100 times, it means during the execution of an
application, there may be multiple new applications arriving.
Resource contention is heavy in this case. As shown in Table 3,
the improvement caused by feedback procedure increases as the
resource contention become heavier.

We also test our proposed algorithms in setups with various
percentages of AR applications, as shown in Tables 4 and 5. The
values in the first row represent how many applications are set as
the AR applications. The values in the second, the third, and the
fourth row are the average application execution time, normalized
by the corresponding execution time with the FCFS algorithm.
From these two tables, we can observe that higher percentage of

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 675
Fig. 8. Average application execution time in the tight situation.
Fig. 9. Energy consumption in the loose situation. Columns without ‘‘(EL)’’ are
schedules without energy-aware local mapping. And columns with ‘‘(EL)’’ are
schedules with energy-aware local mapping.

Table 5
Average application execution time with various percentages of AR applications in
the tight situation (α = 0.8).

0% 20% 50% 80% 100%

FCFS 1 1 1 1 1
DCLS 0.63 0.55 0.49 0.43 0.38
DCMMS 0.51 0.38 0.32 0.30 0.27

AR applications leads to a better improvement of the DLS and the
DCMMS algorithm, compared to the FCFS algorithm, in both the
loose situation and the tight situation. The reason is that more AR
applications cause longer delays of the best-effort applications. By
using the feedback information, our DLS and DCMMS can reduce
workload unbalance, which is the major drawback of the FCFS
algorithm.

Furthermore, we compare the energy consumption of three
algorithms, shown in Figs. 9 and 10. Both DCLS and DCMMS
can reduce energy consumption compared to the FCFS algorithm.
In addition, our energy-aware local mapping further reduce the
energy consumption significantly, in all three algorithms.

In the future work, we will evaluate our proposed mechanism
in existing simulators, so that results can be reproduced easier by
other researchers. In addition, we will investigate the implemen-
tation of our design in the real-world cloud computing platform.
A reasonable way to achieve this goal is to combine our design
with the Hadoop platform [15]. The multi-cloud scheduling mech-
anism and algorithms in our design can be used on the top of the
Hadoop platform, distributing applications in the federated multi-
cloud platform.When a give task is assigned to a cloud, the Hadoop
Fig. 10. Energy consumption in the tight situation. Columns without ‘‘(EL)’’ are
schedules without energy-aware local mapping. And columns with ‘‘(EL)’’ are
schedules with energy-aware local mapping.

will be used to distribute tasks tomultiple nodes. And our proposed
energy-aware local mapping design can be implemented in the
Hadoop Distributed File System, which enables the ‘‘rack aware-
ness’’ feature for data locality inside the data center.

7. Conclusion

The cloud computing is emerging with rapidly growing
customer demands. In case of significant client demands, it
may be necessary to share workloads among multiple data
centers, or even multiple cloud providers. The workload sharing
is able to enlarge the resource pool and provide even more
flexible and cheaper resources. In this paper, we present a
resource optimization mechanism for preemptable applications
in federated heterogeneous cloud systems. We also propose two
novel online dynamic scheduling algorithms, DCLS and DCMMS,
for this resource allocation mechanism. Experimental results
show that the DCMMS outperforms DCLS and FCFS. And the
dynamic procedure with updated information provides significant
improvement in the fierce resource contention situation. The
energy-aware localmapping in our dynamic scheduling algorithms
can significantly reduce the energy consumptions in the federated
cloud system.

Acknowledgments

This work was supported in part by the University of Kentucky
Start Up Fund andNSFC 61071061;NSFC 61170077; SZ-HK Innova-
tionCircle proj. ZYB200907060012A,NSFGD:10351806001000000,

676 J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677
S & T proj. of SZ JC200903120046A; the NSF CNS-0969013, CNS-
0917021, and CNS-1018108; the NSF CNS-0915762 (CSR), CCF-
08452578 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR),
CCF-0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251
(CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFS), Auburn Start Up grant and Intel gift (2005-04-070);
NSFC 61070002 and MOE-INTEL-10-02.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, et al., Above the clouds:
a Berkeley view of cloud computing, http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-28.pdf.

[2] M. Aron, P. Druschel, W. Zwaenepoel, Cluster reserves: a mechanism for
resourcemanagement in cluster-based network servers, in: Proceedings of the
ACM Sigmetrics, Santa Clara, California, USA, 2000.

[3] A.I. Avetisyan, R. Campbell, M.T. Gupta, I. Heath, S.Y. Ko, G.R. Ganger, et al.,
Open Cirrus a global cloud computing testbed, IEEE Computer 43 (4) (2010)
35–43.

[4] D. Cearley, G. Phifer, Case studies in cloud computing, http://www.gartner.
com/it/content/1286700/1286717.

[5] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore, S. Sprenkle, Dynamic virtual clusters
in a grid site manager, in: International Symposium on High-Performance
Distributed Computing, HPDC, Seattle, Washington, USA, 2003, pp. 90–103.

[6] H.J.M.Y. Chi, H. Hacigumus, Performance evaluation of scheduling algorithms
for database services with soft and hard SLAs, in: International Workshop on
Data Intensive Computing in the Clouds, 2011, pp. 1–10.

[7] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
Communications of the ACM 1 (2008) 107–113.

[8] A. Dogan, F. Ozguner, Matching and scheduling algorithms for minimizing
execution time and failure probability of applications in heterogeneous
computing, IEEE Transactions on Parallel and Distributed Systems 13 (3)
(2002) 308–323.

[9] W. Emeneker, D. Stanzione, Efficient virtual machine caching in dynamic
virtual clusters, in: SRMPDSWorkshop of International Conference on Parallel
and Distributed Systems, Hsinchu, Taiwan, 2007.

[10] N. Fallenbeck, H. Picht, M. Smith, B. Freisleben, Xen and the art of
cluster scheduling, in: Proceedings of the 2nd International Workshop on
Virtualization Technology in Distributed Computing, Tampa, Florida, USA,
2006, p. 4.

[11] T. Forell, D. Milojicic, V. Talwar, Cloud management challenges and
opportunities, in: IEEE International Symposium on Parallel and Distributed,
2011, pp. 881–889.

[12] I.T. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, A. Roy, A distributed
resource management architecture that supports advance reservations and
co-allocation, in: International Workshop on Quality of Service, IWQoS,
London, UK, 1999, pp. 27–36.

[13] G. Garzoglio, T. Levshina, P. Mhashilkar, S. Timm, ReSS: a resource selection
service for the open science grid, in: International Symposium on Grid
Computing, 2007, pp. 1–10.

[14] C. Germain-Renaud, O. Rana, The convergence of clouds, grids, and auto-
nomics, IEEE Internet Computing 13 (6) (2009) 9.

[15] Apache Hadoop, http://wiki.apache.org/hadoop/.
[16] T. Hagras, J. Janecek, A high performance, low complexity algorithm for

compile-time task scheduling in heterogeneous systems, Parallel Computing
31 (7) (2005) 653–670.

[17] H. Huang, L.Wang, P&p: a combined push–pull model for resourcemonitoring
in cloud computing environment, in: IEEE International Conference on Cloud
Computing, Miami, Florida, USA, 2010, pp. 260–266.

[18] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on
nonidentical processors, Journal of the ACM 24 (2) (1977) 280–289.

[19] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K.G. Yocum, Sharing
networked resources with brokered leases, in: USENIX Annual Technical
Conference, Boston, Massachusetts, USA, 2006.

[20] W. Jiang, Y. Turner, J. Tourrilhes, M. Schlansker, Controlling traffic ensembles
in open cirrus, https://www.hpl.hp.com/techreports/2011/HPL-2011-129.pdf.

[21] K. Keahey, T. Freeman, Contextualization: providing one-click virtual clusters,
in: IEEE International Conference on eScience, Indianapolis, Indiana, USA,
2008.

[22] M.A. Kozuch, M.P. Ryan, R. Gass, S.W. Schlosser, D. O’Hallaron, et al. Cloud
management challenges and opportunities, in: Workshop on Automated
control for datacenters and cloud, 2009, pp. 43–48.

[23] H. Liu, D. Orban, GridBatch: cloud computing for large-scale data-intensive
batch applications, in: IEEE International Symposium on Cluster Computing
and the Grid, 2008, pp. 295–305.

[24] Open computing facility - ocf,
https://computing.llnl.gov/?set=resources&page=OCF-resource.

[25] R. Moren-Vozmediano, R.S. Montero, I.M. Llorente, Elastic management of
cluster-based services in the cloud, in: Workshop on Automated control for
datacenters and cloud, 2009, pp. 19–24.

[26] C. Moretti, J. Bulosan, P.J. Thain, D. Flynn, All-pairs: an abstraction for data-
intensive cloud computing, in: IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp. 1–11.
[27] A. Pavlo, E. Paulson, A. Rasin, D.J. Ababi, D. DeWitt, S. Madden, M. Stonebraker,
A comparison of approaches to large-scale data analysis, in: SIGMOD, 2009,
pp. 1–14.

[28] Parallel workloads archive, www.cs.huji.ac.il/labs/parallel/workload/.
[29] M. Qiu, M. Guo, M. Liu, C.J. Xue, L.T. Yang, E.H.-M. Sha, Loop scheduling

and bank type assignment for heterogeneous multi-bank memory, Journal of
Parallel and Distributed Computing (JPDC) 69 (6) (2009) 546–558.

[30] M. Qiu, E.H.-M. Sha, Cost minimization while satisfying hard/soft timing
constraints for heterogeneous embedded systems, ACM Transactions on
Design Automation of Electronic Systems (TODAES) 14 (2) (2009) 1–30.

[31] B.P. Rimal, E. Choi, I. Lumb, A taxonomy and survey of cloud computing
systems, in: International Joint Conference on INC, IMS and IDC, 2009, pp.
44–51.

[32] P. Ruth, P. McGachey, D. Xu, Viocluster: virtualization for dynamic computa-
tional domains, in: Proceedings of the IEEE International Conference onCluster
Computing, Boston, Massachusetts, USA, 2005, pp. 1–10.

[33] P. Ruth, J. Rhee, D. Xu, R. Kennell, S. Goasguen, Autonomic live adaptation of
virtual computational environments in amulti-domain infrastructure, in: IEEE
International Conference on Autonomic Computing, 2006, pp. 5–14.

[34] W. Smith, I. Foster, V. Taylor, Scheduling with advanced reservations, in: IEEE
International Parallel andDistributed Processing Symposium, Cancun,Mexico,
2000, pp. 127–132.

[35] B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing
using virtual machines, in: Proceedings of the 17th International Symposium
on High Performance Distributed Computing, Boston, Massachussets, USA,
2008, pp. 87–96.

[36] B. Sotomayor, R. Llorente, I. Foster, Resource leasing and the art of suspending
virtual machines, in: 11th IEEE International Conference on High Performance
Computing and Communications, Seoul, Korea, 2009, pp. 59–68.

[37] B. Sotomayor, R. Montero, I. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Computing 13 (5)
(2009) 14–22.

[38] Amazon AWS, http://aws.amazon.com/.
[39] GoGrid, http://www.gogrid.com/.
[40] RackSpace, http://www.rackspacecloud.com/.
[41] Microsoft cloud, http://www.microsoft.com/en-us/cloud/.
[42] IBM cloud, http://www.ibm.com/ibm/cloud/.
[43] Google apps, http://www.google.com/apps/intl/en/business/index.html.
[44] HP cloud, http://www8.hp.com/us/en/solutions/solutionsdetail.html?

compURI=tcm:245-300983\&pageTitle=cloud.
[45] Eucalyptus, http://www.eucalyptus.com/.
[46] RESERVOIR, www.reservoir-fp7.eu.
[47] E. Walker, J. Gardner, V. Litvin, E. Turner, Dynamic virtual clusters in a grid site

manager, in: Proceedings of Challenges of Large Applications in Distributed
Environments, Paris, France, 2006, pp. 95–103.

[48] X. Wang, J. Zhang, H. Liao, L. Zha, Dynamic split model of resource utilization
inmapreduce, in: InternationalWorkshop on Data Intensive Computing in the
Clouds, 2011, pp. 1–10.

[49] M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, I. Foster, Swift: a
language for distributed parallel scripting, Parallel Computing 37 (9) (2011)
633–652.

[50] T.Wood, A. Gerber, K. Ramakrishnan, J. van derMerwe, The case for enterprise-
ready virtual private clouds, in: Workshop on Hot Topics in Cloud Computing,
San Diego, Califoria, USA, 2009.

[51] S. Zanikolas, R. Sakellariou, A taxonomy of grid monitoring systems, Future
Generation Computer systems 1 (2005) 163–188.

Jiayin Li received the B.E. andM.E. degrees fromHuazhong
University of Science and Technology (HUST), China, in
2002 and 2006, respectively. And now he is pursuing
his Ph.D. degree in the Department of Electrical and
Computer Engineering (ECE), University of Kentucky. His
research interests include software/hardware co-design
for embedded system and high performance computing.

Meikang Qiu received the B.E. and M.E. degrees from
Shanghai Jiao Tong University, China. He received the M.S.
and Ph.D. degrees in Computer Science from University
of Texas at Dallas in 2003 and 2007, respectively. He
had worked at Chinese Helicopter R&D Institute and IBM.
Currently, he is an assistant professor of ECE at University
of Kentucky. He is an IEEE Senior member and has
published 140 journal and conference papers, including
15 IEEE/ACM Transactions. He is the recipient of the ACM
Transactions on Design Automation of Electronic Systems
(TODAES) 2011 Best Paper Award. He also received three

other best paper awards (IEEE EUC’09, IEEE/ACM GreenCom’10, and IEEE CSE’10)
and one best paper nomination. He also holds 2 patents and has published 3 books.
He has also been awarded SFFP Air Force summer faculty in 2009. He has been on
various chairs and TPC members for many international conferences. He served as

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://www.gartner.com/it/content/1286700/1286717
http://wiki.apache.org/hadoop/
https://www.hpl.hp.com/techreports/2011/HPL-2011-129.pdf
https://computing.llnl.gov/?set%3Dresources%26page%3DOCF-resource
http://www.cs.huji.ac.il/labs/parallel/workload/
http://aws.amazon.com/
http://www.gogrid.com/
http://www.rackspacecloud.com/
http://www.microsoft.com/en-us/cloud/
http://www.ibm.com/ibm/cloud/
http://www.google.com/apps/intl/en/business/index.html
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www8.hp.com/us/en/solutions/solutionsdetail.html?compURI=tcm:245-300983\&pageTitle=cloud
http://www.eucalyptus.com/
http://www.reservoir-fp7.eu

J. Li et al. / J. Parallel Distrib. Comput. 72 (2012) 666–677 677
the Program Chair of IEEE EmbeddCom’09 and EM-Com’09. His research interests
include embedded systems, computer security, and wireless sensor networks.

Zhong Ming is a professor at College of Computer
and Software Engineering of Shenzhen University. He
is a member of a council and senior member of China
Computer Federation. His major research interests are
software engineering and embedded systems. He led two
projects of National Natural Science Foundation, and two
projects of Natural Science Foundation of Guangdong
province, China.

Gang Quan is currently an Associate Professor with
the Electrical and Computer Engineering Department,
Florida International University, Miami. He received the
B.S. degree from the Tsinghua University, Beijing, China,
the M.S. degree from the Chinese Academy of Sciences,
Beijing, and the Ph.D. degree from the University of Notre
Dame, Notre Dame, IN. His research interests include real-
time system, power/thermal aware design, embedded
system design, advanced computer architecture and
reconfigurable computing. Prof. Quan received the NSF
CAREER award in 2006.
Xiao Qin received the B.S. and M.S. degrees in computer
science from Huazhong University of Science and Tech-
nology, Wuhan, China, in 1996 and 1999, respectively,
and the Ph.D. degree in computer science from the Uni-
versity of Nebraska-Lincoln in 2004. He is currently an
associate professor of computer science at Auburn Univer-
sity. Prior to joining Auburn University in 2007, he had
been an assistant professor with New Mexico Institute
of Mining and Technology (New Mexico Tech) for three
years. He won an NSF CAREER award in 2009. His re-
search interests include parallel and distributed systems,

real-time computing, storage systems, fault tolerance, and performance evalua-
tion. His research is supported by the U.S. National Science Foundation, Auburn
University, and Intel Corporation. He is a senior member of the IEEE and the IEEE
Computer Society.

ZonghuaGu received his Ph.D. degree in computer science
and engineering from the University of Michigan at Ann
Arbor in 2004. He is currently an Associate Professor in the
Zhejiang University, China. His research interests include
real-time embedded systems.

	Online optimization for scheduling preemptable tasks on IaaS cloud systems
	Introduction
	Related works
	Model and background
	Cloud system
	Resource allocation model
	Local mapping and energy consumption
	Application model

	Motivational example
	An example of task scheduling in CMP
	Round-robin vs. list scheduling

	Resource allocation and task scheduling algorithm
	Static resource allocation
	Cloud list scheduling (CLS)
	Cloud min--min scheduling (CMMS)
	Energy-aware local mapping
	Feedback information

	Experimental results
	Experiment setup
	Result

	Conclusion
	Acknowledgments
	References

