
J. Parallel Distrib. Comput. 71 (2011) 288–301
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Quality of security adaptation in parallel disk systems
Mais Nijim a,∗, Ziliang Zong d, Shu Yin c, Kiranmai Bellam b, Xiao Qin c

a Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363-8202, United States
b Department of Computer Science, Prairie View A&M University, Prairie View, TX-77446-0519, United States
c Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849-5347, United States
d Department of Mathematics and Computer Science, South Dakota School of Mines and Technology, SD 57701, United States

a r t i c l e i n f o

Article history:
Received 22 January 2010
Received in revised form
13 August 2010
Accepted 25 August 2010
Available online 21 September 2010

Keywords:
Quality of security
Adaptive control
Parallel disk systems
Desired response time
Data partitioning
Security services

a b s t r a c t

In the past decade, parallel disk systems have been highly scalable and able to alleviate the problem
of disk I/O bottleneck, thereby being widely used to support data-intensive applications. Although a
variety of parallel disk systems were developed, most existing disk systems lack a means to adaptively
control the quality of security for dynamically changing workloads. We address this gap in disk
technology by designing, implementing, and evaluating a quality of security control framework for
parallel disk systems, or ASPAD for short, that makes it possible for parallel disk systems to adapt to
changing security requirements and workload conditions. The ASPAD framework comprises four major
components, namely, a security service middleware, a dynamic data-partitioning mechanism, a response
time estimator, and an adaptive security quality controller. The framework is conducive to adaptively and
expeditiously determining security services for requests submitted to a parallel disk system in a way to
improve security of the disk system while making an effort to guarantee desired response times of the
requests. We conduct extensive experiments to quantitatively evaluate the performance of the proposed
ASPAD framework. Empirical results show that ASPAD significantly improves the overall performance of
parallel disk systems over the same disk systems without using the ASPAD framework.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

In the past ten years, disk systems have been widely used to
develop data-intensive applications, including but not limited to
video surveillance [1], remote-sensing database systems [3], dig-
ital libraries [20], and long-running simulations [21]. The high
performance of data-intensive applications relies heavily on the
performance of the underlying disk systems due to the rapidly
widening gap between CPU and disk I/O speeds [14,13]. Parallel
disk systems play an important role in the development of high-
performance data-intensive applications, because the high scal-
ability and parallelism of parallel disk systems can alleviate the
problem of disk I/O bottleneck. To exploit I/O parallelism in par-
allel disk systems, the common wisdom is to partition and dis-
tribute data among an array of disks. Disk I/O parallelisms can be
provided in forms of inter-request and intra-request parallelism.
Inter-request parallelism allows multiple independent requests to
be served simultaneously by a parallel disk system, whereas intra-
request parallelism enables a single disk request to be processed by
multiple disks in parallel. The parallelism degree of a data request
is the number of disks where the requested data resides [19].

∗ Corresponding author.
E-mail addresses: maisnijim@gmail.com (M. Nijim), xqin@auburn.edu (X. Qin).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.08.014
Many data-intensive applications embrace a rich variety of
security services to protect data residing in disk systems from
talented intruders [23]. Further, it is often desirable for next-
generation parallel disk systems to be highly flexible in order to
support different quality of security at different times during a
data-intensive application lifetime. This trend is especially true
for data-intensive applications where the disk requests need to be
completed within specified response times [4,11,12]. As such, par-
allel disk systems aim to achieve two major performance goals:
high quality of security and high response time guarantee ratio.
Since any high-performance parallel disk is required to adapt to
changing security requirements and workload conditions, the ne-
cessity of automatic tuning security services and parallelism de-
grees is increasingly becoming a critical and challenging issue in
the design and development of modern parallel disk systems.

In this paper, we propose an adaptive quality of security con-
trol framework for parallel disk systems, or ASPAD for short. The
ASPAD framework comprises four major components, namely, a
security service middleware, a dynamic data-partitioning mech-
anism, a response time estimator, and an adaptive security qual-
ity controller. Integrating the ASPAD framework with parallel disk
systemsmakes it possible for disk systems to adapt to changing se-
curity requirements and workload conditions, thereby providing a
rich set of data storage environments for data-intensive applica-
tions. To achieve this design goal, ASPAD endeavors to choose the

http://dx.doi.org/10.1016/j.jpdc.2010.08.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:maisnijim@gmail.com
mailto:xqin@auburn.edu
http://dx.doi.org/10.1016/j.jpdc.2010.08.014


M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 289
most appropriate security services for disk requests in such a way
to improve the security of parallel disk systems while making the
best effort to guarantee completions of a vast majority of the re-
quests before the desired response times.

The rest of the paper is organized as follows. In Section 2, we
summarize related work. Section 3 details a model of disk requests
and the new architecture of storage systems. In Section 4, we pro-
pose the adaptive write strategy for security-aware storage sys-
tems.We build an analytical model in Section 5. Section 6 presents
extensive experimental results on awide range of workload condi-
tions. Finally, Section 7 concludes the paper with future directions.

2. Related work

Disk I/O has become a performance bottleneck for data-
intensive applications due to the widening gap between processor
speed and disk access speed [15]. To help alleviate the problem of
disk I/O bottlenecks, a large body ofwork has been done on parallel
disk systems. Kallahalla and Varman designed an online buffer
management and scheduling algorithm to improve performance
of parallel disks [6]. Scheuermann et al. addressed the problem of
making use of striping and load balancing to tune the performance
of parallel disk systems [19]. Rajasekaran and Jin developed a
practical model for parallel disk systems [16]. Kotz and Ellis
proposed several writeback policies used in a parallel file system
implementation [7]. Our approach is fundamentally different from
the aforementioned techniques in that we focus on quality of
security adaptation for parallel disk systems. Further, our strategy
is orthogonal to the existing techniques in the sense that our
scheme canbe readily integrated into existing parallel disk systems
to substantially improve the security of the systems.

Many data-intensive applications embrace a rich variety of
security services to protect data residing in disk systems from tal-
ented intruders [23]. Thus, the issue of security in storage sys-
tems has been addressed and reported in the literature. Riedel
et al. developed a common framework of core functions required
for any secure storage system [18]. To protect data in untrusted
storage systems, researchers designed and implemented crypto-
graphic systems in which data is stored in encrypted form [2,5].
Several key distribution schemes were proposed in the SFS [9] and
SNAD systems [10]. Data-intensive applications rely on stored and
accessed data; supporting the availability, integrity, and confiden-
tiality of these data is crucial. While et al. developed a survivable
storage systemwhich guarantees that the data is persist, continu-
ously accessible, cannot be destroyed, and is kept confidential [22].
Leung and Miller proposed a scalable and efficient protocol for se-
curity in high-performance storage systems, which increases the
performancewithout sacrificing security primitives [8].Miller et al.
developed a scheme to secure network-attached storage systems
against any type of attack [10]. They used a cryptography scheme
to hide the data from unauthorized users.

In our previous work, we developed an array of security-
aware scheduling algorithms for embedded real-time systems [28],
clusters [26,24,27], Grids [23], and distributed systems [25]. Very
recently, we investigated an adaptive write strategy for local disk
systems [11,12]. Since our previous approaches were designed for
either computing resources or single-disk systems, these schemes
are inadequate for quality of security adaptation in parallel disk
systems.

3. Architecture and disk requests

3.1. System architecture

In this study, we consider a security-aware parallel disk sys-
tem, which encompasses a parallel disk system, networks, and an
ASPAD framework. The architecture of the security-aware paral-
lel disk system is delineated in Fig. 1. It should be noted that the
proposed architecture is general enough to accommodate a wide
range of storage systems including, of course, both network at-
tached storage devices (NASs) and storage area networks (SANs).

The ASPAD framework, which is at the heart of the proposed
system architecture, comprises a security service middleware, a
dynamic data-partitioning mechanism, a response time estimator,
and an adaptive security quality controller. The security service
middleware features an array of security services with different
quality of security to support read and write requests issued by
clients with flexible security needs. In the security service middle-
ware, common security services include encryption services, au-
thentication services, auditing services, and access controllers. The
security service middleware is highly flexible in the sense that the
middleware allows new security services to be readily incorpo-
rated and old security services to be easily removed. The quality
of security exhibited by a security service depends on the robust-
ness of the corresponding security mechanism used to implement
the service, on the rigorous way in which the security mechanism
is tested, and on the period of time over which the security service
has been used. The data-partitioning mechanism is geared to di-
vide a large amount of data into fixed-size data units stored on a
number of disks. We consider file striping in this study, because it
is a generic method for a wide variety of data types [19]. The pro-
cess of data partitioning is detailed in Section 4.1. To determine
an optimal parallelism degree (also known as stripe unit size) for
each disk request, the data-partitioning mechanism has to lever-
age the response time estimator to predict the response time of the
request. Furthermore, the response time estimator is indispens-
able for the adaptive security quality controller, because estimat-
ing the maximum response time of a disk request is the first step
towards choosing the most appropriate security level for the disk
request. Section 4.2 provides a means of estimating the response
times of disk requests submitted to a parallel disk system. The se-
curity quality controller is developed to make a decision to select a
security service to protect data for each request and, therefore, the
security quality controller has to be adaptive to both variation in
runtime security demands and dynamically changing workloads.
Thus, the controller aims to achieve the best trade-off between sys-
tem security and performance.

On top of the ASPAD framework, clients issue read and/or write
requests to the parallel disk system through network links. With
respect to data partitioning and security quality control, read and
write requests are treated in distinct ways. Data partitioning and
security service selections for read requests are carried out stati-
cally, because static partitioning gives rise to a balanced load across
all the disks in the system. In contrast, dynamic data partitioning
is performed for write requests to alleviate an imbalanced load
among the disks due to skewed access frequencies. The security
quality controller selects the most appropriate security service to
protect the data for each disk request. In this paper, we restrict
our attention to adaptive quality of security control for write re-
quests, because security for read requests can be optimized offline.
Throughout this paper, the disk requests issued by clients arewrite
requests unless otherwise specified. After the process of data parti-
tioning and security service controlling is accomplished for a write
request, the stripe units of data in encrypted form are transferred
through the network links. Finally, the stripe units are written to
multiple disks in parallel.

3.2. Quality of security

Recall that a security-aware parallel disk system encompasses a
security servicemiddleware providing an array of security services
with different quality of security. The quality of security for each



290 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
Fig. 1. Architecture of a security-aware parallel disk system.
security service is measured by security level ranging from 0.1 to
1.0 [11,12,23]. Alternatively, the quality of security for a security
service can be qualitatively measured using, for example, the
following seven levels: extremely high, very high, high, medium,
low, very low, and no security protection. A translationmechanism
can be easily implemented to convert any of the seven levels
into a value in the range between 0.1 and 1.0. A higher security
level indicates a better quality of security of the service. More
generally speaking, security services fall into three categories:
confidentiality, integrity, and availability. In our quality of security
model, we address the confidentiality issues by employing nine
cryptographic algorithms in our framework [11,12]. Note that the
quality of security model can be easily extended to incorporate the
other two security service categories.

Our quality of security model also readily applies to any disk
system where there are only a few cryptographic algorithms
implemented, because each cryptographicmechanism can provide
different quality of security with vastly different key lengths. In
other words, a cryptographic mechanism is enabled to facilitate
the ASPAD framework with a variety of cryptographic services
using the same mechanism with different key lengths. We assume
that the clients, networks, and parallel disk systems are always
available by virtue of fault-tolerant mechanisms residing in these
components. This assumption is valid, because the overhead of
supporting reliability in the system can be envisioned as part of
the security overhead.

Security overheads incurred by the cryptographic algorithms
depend on the size of the data to be encrypted and the performance
of the algorithms, each of which is assigned a security level. Let
σi denote the security level of the cryptographic algorithm used
to encrypt the data for disk request ri, and di the size of the data
to be encrypted. We can obtain the security overhead of request
ri using Eq. (1), where P(σi) is a function mapping security level
σi to the performance (measured in kB/ms) of the corresponding
confidentiality service [11,12].

Tsecurity(σi, di) =
di

P(σi)
. (1)

3.3. Disk requests with security and performance requirements

In this study, we consider data-intensive applications with
both security and performance constraints, meaning that the disk
requests issued by the applications to a parallel disk system
impose both security and performance requirements. It should be
noted that the disk requests’ security and timing requirements,
defined as level of security services and desired response times,
respectively, are derived from the corresponding data-intensive
applications. The security level specified by applications may be
extremely high, very high, high, medium, low, very low, or no
security protection. Again, the translation mechanism can be used
by the ASPAD framework to convert any of the seven levels into
a value between 0.1 and 1.0, while the security requirement of a
request, e.g., ri, is specified by a lower bound si on the security level
that the disk system has to provide. Hence, the security service
controller must ensure that σi is greater than or equal to si. In
this paper, we investigate the desired response time, which is a



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 291
specific performance requirement; the desired response time of
request ri is represented by ti. We denote the parallelism degree
of ri by pi. It is worth noting that parallelism degrees play a
critical role in performance tuning of parallel disk systems. As
such, it is appealing to devise the data-partitioning mechanism to
automatically determine the parallelism degree for each request
in a way to improve the throughput of the system. Given the
parallelism degrees of requests, the quality of security for the
requests can be tuned in a judiciousmanner by the security service
controller.

The first step towards improving the quality of security is to
quantitatively measure the security benefits of a disk request. To
achieve this goal, we calculate the security benefit of request ri
using the following security level function.

S(ri) =

pi−
j=1

σij, σij ≥ si and pi ≤ m, (2)

where pi is the parallelism degree of the request, m is the number
of disks in the parallel disk system, and σij is the security level of
the confidentiality service chosen for the jth stripe unit of ri. It is
intuitive to argue that (1) the parallelism degree pi cannot exceed
the total numberm of disks in the system, and (2) the security level
σij must be higher than or equal to the level of theminimal security
requirement si.

Given a sequence of requests R = {r1, r2, . . . , rn}, we can obtain
the security benefits experienced by the requests. Thus, we have

S(R) =

n−
i=1

S(ri). (3)

Now we obtain the following nonlinear optimization problem
formulation to compute the optimal security benefit of the parallel
disk system:

maximize S(R) =

n−
i=1

pi−
j=1

σij,

subject to (a) ∀1 ≤ i ≤ n : max
1≤j≤pi

{θij} ≤ ti,

(b) σij ≥ si and pi ≤ m, (4)
where θij is the response time for the jth stripe unit of request
ri. In an effort to enhance the security of the system, we have to
guarantee that the following three conditions are met. First, the
response time of all stripe units in request ri must be smaller than
the desired response time. Second, the low bound on the security
level cannot be violated. Third, the parallelism degree of ri has to
be smaller than or equal to the number of disks in the system.

4. The ASPAD framework

In this section, we delineate the three main components in
the ASPAD framework. Specifically, we first outline the data-
partitioningmechanism. Next, we describe away of estimating the
response time of a request issued by a client. Finally, and impor-
tantly, we investigate an adaptive quality of security controller in
the context of a parallel disk system.

4.1. Data partitioning

One of the major components in the proposed framework (see
Section 4.3) is the method of data partitioning that determines the
optimal parallelism degrees for the disk requests. Dynamic data
partitioning is of importance for the ASPAD framework, because
the data-partitioning method helps in minimizing the response
times of requests, thereby creatingmore space to enhance security.
As such, the first phase in ASPAD is to dynamically calculate the
optimal parallelism degree of a request (see Fig. 2, Step 3).

Again, we denote the parallelism degree and data size of a
request ri by pi and di, respectively. Before we proceed to the
analysis of optimal parallelism degrees, we formally derive the
expected value of disk service time Tdisk(di, pi) for request ri. Thus,
the expected disk service time can be computed as

E(Tdisk(di, pi)) = E(Tseek(pi)) + E(Trot(pi)) + E(Ttrans(di, pi)), (5)

where E(Tseek(pi)), E(Trot(pi)), and E(Ttrans(di, pi)) are the expected
values of seek time, rotation time, and transfer time, respectively.
It was shown in [19] that the expected seek time can be
approximated as below, where C is the number of cylinders on
a disk, and a and b are two disk-type-independent constants,
whereas e and f are disk-type-dependent constants.

E(Tseek(pi)) = eC(1 − a − b ln(pi)) + f . (6)

The expected value of rotation time can be expressed as Eq. (7),
where TROT is the rotation time of a disk. Note that a similar ex-
pression can be found in [19].

E(Trot(pi)) =
pi

pi + 1
· TROT. (7)

The expected transfer time can be approximated by Eq. (8), where
Bdisk is the disk bandwidth.

E(Ttrans(di, pi)) =
di
pi

·
1

Bdisk
. (8)

Substituting Eqs. (6)–(8) into Eq. (5), we obtain the expected value
of the disk service time as

E(Tdisk(di, pi)) = eC(1 − a − b ln(pi)) + f +
pi

pi + 1
· TROT

+
di
pi

·
1

Bdisk
. (9)

Now we are positioned to calculate the optimal parallelism de-
gree of request ri by determining the minimum of the function
E(Tdisk(di, pi)). Thus, we can obtain the optimal value of pi by solv-
ing Eq. (10).

dE(Tdisk(di, pi))
dE(pi)

=
TROT
pi + 1

−
pi · TROT
(pi + 1)2

−
eCb
pi

−
di
p2i

·
1

Bdisk

= 0. (10)

The parallelism degree determined by Eq. (10) cannot exceed m,
which is the number of disks in the system. Therefore, the optimal
parallelism degree is given by min(pi,m).

4.2. Estimating response times

To adaptively adjust the security levels for the disk requests, we
need to estimate each request’s maximum response time, which is
defined as the interval between the time a request is sent by a client
and the time the parallel disk system completes the corresponding
disk I/O operations. Given a newly issued request r , the response
time of r is estimated by Eq. (11).

T (r, p, σ ) = Tqueue + Tpartition +
p

max
i=1

{T i
proc(r, p, σi)}, (11)

where p is the parallelism degree determined by the data-parti-
tioning mechanism (see Eq. (11)), σ = (σ1, σ2, . . . , σp) is the
request’s vector of security levels for p stripe units, Tqueue is the
queuing delay at the client side, Tpartition is the time spent in data
partitioning, and T i

proc is the system processing delay experienced
by the ith stripe unit of the request. With respect to the ith stripe
unit of the request, the system processing delay T i

proc can be ex-
pressed as

T i
proc(r, p, σi) = T i

security(r, p, σi) + T i
network(r, p, σi)

+ T i
disk(r, p, σi), (12)



292 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
Fig. 2. The processing algorithm for the ASPAD framework in a parallel disk.
where T i
security, T

i
network, and T i

disk are the delays at the security
mechanism, network subsystems, and parallel disk subsystems, re-
spectively.

The delay at the securitymechanism,which is also referred to as
security overhead, depends on the assigned security level and data
size of the stripe unit. Thus, we can easily derive T i

security(r, p, σi)
from Eq. (1) as

T i
security(r, p, σi) = T i

security


σi,

d
p


=

d
p · P(σi)

, (13)

where d is the data size of the request, and d/p is the data size of
the ith stripe unit.

We assume that, when the ith stripe unit of a request arrives at
the network queue, there are k stripe units waiting to be delivered
to the parallel disk subsystem. Suppose stripe units are transmitted
in a first-in-first-out order: all the stripe units that are already
in the queue prior to the arrival of the ith stripe unit must be
transmitted earlier than the ith stripe unit. Hence, the delay in the
network subsystem T i

network(r, p, σi) can be written as

T i
network(r, p, σi) =

i · d
p +

k∑
j=1

dj

Bnetwork
, (14)

where dj is the data size of the jth stripe unit in the network
queue, and Bnetwork is the effective network bandwidth. The
optimal parallelism degree is determined by the data-partitioning
mechanism (see Eq. (10) in Section 4.1).

Similarly, it is assumed that when the ith stripe unit of the
request arrives at disk j, there are k disk requests that must be
processed by disk j before handling the stripe unit. Thus, the delay
in disk subsystem T i

disk(r, p, σi) is given by the following formula:

T i
disk(r, p, σi) = Tdisk,j(d/p) +

k−
l=1

Tdisk,j(dl), (15)

where Tdisk,j(d) is the disk processing time of a request containing
d bytes of data. We can quantify Tdisk,j(d) as follows:
Tdisk,j(d) = Tseek + Trot +
d

Bdisk
, (16)

where Tseek and Trot are the seek time and rotational latency, and
d/Bdisk,j is the data transfer time depending on the data size d and
disk bandwidth Bdisk.

4.3. The processing algorithm for the ASPAD framework

Now we are positioned to develop an adaptive quality of
security control algorithm for the proposed ASPAD framework in
parallel disk systems. The processing algorithm separately repeats
the process of controlling the quality of security for each disk
request on the fly. Thus, the algorithm is geared to adaptively
choose the most appropriate security services for stripe units of
a disk request while guaranteeing the desired response time of
the request. Specifically, the algorithm is carried out in three
phases: dynamic data partitioning (see Section 4.1), response time
estimation (see Section 4.2), and adaptive security quality control.
To heuristically improve the security of the disk systems, ASPAD
endeavors to minimize the response time of a request. Hence,
the first phase dynamically calculates the optimal parallelism
degree of the request, thereby reducing delays at the parallel
disk subsystems (see Eq. (15)). During the second phase of the
algorithm, the response time of each stripe unit is estimated (see
Eqs. (11) and (12)). Phase three, guided by the estimated response
time obtained and desired response time, optimizes the security
level of each stripe unit provided that the request’s response time
given by Eq. (11) does not exceed the request’s desired response
time. The complete algorithm for quality of security control is
outlined in Fig. 2.

When a client issues a request to the system, ASPAD inserts
the newly arrived requests into the waiting queue based on the
earliest desired response time first policy (see Step 1). After the
data partitioning of each request in the queue, ASPAD initializes
the security levels of all stripe units of request ri to the minimal
levels si (see Step 6). In an effort to gradually increase the security



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 293
levels of the stripe units, ASPAD guarantees that all requestswill be
completed before their desired response times. Thus, the following
property needs to be satisfied in ASPAD.

Property 1. With respect to the ith request, the following two
conditions must hold if the jth stripe unit’s security level is increased
by 0.1.

(1) The current security level σij is less than 1.0.
(2) Tj(ri, pi, σi) ≤ ti, where Tj is the response time of the jth stripe

unit, ti is the desired response time of the request, and

Tj(ri, pi, σi) = Tqueue + Tpartition + T ij
proc(ri, pi, σij).

Steps 10–11 are repeatedly performed to optimize the security lev-
els until a request’s desired response time cannot be guaranteed
(see Step 12) or the security levels are approaching 1.0. Conse-
quently, the ASPAD framework dramatically increases the security
levelswhilemaking the best effort to finish all the disk requests be-
fore their desired response times. The time complexity of ASPAD is
evaluated (see Theorem 1) as the number of waiting requests and
maximum parallelism degree vary.

Theorem 1. The time complexity of ASPAD is O(np), where n is the
number of disk requests in the waiting queue and p is the maximum
parallelism degree.

Proof. It takes O(10) time to increase the security level of each
stripe unit (see Step 8). Since there are O(p) number of stripe units
in each disk request, the time complexity of optimizing the security
levels of a write request is O(10p) = O(p), where 10 is the number
of security levels. There are n disk requests in the waiting queue
and, therefore, the time complexity of improving security of all the
requests is O(n)O(p) = O(np). �

Compared with processing times at the network subsystems
and parallel disk subsystem, the overhead of ASPAD can be
negligible. This argument is especially true forworkload conditions
where the arrival rates of the disk requests are relatively low,
because the number ofwaiting disk requests in these cases is small.

4.4. Optimality of the security quality controller in the ASPAD
framework

Before building an analytical model to evaluate the perfor-
mance of ASPAD,weprove the optimality of theASPAD framework.
Theorems 2–4 are of help in the proof of Theorem5,which signifies
that the ASPAD framework optimizes the quality of security for the
disk requests submitted to a parallel disk system.

Theorem 2. Given the jth and kth stripe units in a disk request ri (the
number of units in ri is pi ≥ 2, and 1 ≤ j, k ≤ pi) and a security-
aware parallel disk system, optimizing security levelσij of the jth stripe
unit is independent of the optimization of security level σik of the kth
stripe unit.

Proof. The algorithm outlined in Fig. 2 shows that optimizing the
security level σij of the jth stripe unit in disk request ri depends on
the estimated response time of the request (see Step 8 in Fig. 2).
The estimated response time of ri in turn relies on the queueing
delay Tqueue at the client side, time Tpartition spent in the data-
partitioningmechanism, and themaximal systemprocessing delay
Tproc experienced by all the stripe units of the request (see Eq. (11)
in Section 4.2). Since the two stripe units have the same values of
Tqueue and Tpartition, we are concerned with the system processing
delays with respect to the ith and jth stripe units. Eq. (12) shows
that the system processing delay T j

proc of the jth stripe unit is
a summation of the delays at the security middleware, network
subsystem, and parallel disk subsystems, respectively. The two
stripe units are independent of each other with respect to their
system processing delays, because the ith stripe unit’s delay times
in the security middleware, network subsystem, and parallel disk
subsystems are not affected by the other stripe unit. This means
that the security levels of the two stripe units can be optimized
independently. Hence the proof of Theorem 2 is complete. �

The following theorem shows that a disk request’s quality of
security is optimized by maximizing the security level of each
stripe unit of the disk request.

Theorem 3. If the security levels of all the stripe units in a disk request
ri are maximized in a security-aware parallel disk system, then the
adaptive security quality controller in the ASPAD framework optimizes
the quality of security for disk request ri. More formally, we have

∀1 ≤ j ≤ pi : σij is maximized →

pi−
j=1

σij is maximized.

Proof. The proof of this theorem is derived from Theorem 2. Since
Theorem 2 proves that the optimization of security level σij of the
jth stripe unit is independent of the optimization of security levels
of the other stripe units of disk request ri, the value of can be
maximized without adverse effects upon the security level of the
other stripe of ri. Therefore, the security levels of all the stripe
units within disk request ri can be maximized simultaneously by
the adaptive security quality controller in the ASPAD framework.
Consequently, the summation of the security levels of all the
stripe units of disk request ri is maximized by the security quality
controller, i.e.,

∑pi
j=1 σij is maximized. This completes the proof of

the theorem. �

In the following, we show that the security quality controller in
ASPAD maximizes the security level of each stripe unit in a disk
request. To facilitate the proof of Theorem 4, we introduce an
important concept, that of non-secure response time.

Definition 1. The non-secure response time T ij
non-secure of the jth

stripe unit in disk request ri is defined as the response time of the
stripe unit that is not secured by any securitymechanism. Thus, we
have

T ij
non-secure = Tqueue + Tpartition + T ij

security + T ij
network + T ij

disk.

Theorem 4. Given any stripe unit of a disk request ri (e.g., the jth
stripe unit) and a security-aware parallel disk system, the adaptive
security quality controller in the ASPAD framework maximizes the
security level σij of the stripe unit.

Proof. Without loss of generality, let us consider the jth stripe unit
in disk request ri. We have to prove the theorem by demonstrating
that (1) the security level σij of the jth stripe unit cannot be further
increased, and (2) once σij is maximized, σij is not affected by the
security levels of the other stripe units in disk request ri. We can
easily prove the correctness of the second fact, because Theorem 2
shows that the optimizations of all the stripe units in a disk request
are independent of each other. Now let us prove the first fact, i.e.,
that σij cannot be further increased by the processing algorithm
(see Fig. 1). The first phase in the algorithm attempts to minimize
the non-secure response time (see Definition 1) of all stripe units
in disk request ri using the dynamic data-partitioning mechanism
(see Steps 3 and 4 in Fig. 1). Consequently, the non-secure response
time of any stripe unit isminimized. Thus, the non-secure response
time Tqueue + Tpartition + T ij

network + T ij
disk of the jth stripe unit

is minimized. Since Tqueue + Tpartition cannot be reduced by the



294 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
ASPAD framework, the processing algorithm minimizes the value
of T ij

network + T ij
disk. Step 8 ensures that the inequality

Tqueue + Tpartition + T ij
network + T ij

disk + T ij
security ≤ ti

holds and, therefore, we have

T ij
security ≤ ti − (Tqueue + Tpartition + T ij

network + T ij
disk).

We proved that Tqueue + Tpartition + T ij
network + T ij

disk on the right-
hand side of the inequality is minimized by the first phase of the
algorithm, indicating that time T ij

security spent in security services is
maximized. As a result, Steps 9 and 10 in the algorithm leverage the
maximized time T ij

security to optimize the security levelσij. Hence the
proof of Theorem 4 is complete. �

Now we are in a position to prove the optimality of the quality
of security controller, which is considered as the main part of the
ASPAD framework (see Fig. 1).

Theorem 5. Given a disk request ri and a security-aware parallel
disk system, the adaptive security quality controller in the ASPAD
framework optimizes the quality of security for disk request ri.

Proof. The proof of the theorem is immediate from Theorems 3
and 4. First, Theorem 4 proves that each stripe unit in disk request
ri has the corresponding security levelmaximized. Next, Theorem3
shows that if the security levels of all the stripe units in disk request
ri are maximized in a security-aware parallel disk system, then
the adaptive security quality controller in the ASPAD framework
optimizes the quality of security for disk request ri. �

5. Analytical model

In this section, we build an analytical model that helps to
evaluate the benefit of using the ASPAD framework in parallel disk
systems. Specifically, we first derive the probability that a disk
request is completed before its desired response time in a security-
aware parallel disk system. Next, we calculate the expected value
of security levels assigned to the disk requests by the security
quality controller in the ASPAD framework.

5.1. Satisfied ratio

Given a parallel disk system with the ASPAD framework, we
consider the probability that a disk request ri can be finishedwithin
the desired response time ti, i.e., Pr(T (ri, pi, σi) ≤ ti), where
T (ri, pi, σi) is the response time of ri. When disk request ri arrives,
the request is inserted in the queue in an increasing order of all
requests’ desired response times. In doing so, the disk requests
with the earliest desired response times are given the highest
priority and responded to by the parallel disk system first. To
simplify the analysis that follows, we assume that the processing
times of different disk requests are statistically independent.
Suppose that in the queue there are n pending disk requests
indexed by their priorities, and that the desired response time of
ri is smaller than that of rj if i < j, i.e.,

∀1 ≤ i, j ≤ n : i < j ⇒ ti < ti.

Eq. (11) signifies that T (ri, pi, σi) is disk request ri’s estimated
response time computed as the summation of the queueing delay,
the time spent in data partitioning, and the system processing
delay. Let Ux be the probability that the disk request ri requires x
time unit to complete, i.e., ux = Pr(T (ri, pi, σi) = x). Let Vy be the
probability that the total required processing time of disk requests
with higher priorities is y, i.e.,

vy = Pr


i−1−
j=1

T (ri, pi, σi) = y


.

The probability that ri is unable to be finished within the desired
response time ti is computed as follows:
Pr(T (ri, pi, σi) > ti)

= Pr


T (ri, pi, σi) = 1

 i−1−
j=1

T (ri, pi, σi) ≥ ti


...

+ Pr


T (ri, pi, σi) = ti + 1

 i−1−
j=1

T (ri, pi, σi) ≥ 0



= u1

∞−
y=ti

vy + u2

∞−
y=ti−1

vy + · · · + uti

∞−
y=1

vy + uti+1

∞−
y=0

vy

=

ti+1−
x=1


ux

∞−
y=ti+1−x

vy


, (17)

where the second line in the above equation indicates the
conditional probability that the required processing time of disk
request ri is k, given that it requires at least ti + 1− k time units to
complete the disk requests with higher priorities.

The probability that a disk request ri is completed within its
desired response time is given by
Pr(T (ri, pi, σi) ≤ ti) = 1 − Pr(T (ri, pi, σi) > ti)

= 1 −

ti+1−
x=1


ux

∞−
y=ti+1−x

vy


. (18)

In what follows, we derive two important probabilities ux (see
Eq. (26)) and vy (see Eq. (30)) used in Eqs. (17) and (18) to
approximate the satisfied ratio. First, let us derive the probability
ux = Pr(T (ri, pi, σi) = x) that the disk request ri requires x time
units to complete. Eq. (11) in Section 4.2 shows away of computing
this, and thus, we have

T (ri, pi, σi) = T i
queue + T i

partition +
p

max
k=1

{T ik
proc(ri, pi, σik)} = x, (19)

where T i
queue is the queuing delay of disk request ri, T i

partition is the
data-partitioning overhead of ri, and T ik

proc is the system processing
delay experienced by the ith stripe unit of ri.

The queuing delay T i
queue of disk request ri is the summation of

the data-partitioning times and security overhead experienced by
other disk requests with higher priority (i.e., with earlier desired
response time). Thus, T i

queue can be expressed as

T i
queue =

i−1−
j=1

(T j
partition + T j

security)

= (i − 1)Tpartition +

i−1−
j=1

T j
security, (20)

where the partitioning overhead of all the submitted requests is
assumed to be a constant, Tpartition. Since the security overhead of
disk request rj is the summation of the security overheads for all
the stripe units of rj, as per Eq. (13) we have the following equation
to calculate T i

security on the right-hand side of Eq. (20).

T j
security =

pj−
k=1

d
pjP(σjk)

. (21)

Therefore, we can obtain the following equation from Eqs. (19)–
(21).

pi
max
k=1

{T ik
proc(ri, pi, σik)} = x − i · Tpartition −

i−1−
j=1

pj−
k=1

d
pj · P(σjk)

. (22)



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 295
Since the probability

Pr


pi

max
k=1

{T ik
proc(ri, pi, σik)} = x − i · Tpartition −

i−1−
j=1

pj−
k=1

d
pj · P(σjk)


is equal to the probability ux = Pr(T (ri, pi, σi) = x), ux used in
Eqs. (17) and (18) can be written as

ux = Pr


pi

max
k=1

{T ik
proc(ri, pi, σik)} = x − i · Tpartition

−

i−1−
j=1

pj−
k=1

d
pj · P(σjk)


. (23)

Let Pr

maxpik=1{T

ik
proc(ri, pi, σik)} = a


be the probability that

maxpik=1{T
ik
proc(ri, pi, σik)} is equal to a. Pr


maxpik=1{T

ik
proc(ri, pi, σik)}

= a

can be written as

Pr


pi
max
k=1

{T ik
proc(ri, pi, σik)} = a


= Pr(T i1

proc(ri, pi, σi1) = a) ·

pi∏
k=2

Pr(T i1
proc(ri, pi, σi1) < a)

+ Pr(T i2
proc(ri, pi, σi2) = a)

×

pi∏
k=1,k≠2

Pr(T i2
proc(ri, pi, σi2) < a)

...

+ Pr(T ipi
proc(ri, pi, σipi) = a)

×

pi−1∏
k=1

Pr(T ik
proc(ri, pi, σik) < a). (24)

We denote Pr(T ik
proc(ri, pi, σik) = a) by cik(a), and Pr(T ik

proc(ri, pi, σik)

< a) by c ′

ik(a). Then, Eq. (24) can be expressed as follows:

Pr


pi
max
k=1

{T ik
proc(ri, pi, σik)} = a



=

pi−
k=1


cik(a) ·

pi∏
i=1,i≠k

c ′

ik(a)


. (25)

Consequently, the probability ux can be derived from Eqs. (23) and
(25) by substituting x− i ·Tpartition−

∑i−1
j=1
∑pj

k=1
d

pj·P(σjk)
for variable

a in Eq. (25).

ux =

pj−
k=1


cik


x − i · Tpartition −

i−1−
j=1

pj−
k=1

d
pj · P(σjk)



×

pj∏
i=1,i≠k

c ′

ik


x − i · Tpartition −

i−1−
j=1

pj−
k=1

d
pj · P(σjk)


. (26)

Now we derive the second important probability vy = Pr
∑i−1

j=1

T (rj, pj, σj) = y

from ux computed by Eq. (26). To facilitate the

derivation of vy, we need the following definition.

Definition 2. Φ i−1
y is a set of vectors (y1, y2, . . . , yi−1) inwhich the

summation of all the elements in each vector equals to y. Formally,
the set of vectors is defined as follows:

Φ i−1
y =


(y1, y2, . . . , yi−1), where

i−1−
j=1

yj = y


.

The probability vy is derived from ux and set Φ i−1
y as follows:

vy =

−
y1,...,yi−1∈Φ

i−1
y

{Pr(T (r1, p1, σ1) = y1)Pr(T (r2, p2, σ2) = y2)

× · · · Pr(T (ri−1, pi−1, σi−1) = yi−1)}. (27)

5.2. Quality of security

To quantify the security quality offered by a parallel disk sys-
tem, we derive in this section the expected security level expe-
rienced by the disk requests. First, we compute the probability
Pr(σij = z) that the security level of the jth stripe unit of a disk re-
quest ri is equal to z. Recall that the security level of a stripe unit de-
pends on the desired response time of its disk request, the data size
of the request, and the processing times of other waiting requests
with higher priorities. Therefore, Pr(σij = z) can be expressed as

Pr(σij = z) = Pr(di = dmin) ·

tmax−
k=tmin


Pr(ti = k)

× Pr


i−1−
l=1

T (rl, pl, σl) = k − T

dmin

pi
, z


...

+ Pr(di = a) ·

tmax−
k=tmin


Pr(ti = k)

× Pr


i−1−
l=1

T (rl, pl, σl) = k − T


a
pi

, z


...

+ Pr(di = dmax) ·

tmax−
k=tmin


Pr(ti = k)

× Pr


i−1−
l=1

T (rl, pl, σl) = k − T

dmax

pi
, z


=

dmax−
a=ddmin


Pr(di = a) ·

tmax−
k=tmin


Pr(ti = k)

× Pr


i−1−
l=1

T (rl, pl, σl) = k − T


a
pi

, z


, (28)

where T


a
pi
, z

is the processing time of ri if the data size is a and

the security level is set to z, the data size of any disk request is in
the range between dmin and dmax, and the desired response time of
any request is in the range between tmin and tmax.

The data size and desired response time of each disk request
are two random variables distributed according to two probability
density functions, which are known a priori. Let fa denote the
probability that the data size of the disk request is a, and let wj
denote the probability that the desired response time is equal to j.
Thus, the probability Pr(σij = z) can be derived from fa, wj and vy
(see Eq. (27)).

Pr(σij = z) =

dmax−
a=ddmin


fa ·

tmax−
k=tmin

[
wk · v

k−T


a
pi

,z
] , (29)

where

v
k−T


a
pi

,z
 = Pr


i−1−
l=1

T (rl, pl, σl) = k − T


a
pi

, z


.



296 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
Fig. 3. Results from the analytical model.
The expected security level experienced by disk requests with
security requirements can be directly derived from Eq. (29). Hence,
the expected security level is given by

E(σi) = pi ·
9−

k=1


k
10

· Pr


σij =
k
10


. (30)

To validate our analytical mode, we compare the value of the
satisfied ratio and the security level that were calculated from the
analytical model equations with those that were calculated in the
simulator. Fig. 3(a) and (b) reveal that the satisfied ratio and the
security level that were calculated using the analytical model are
very similar to those that were calculated using the security-aware
parallel disk system simulator.

6. Evaluation

To evaluate the performance of the ASPAD framework in an
efficient way, we simulated a security-aware parallel disk system,
into which nine encryption services were integrated. Table 1
summarizes the important system parameters used to resemble
real-world disks such as Seagate Barracuda 36ES2 [17].

In our ASPAD framework, we implemented a data-partitioning
algorithm to optimize the parallelism degrees of large disk I/O
requests. We will first compare the performance of a security-
aware parallel disk system with the ASPAD framework with
that of a non-security-aware parallel disk system that assigns
the minimum security requirements for the requests; this case
is considered as a security-aware parallel disk system without
employing ASPAD. We will then study the effects of varying the
arrival rates on the performance of the two disk systems. Next,
we will compare and evaluate the two disk systems with respect
to security requirements imposed by the disk requests. Finally, we
also analyze the performance impacts of parallelismdegrees on the
parallel disk systems.

In our simulation experiments, we made use of the following
three metrics to demonstrate the effectiveness of the ASPAD
scheme.

(1) Satisfied ratio is a fraction of total arrived disk requests that are
found to be finished before their desired response time.

(2) Security level is the sum of security level values of all disk
requests issued to the parallel disk systems.

(3) Overall performance is a performance metric measured by the
product of the satisfied ratio and the security level.
Table 1
Worst-case parameters of disks in the simulated parallel disk system and workload
conditions.

Parameter Value

Number of disks 2, 4, 6, 8, 10, 12, 14, 16
Capacity of one disk 18.4 GB
Average seek time 11.36 ms
Average rotation time 8.37 ms
Blocks revolution per minute 7200 RPM
Transfer rate per disk 30 MB/s
Arrival rate 0.1, 0.2, 0.3, 0.4, 0.5 No/second
Data size 100 kB, 10 MB, 100 MB
Security range Smax 0.5, 0.55, 0.6, 0.65, . . ., 0.85,

0.9

6.1. Impacts of arrival rate

This experiment aims at comparing the ASPAD strategy with
a baseline scheme that makes no use of ASPAD. With different
settings of parallelismdegrees and data sizes,we study the impacts
of varying the arrival rates on system performance. To achieve this
goal, we increased the arrival rate of I/O requests from 0.1 to 0.5
No/second while setting the parallelism degree to 3 and the data
size to 100 kB, 10 MB, and 100 MB, respectively.

Fig. 4 plots the satisfied ratios, security levels, and overall
performance of the parallel disk systems with and without ASPAD.
Fig. 4(a)–(a), (b)–(a) and (c)–(a) reveal that the ASPAD strategy
yields satisfied ratios that are very close to those of the parallel
disk system making no use of ASPAD. This is mainly because
ASPAD endeavors to guarantee the timing constraints of the
disk requests while maximizing the security of the parallel disk
system. Fig. 4(a)–(b), (b)–(b), and (c)–(b) illustrate that ASPAD
significantly improves the quality of security of the disk system by
an average of 126%. We can attribute the improvement in security
to the fact that ASPAD strives to increase the security level of
each parallel disk request provided that the corresponding real-
time requirement can be met. It is observed that as the value of
arrival rate increases, the security levels of both systems decrease.
This result is not surprising because high arrival rates lead to
high workload, forcing parallel disk systems to merely meet the
minimal security requirements of a vast majority of requests in
order to process a large number of requests in a timely manner.

Interestingly, ASPAD always achieves higher security levels
comparedwith the parallel diskswithout ASPAD. It is worth noting
that the security improvement comes at the cost of satisfied ratios
(see Fig. 4(a)–(a), (b)–(a) and (c)–(a)), because the satisfied ratios of



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 297
(a) The data size is 100 kB and P = 3.

(b) The data size is 10 MB and P = 8.

(c) The data size is 100 MB and P = 16.

Fig. 4. Impact of arrival rate on the performance of security-aware parallel disk systems.
ASPADare slightly reduceddue to relatively high security overhead
caused by the ASPAD strategy. Fig. 4(a)–(c), (b)–(c), and (c)–(c)
reveal that ASPAD substantially boosts the overall performance.
The reasons for the expected overall performance improvement
are twofold. First, ASPAD adaptively enhances the security levels
for disk I/O requests. Second, the performance gains in security
level can eventually offset the extra security overhead.

6.2. Impacts of security requirements

In this group of experiments, we investigate the performance
impacts of security requirements imposed by parallel disk re-
quests. Asmentioned earlier, the security requirement of each disk
request is characterized by a security range varying from smin to
smax. We varied smax from 0.5 to 0.9 while fixing smin at 0.1.
We observed from Fig. 5(a)–(a), (b)–(a), and (c)–(a) that
increasing the maximal security level of the security range leads
to decreasing values of the satisfied ratio of the two disk systems
examined. This is because, when the security level requirements of
the disk requests are high, the parallel disk systems need to fulfill
the security requirements with high security overheads, which in
turn reduces the satisfied ratios.

Again, the satisfied ratios of ASPAD are reasonably close to
those of the alternative strategy. It is observed from Fig. 5(a)–(b),
(b)–(b), and (c)–(b) that, when smax increases, the security levels of
the two evaluated schemes gradually increase. This result implies
that the security levels of the two schemes heavily rely on the
security requirements of the disk requests. Fig. 5(a)–(c), (b)–(c),
and (c)–(c) illustrate that the overall performance of the two
systems improves with the increasing values of smax, because the



298 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
(a) Arrival rate = 0.5 No/second, data size = 100 kB, P = 3.

(b) Arrival rate = 0.5 No/second, data size = 10 = MB, P = 8.

(c) Arrival rate = 0.5 No/second, data size = 100 MB, P = 16.

Fig. 5. Impact of security requirements on the performance of security-aware parallel disk systems.
overall performance is more sensitive to the security level than to
the satisfied ratio.

6.3. Impacts of parallelism degree

Disk I/O parallelisms are implemented in forms of inter-request
and intra-request parallelism. Without loss of generality, in this
study we considered intra-request parallelism. Nevertheless, the
proposed ASPAD strategy can be readily applied to disk workload
conditions with inter-request parallelism.

Now we focus on the effects of parallelism degree on the per-
formance of ASPAD and the alternative. In this set of experiments,
the parallelism degreewas varied from 2 to 16. Fig. 6(a) shows that
when the parallelismdegree increases, the performance in terms of
satisfied ratio is improved. The rationale behind this observation is
that increasing parallelism degrees indicates the increasing num-
ber of disks over which a request is served (hereinafter referred to
as the striping width) and, thus, increasing the striping width has
a strong likelihood of reducing the response times of the requests
and enhancing the throughput of parallel disk systems.
It is intriguing to observe from Fig. 6(b) that high parallelism
degrees give rise to high levels of security.We attribute this perfor-
mance trend to positive impacts of the large stripingwidths, which
substantially decrease the response times. Thus, the decrease in
the response times ultimately makes it possible for an increas-
ing number of disk requests to be completed before their dead-
lines. As shown in Fig. 6(c), the overall performance improvement
of ASPAD over the alternative is more prominent when the par-
allelism degree becomes high. This is because, first, ASPAD’s per-
formance degradation in satisfied ratio becomes less significant as
the parallelismdegree increases (see Fig. 6(a)). Second, the security
level discrepancy between ASPAD and the competitive scheme is
widened as the parallelism degree rises, meaning that high paral-
lelism degrees offer more opportunities for ASPAD to increase the
security levels of disk requests in a judicious manner.

7. Improved ASPAD

The original ASPAD algorithm suffers from a small problem.
The original ASPAD algorithm inserts the requests into the queue



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 299
Fig. 6. The impact of the parallelism degree when the arrival rate = 0.5 No/second.
(a) The data size is 100 kB and P = 3.

(b) The data size is 10 MB and P = 8.

Fig. 7. Impact of arrival rate on the performance of the improved security-aware parallel disk systems.
based on their desired response time. The algorithm keep checking
whether the first request canmeet its desired response time: if yes,
its security level will be increased; otherwise, the algorithm will
check if the next request can meet its desired response time, and
so on. This technique will cause a starvation for the lower priority
requests. To solve this problem, we propose an updated ASPAD
algorithm and call it Improved ASPAD (IMPASPAD). The first phase
of IMPASPAD is to dynamically calculate the optimal parallelism
degree of the request. The third phase is to optimize the security
level of each stripe unit using Eq. (11).

When a client issues a request to the system, IMPASPAD inserts
the newly arrived requests into the waiting queue based on the
earliest desired response time. After the data partitioning of each
request in the queue, IMPASPAD initializes the security levels of
all stripe units of request ri to the minimal levels si. For the first
request in the queue, IMPASPAD checks if that request can meet
its desired response time: if yes, the algorithm will check if all the
requests in the queue can meet their desired response time; if yes,
the security level of the first request will be increased as long as all
the requests in the queue can meet their desired response time.

7.1. Improved ASPAD evaluation

To evaluate the performance of the improved ASPAD, we sli-
ghtly modified the simulator presented in Section 6. The old simu-
lator checks if the estimated response time of the request ri is less
than its desired response time and the security level is less than0.9;
then the security level of the ri will be increased by 0.1. In the pre-
vious simulator, some requests might miss their deadline. To rem-
edy this problem, before increasing the security level of request ri,
we have to make sure that all requests in the queue can meet their
desired response time.



300 M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301
7.1.1. Impacts of arrival rate
This experiment aims at comparing the IMPASPAD strategy

with a baseline scheme thatmakes no use of IMPASPAD. Fig. 7 plots
the satisfied ratios, security levels, and overall performance of the
parallel disk systemswith andwithout IMPASPAD. Fig. 7(a)–(a) and
(b)–(a) reveal that the IMPASPAD strategy yields very high satisfied
ratios. This is mainly because IMPASPAD endeavors to guarantee
the timing constraints of all disk requests in the queue while max-
imizing the security of the parallel disk system. Fig. 7(a)–(b) and
(b)–(b), illustrate that IMPASPAD improves the quality of security
of the disk system. It is worth noting that the satisfied ratio us-
ing IMPASPAD is higher than the satisfied ratio using ASPAD, and
the security level using IMPASPAD is slightly lower than the secu-
rity level using ASPAD. This is because IMPASPADdoes not increase
the security level of the request unless it guarantees that all other
requests in the queue can meet their desired response time.

8. Summary

High quality of security and guaranteed response times are
two major performance goals to be achieved by parallel disk
systems. The reason is twofold. First, it is often desirable for next-
generation parallel disk systems to be highly flexible in order to
support different quality of security at different times during a
data-intensive application lifetime. Second, this trend is especially
true for data-intensive applicationswhere disk requests need to be
completed within specified response times. In this paper, we have
proposed and evaluated an adaptive quality of security control
scheme for parallel disk systems (or ASPAD for short) to protect
information in data-intensive applications from being tampered
with by talented intruders. ASPAD aims at adapting to changing
security requirements and workload conditions in the context
of parallel disk systems. To achieve this goal, ASPAD has three
phases: dynamic data partitioning, response time estimation, and
adaptive security quality control. Specifically, ASPAD determines
the most appropriate cryptographic schemes for disk requests
issued by clients, thereby improving security for parallel disk
systems and guaranteeing desired response times for the requests.
We simulated a security-aware parallel disk system in which a
data-partitioningmethodwas implemented to find optimal values
of parallelismdegrees. Experimental results demonstratively show
that ASPAD significantly outperforms an existing scheme that does
not employ the adaptive quality of security controller.

Several important problems remain open. For example,wehave
ignored network delays in the data-partitioning method. Our fu-
ture work will focus on impacts of network delays on performance
of ASPAD. Further, we will integrate ASPAD with fault-tolerant
techniques to provide high availability for critical data-intensive
applications.

Acknowledgments

The work reported in this paper was supported by the US
National Science Foundation under Grants CCF-0845257 (CAREER),
CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0917137 (CSR),
CNS-0915762 (CSR), CNS-0831502 (CyberTrust), CNS-0855251
(CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFS), aswell as AuburnUniversity under a start-up grant,
a gift (Number 2005-04-070) from the Intel Corporation, South
Dakota School ofMines and Technology under the Nelson Research
Grant, CNS-1048432, CNS-1007641 and Texas A&M University-
Kingsville start-up fund.

References

[1] D. Avitzour, Novel scene calibration procedure for video surveillance systems,
IEEE Transactions on Aerospace and Electronic Systems 40 (3) (2004)
1105–1110.

[2] M. Blaze, A cryptographic file system for UNIX, in: Proc. ACM Conf.
Communications and Computing Security, 1993.
[3] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, J. Saltz, Titan: a high-
performance remote-sensing database, in: Proc. the 13th Int’l Conf. Data
Engineering, April 1997.

[4] Z. Dimitrijevic, R. Rangaswami, Quality of service support for real-time
storage systems, in: Proc. Int’l Conf. IPSI, Sv. Stefan, Montenegro, October
2003.

[5] J. Hughes, D. Corcorna, A universal access, smart-card-based, secure file
system, in: Atlanta Linux Showcase, October 1999.

[6] M. Kallahalla, P.J. Varman, Improving parallel-disk buffer management using
randomized writeback, in: Proc. Int’l Conf. Parallel Processing, August 1998,
pp. 270–277.

[7] D. Kotz, C. Ellis, Cashing andwriteback policies in parallel file systems, in: Proc.
IEEE Symp. Parallel and Distributed Processing, December 1991, pp. 60–67.

[8] W. Leung, L. Miller, Scalable security for large, high performance storage
systems, in: Proc. of the Second ACM Workshop on Storage Security and
Survivability, 2006, pp. 29–40.

[9] D. Mazieres, M. Kaminsky, M. Kaashoek, E. Witchel, Separating key manage-
ment from file system security, in: Proc. ACM Symp. Operating System Princi-
ples, December 1999.

[10] E. Miller, D. Long, W. Freeman, B. Reed, Strong security for distributed file
systems, in: Proc. Symp. File Systems and Storage Technologies, January
2002.

[11] M. Nijim, X. Qin, T. Xie, Modeling and improving security of a local disk system
for write-intensive workloads, ACM Transactions on Storage (2007) (in press).

[12] M. Nijim, X. Qin, T. Xie, M. Alghamdi, Awards: an adaptive write scheme for
secure local disk systems, in: Proc. 25th IEEE Int’l Performance Computing and
Communications Conference, Phoenix, AZ, April 2006.

[13] X. Qin, Design and analysis of a load balancing strategy in data grids, Future
Generation Computer Systems: The Int’l Journal of Grid Computing (2007)
(in press).

[14] X. Qin, Performance comparisons of load balancing algorithms for I/O-
intensive workloads on clusters, Journal of Network and Computer Applica-
tions (2007) (in press).

[15] S. Rajasekaran, Selection algorithms for parallel disk systems, in: Proc. Int’l
Conf. High Performance Computing, December 1998, pp. 343–350.

[16] S. Rajasekaran, X. Jin, A practical realization of parallel disks parallel
processing, in: Proc. Int’l Workshop Parallel Processing, August 2000, pp.
337–344.

[17] L. Reuther, M. Pohlack, Rotational-position-aware real-time disk scheduling
using a dynamic active subset (DAS), in: Proc. 24th IEEE Int’l Real-Time
Systems Symp., Cancun, Mexico, December 2003.

[18] E. Riedel, M. Kallahalla, R. Swaminathan, A framework for evaluating storage
system security, in: Proc. the 1st Conf. File and Storage Technologies,
Monterey, CA, January 2002.

[19] P. Scheuermann, G. Weikum, P. Zabback, Data partitioning and load balancing
in parallel disk systems, VLDB Journal 7 (1998) 48–66.

[20] T. Sumner,M.Marlino, Digital libraries and educational practice: a case for new
models, in: Proc. ACM/IEEE Conf. Digital Libraries, June 2004, pp. 170–178.

[21] T. Tanaka, Configurations of the solar wind flow and magnetic field around
the planets with no magnetic field: calculation by a new MHD, Journal of
Geophysical Research (1993) 17251–17262.

[22] J. Wylie, M. Bigrigg, M. Strunk, G. Ganger, H. Kilicote, P. Khosla, Surviv-
able information storage systems, IEEE Computer Society 33 (8) (2000)
61–68.

[23] T. Xie, X. Qin, Enhancing security of real-time applications on grids through
dynamic scheduling, in: Proc. 11th Workshop Job Scheduling Strategies for
Parallel Processing, June 2005.

[24] T. Xie, X. Qin, A new allocation scheme for parallel applications with
deadline and security constraints on clusters, in: Proc. IEEE Int’l Conf. Cluster
Computing, Boston, USA, September 2005.

[25] T. Xie, X. Qin, A security-oriented task scheduler for heterogeneous distributed
systems, in: Proc. 13th Annual IEEE Int’l Conf. High Performance Computing,
HiPC, Bangalore, India, December 18–21, 2006.

[26] T. Xie, X. Qin, Scheduling security-critical real-time applications on clusters,
IEEE Transactions on Computers 55 (7) (2006) 864–879.

[27] T. Xie, X. Qin, M. Nijim, SHARP: a new real-time scheduling algorithm to
improve security of parallel applications on heterogeneous clusters, in: Proc.
25th IEEE Int’l Performance Computing and Communications Conf., Phoenix,
AZ, April 2006.

[28] T. Xie, X. Qin, Improving security for periodic tasks in embedded systems
through scheduling, ACM Transactions on Embedded Computing Systems
(2007) (in press).

Mais Nijim is an Assistant Professor in the Department of
Electrical Engineering andComputer Science at TexasA&M
University-Kingsville. Prior joining Texas A&MUniversity-
Kingsville, she was an Assistant Professor at the School of
Computing at The University of Southern Mississippi. She
received her Ph.D. in Computer Science from New Mexico
Institute of Mining and Technology in 2007. Her research
interests include parallel and distributed systems, real-
time computing, storage system, fault tolerance, and
performance evaluation.



M. Nijim et al. / J. Parallel Distrib. Comput. 71 (2011) 288–301 301
Ziliang Zong received his Ph.D. degree in Computer Sci-
ence from Auburn University, in 2008. From October 2003
to October 2004, he studied as a research assistant student
in the Artificial Intelligence Laboratory of Toyama Univer-
sity, Japan. Currently, he is an assistant professor in the
Mathematics and Computer Science Department of South
Dakota School of Mines and Technology. His research
interests include multi-core technologies, parallel pro-
gramming, high-performance computing and distributed
storage systems. He has served as program committee
members of several international conferences, including

the MICS 2009 conference, SIMUL 2009 conferences, ITNG 2010 conferences and
IEEE NAS 2010 conference. In 2009, he received an NSF Computer and Networked
Systems (CNS) Award working on data-mining-based pre-fetching techniques for
hybrid storage systems.

Shu Yin received his B.S. in Communication Engineering
from Wuhan University of Technology (WUT) in 2006.
He received his M.S. degree in Signal and Information
Processing from WUT in 2008. Currently, he is a Ph.D.
student in the Department of Computer Science and
Software Engineering at Auburn University. His research
interests include storage systems, reliability modeling,
fault tolerance, energy-efficient computing, and wireless
communications.
Kiranmai Bellam received her B.S. degree in Information
Technology from Madras University, India, and her M.S.
degree in Computer Science from New Mexico Institute
of Mining and Technology. She received her Ph.D. in
Computer Science from Auburn University in 2009.
Currently she is working as an Assistant Professor in
the Department of Computer Science at Prairie View
A&M University. Her research interests are in energy
efficiency, security, storage systems, real-time computing,
distributed systems, and reliability.

Xiao Qin received his B.S. and M.S. degrees in Computer
Science from Huazhong University of Science and Tech-
nology in 1992 and 1999, respectively. He received his
Ph.D. degree in Computer Science from the University of
Nebraska-Lincoln in 2004. Currently, he is an Associate
Professor in the Department of Computer Science and
Software Engineering at Auburn University. Prior to join-
ing Auburn University in 2007, he had been an Assistant
Professor at the NewMexico Institute of Mining and Tech-
nology (NewMexico Tech) for three years. He won an NSF
CAREER award in 2009. His research interests include par-

allel and distributed systems, storage systems, fault tolerance, real-time systems,
and performance evaluation. His research is supported by the US National Science
Foundation, Auburn University, and Intel Corporation. He had served as a subject
area editor of IEEE Distributed SystemOnline (2000–2001). He has been on the pro-
gram committees of various international conferences, including IEEE Cluster, IEEE
IPCCC, and ICPP.


	Quality of security adaptation in parallel disk systems
	Introduction
	Related work
	Architecture and disk requests
	System architecture
	Quality of security
	Disk requests with security and performance requirements

	The ASPAD framework
	Data partitioning
	Estimating response times
	The processing algorithm for the ASPAD framework
	Optimality of the security quality controller in the ASPAD framework

	Analytical model
	Satisfied ratio
	Quality of security

	Evaluation
	Impacts of arrival rate
	Impacts of security requirements
	Impacts of parallelism degree

	Improved ASPAD
	Improved ASPAD evaluation
	Impacts of arrival rate


	Summary
	Acknowledgments
	References


