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Abstract 

In this paper, a heuristic dynamic scheduling scheme for parallel real-time jobs executing on a 

heterogeneous cluster is presented. In our system model, parallel real-time jobs, which are modeled 

by directed acyclic graphs, arrive at a heterogeneous cluster following a Poisson process. A job is said 

to be feasible if all its tasks meet their respective deadlines. The scheduling algorithm proposed in this 

paper takes reliability measures into account, thereby enhancing the reliability of heterogeneous 

clusters without any additional hardware cost. To make scheduling results more realistic and precise, 

we incorporate scheduling and dispatching times into the proposed scheduling approach. An 

admission control mechanism is in place so that parallel real-time jobs whose deadlines cannot be 

guaranteed are rejected by the system. For experimental performance study, we have considered a 

real world application as well as synthetic workloads. Simulation results show that compared with 

existing scheduling algorithms in the literature, our scheduling algorithm reduces reliability cost by 

up to 71.4% (with an average of 63.7%) while improving schedulability over a spectrum of workload 

and system parameters. Furthermore, results suggest that shortening scheduling times leads to a 

higher guarantee ratio. Hence, if parallel scheduling algorithms are applied to shorten scheduling 

times, the performance of heterogeneous clusters will be further enhanced. 

Keywords: Dynamic scheduling, real-time, parallel processing, heterogeneous clusters, cluster 

computing, reliability cost, performance evaluation. 

1. Introduction 
Heterogeneous clusters have become widely used for scientific and commercial applications. These 

systems require a mixture of general-purpose machines, programmable digital machines, and 

application specific integrated circuits [33]. A heterogeneous cluster involves multiple heterogeneous 

modules that interact with one another to solve a problem [34][41]. In a heterogeneous cluster, 

applications comprise multiple subtasks that have diverse execution requirements. The subtasks must 

be assigned to machines and ordered for execution in such a way that the overall application 

execution time is minimized [18]. 

Recently, heterogeneous clusters have also been employed in real-time applications [43], in which 

the systems depend not only on results of computation, but also on time instants at which these results 

become available. The consequences of missing deadlines of hard real-time systems may be 

catastrophic, whereas such consequences for soft real-time systems are relatively less damaging. 
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Examples of hard real-time applications include aircraft control, radar for tracking missiles, and 

medical electronics. On-line transaction processing systems are examples of soft real-time 

applications. In real-time applications, reliability is one of the most important issues. Due to the 

critical nature of jobs executed in many real-time systems, high reliability becomes an inherent 

requirement of such systems, and this is especially true for hard real-time applications. 

Growing evidence shows that scheduling is a key factor in obtaining high reliability and 

performance in heterogeneous clusters supporting real-time applications. The objective of real-time 

scheduling is to map tasks onto machines and order their execution so that task precedence 

requirements are satisfied and a minimum schedule length, when attainable, is given. Besides 

achieving this conventional objective, the dynamic scheduling strategy proposed in this paper 

provides high reliability for non-preemptive, aperiodic, real-time jobs without any additional 

hardware cost. In particular, we have developed a framework of real-time scheduling by which 

parallel jobs are scheduled dynamically, as they arrive at a heterogeneous cluster. In this framework, 

a designated machine, called scheduler, is responsible for dynamically scheduling real-time jobs as 

they arrive, and dispatching them to other machines, called processing elements, to execute. The 

proposed algorithm takes into account dispatching and scheduling times in addition to reliability 

costs, and these factors have been neglected by most scheduling schemes that deal with real-time 

heterogeneous clusters. This approach is shown by our simulation studies to not only make real-time 

jobs more predictable and reliable, but also make the scheduling more realistic. 

The paper is organized as follows. In Section 2, work reported in the literature that is the most 

relevant to our work is briefly described. The system and reliability models are presented in Section 

3. Section 4 proposes a novel dynamic scheduling algorithm. Performance evaluation is presented in 

Section 5. Finally, Section 6 concludes the paper by summarizing the main contributions of this paper 

and commenting on future directions of this work. 

2. Related Work 
Many scheduling algorithms have been proposed in the literature to support real-time systems. 

Real-time scheduling algorithms are classified into two categories: static (off-line) [1][15][21][24] 

[27][29][32] and dynamic (on-line) [13][17][19][22][31][36]. Very recently, Palis addressed task-

scheduling problems in the context of reservation-based real-time systems that provide quality of 

service guarantees [22]. Real-time tasks in Palis’s scheduling framework are preemptive [22], 
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whereas it is assumed in our scheduling model that real-time tasks are non-preemptive. Moreover, the 

algorithm proposed by Palis [22] as well as many other algorithms presented in [21][36] were 

designed for independent real-time tasks. In contrast, our proposed algorithm, like those described in 

[15][24][27][29], can schedule tasks with precedence constraints, which are represented by directed 

acyclic graphs (DAG). We recently extended non-real-time DAGs into real-time DAGs to study real-

time scheduling of tasks with precedence constraints [24]. However, these algorithms, while 

considering precedence constraints, belong to the static category, limiting their applications to offline 

scheduling only. Furthermore, most of these real-time scheduling algorithms are designed for 

homogeneous systems, making them unsuitable for heterogeneous systems. 

In the literature, parallel jobs have often been represented by DAGs [4][7][15][29][41]. Wu et al. 

proposed a runtime parallel incremental DAG scheduling approach [41]. Cosnard et al. developed a 

scheduling algorithm for a parameterized DAG, which first derives symbolic linear clusters and then 

assigns task clusters to machines [7]. As for distributed computing, a typical model is the fork-join 

paradigm [30], where main program thread runs on one processor and spawns a number of tasks from 

time-to-time. Sahni and Vairaktarakis addressed the scheduling problem in the fork-join paradigm, 

and developed efficient heuristics to obtain minimum finish time schedules for single-master 

processor and multiple-master systems [30]. The scheduling algorithms in these three studies, 

however, were also designed for homogeneous systems.  

The studies in heterogeneous clusters reveal a number of challenges, which include load balancing 

[3][42][25], resource management [10] and scheduling [5][6][38]. The issue of scheduling on 

heterogeneous systems has been addressed in many papers [3][6][8][11][28][29][35][37]. It is 

suggested that minimizing a task's completion time leads to a minimal start time of the task [18][37]. 

Topcuoglu et al. studied two efficient and low-complexity heuristics for DAGs: the heterogeneous 

Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Machine (CPOP) algorithm [37]. 

Iverson and Özgüner proposed a matching and scheduling framework where multiple applications 

compete for computational resources on networks [11]. Maheswaran and Siegel investigated a 

dynamic matching and scheduling algorithm for heterogeneous system [18], whereas Beaumont 

proposed a static scheduling algorithm that based on a realistic model for heterogeneous networks of 

workstations. To consider reliability of different resources in a system while making scheduling 

decisions, Doğan and Özgüner introduced two cost functions that were incorporated into a matching 

and scheduling algorithm for tasks with precedence constraints [8]. As computational Grids have 
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emerged as new platforms for high-performance computing, grids have become a new frontier for 

research in the area of scheduling and resource management. Arora, Das, and Biswas proposed a new 

scheduling algorithm for a generalized heterogeneous Grid environment [3]. Unfortunately, all these 

scheduling algorithms assumed that tasks are non-real-time. Non-real-time scheduling algorithms are 

unable to schedule real-time jobs efficiently, simply because they are not designed to meet the 

predictability requirement of real-time jobs. 

Some work has been done to combine real-time computing with heterogeneous systems 

[10][29][31][38]. Tracy et al. addressed a real-time scheduling issue in heterogeneous systems [38]. 

Huh, Welch, Shirazi et al. proposed a solution for dynamic resource management problems in real-

time heterogeneous systems [10]. Ranaweera and Agrawal developed a scalable scheduling scheme 

on heterogeneous systems to reduce the number of pipeline stages and the pipeline period of time- 

critical applications [29]. Santos et al. introduced a new real-time scheduling concept based on the 

hybrid deterministic/probabilistic analysis [31]. Although the above algorithms took both the real-

time and heterogeneous issues into consideration, these algorithms did not consider reliability. We 

have proposed a real-time scheduling in heterogeneous systems, which can minimize the reliability 

cost of the systems [24]. While the scheduling algorithms developed in [24] were static in nature, 

algorithms studied in this paper, on the other hand, are dynamic. 

To the best of our knowledge, scheduling and dispatching times are ignored by most dynamic non-

real-time and real-time scheduling algorithms. To make real-time scheduling results more precise, 

scheduling and dispatching times have to be incorporated in dynamic scheduling algorithms. 

Therefore, our study takes a closer look at the impact of scheduling and dispatching times on 

scheduling performance (see Sections 5.4 and 5.5). 

In this paper, we only focus on dynamic scheduling for real-time systems. For this reason, we have 

not discussed a diversity of scheduling strategies developed for non-real-time applications. However, 

Kwok and Ahmad provided classifications and detailed descriptions of various static scheduling 

approaches [16], and many other scheduling schemes have been introduced for parallel computing 

systems [9]. 

3. System and Reliability Models 
   In this section we describe a general system model for parallel applications running on a 

heterogeneous cluster. We then present a reliability model that captures the typical reliability 
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characteristics of a cluster. Reliability cost in the reliability model is an important performance metric 

used throughout the rest of this study. This section ends by formulating scheduling and dispatching 

times that are considered important for performance of real-time applications in dynamic cluster-

computing environments. 

3.1 System Model 
Fig. 1 depicts the scheduler model in a heterogeneous cluster environment. This model is similar to 

the one described in [13][14][19][35], where a global scheduler works in concert with a Resource 

Manager. It is assumed that all parallel jobs, along with information provided by application 

programmers, are submitted to the global scheduler by a special user command. A schedule queue 

(SQ) for arriving jobs is maintained by the scheduler, which schedules real-time tasks of each job in 

SQ and places an accepted job in a dispatch queue (DQ) from which tasks of each accepted job are 

transmitted to designated machines, also called processing elements (PEs), for execution. The 

scheduler executes in parallel with PEs, each of which maintains a local queue (LQ) to which real-

time tasks are transmitted from DQ. A parallel job is considered acceptable if all tasks in this job can 

be completed before their deadlines; otherwise, the job is rejected by the scheduler.  

 

  Global 
Scheduler 

Schedule 
Queue (SQ) 

Dispatch 
Queue(DQ) 

Parallel  real-time 
jobs 

Local Queue 
     (LQ) 

pm 

p2 

p1 

 

 

 

 

 

 
Figure 1. The scheduler model for dynamic scheduling of 
parallel real-time jobs in a heterogeneous cluster.   

In a distributed scheduling scheme, an alternative approach to dynamic scheduling, jobs arrive 

independently at each local scheduler, which produces schedules in parallel with other schedulers. 

Compared with the distributed scheme, the centralized scheduling model has two attractive features. 

First, it is straightforward to provide the centralized scheduler with fault-tolerance, using a backup 

scheduler that concurrently executes with the primary scheduler. The backup scheduler independently 

determines whether or not the timing constraints of given jobs can be satisfied and stores the tasks of 

accepted jobs into the backup scheduler’s DQ. Tasks in the backup scheduler’s DQ will not be 

transmitted to the processing elements until a failure of the primary scheduler is detected. Second, 
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implementation of a centralized scheduling model is simpler and easier than that of a distributed 

scheduling model. If schedulers in the distributed model are dedicated to scheduling, the computing 

power tends to be underutilized, especially when the schedulers are idle. On the other hand, if the 

schedulers are able to serve as processing elements when they have no job to schedule, it is difficult 

(if it is not impossible) to predict when the schedulers will be idle in a dynamic cluster environment. 

Therefore, the centralized scheduler is employed in our scheduler model. Nevertheless, and 

importantly, our proposed scheduling approach can also be implemented in a distributed scheduling 

scheme. 

A parallel real-time job is modeled by a directed acyclic graph (DAG) J = {V, E}, where V = {v1, 

v2,...,vn} represents a set of real-time tasks, and E represents a set of weighted and directed edges 

among real-time tasks. eij = (vi, vj) ∈ E denotes a message transmitted from task vi to vj, and |eij| is the 

volume of data transmitted between these tasks.  

A heterogeneous cluster is modeled by a set P = {p1, p2,..., pm} of machines, where pi is a machine 

with local memory. Machines in the heterogeneous cluster are connected with one other by a high-

speed network. A machine communicates with other machines through message passing, and the 

communication time between two tasks assigned to the same machine is assumed to be zero [26][27] 

[37]. 

One challenging issue in improving performance of clusters lies in their heterogeneity. There are 

two essential reasons that a homogeneous cluster will eventually become a heterogeneous cluster. 

First, most of machines in a cluster are commercially off-the-shelf products, which are likely to 

become outdated. Before predecessors become unusable, recently purchased machines will be added 

into the cluster. As a result, a heterogeneous cluster may consist of different types of machines with a 

broad range of both computing power and failure rate. Second, heterogeneous machines tend to be 

connected with each other by different types of high-speed networks, since a cluster will consist of 

outdated network from previous installation and new network that may have better communication 

performance. 

The computational heterogeneity of a job is expressed as a function, C: V × P → R, which 

represents the execution time of each task on each available machine in a heterogeneous cluster 

[11][26][34], where cij denotes the execution time of task vi on machine pj. Likewise, the 

communicational heterogeneity of the job can be expressed by a function [11][26][34], COM: E × P × 

P → R, in which the communication time for transferring a message esr from task vs on machine pi to 
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task vr on machine pj is determined by wij*|esr| [6][26], where wij, the weight on the edge between pi 

and pj, represents the time for transmitting a message of unit length between the two machines. Thus, 

wij can be viewed as a measure of communicational heterogeneity. 

3.2 Reliability Model 
The reliability model, which is similar as the one defined in [24][26][34], assumes that permanent 

failures occur according to a Poisson probability distribution and failures are mutually independent. 

Let X be an m by n binary matrix corresponding to a schedule, in which n tasks of a job are assigned 

to m processors. Element xij equals 1 if and only if vi has been assigned to pj; otherwise xij = 0.  

A machine might fail during an idle time, but it is assumed that machines’ failures during an idle 

time interval are not considered in our reliability model. The reason for this assumption is two-fold 

[24][34]. First, instead of affecting the system reliability, failures during an idle time merely make 

impact upon completion times of tasks. Second, a machine’s failure during an idle period can be fixed 

by replacing the failed machine with a spare unit, meaning that such failures are not critical for 

reliability analysis. 

The reliability cost of a task vi on pj is a product of pj's failure rate λj and vi's execution time on pj. 

Thus, the reliability cost of a machine is the summation over reliability costs of all tasks assigned to 

that machine based on a given schedule. Given a vector of failure rates Λ= (λ1, λ2, …, λm), a specific 

schedule X, and a job J, the reliability cost of the machines of the cluster is defined below,  

                                                  (∑∑
= =

−=Λ
m

j

n

i
ijijjPN cxJXRC

1 1

),,( λ )                                               (1) 

Before estimating reliability cost of links connecting among machines, we introduce a set Ekb, 

containing all messages transmitted from pk to pb. Formally, Ekb is defined as below: 

                                     { }110),( =∧=∧>= jbikijjikb xxevvE , ∀1 ≤ k, b ≤ m: k ≠ b. 

Let kbµ  be the failure rate of the link between pk and pb. The reliability cost of a message eij ∈ Ekb 

is a product of kbµ  and |. Therefore, e| ijkb ew ij’s reliability cost can be calculated as: || ijkbjbikkb ewxxµ−  

|| ijkbkb ewµ−= . Based on the definition of one message’s reliability cost, the reliability cost of a link 

between pk and pb, denoted as , can be computed as a cumulative reliability cost of all 

messages assigned to this link. More precisely, is obtained by the following Equation, 

where Μ is an m by m matrix of failure rates for links. 

),,( JXΜRCkb

),,( JXΜRC kb
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= ≠=

−=
n

i
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ijj
ijkbjbikkbkb ewxxJXΜRC

1 ,1
|)|(),,( µ ]

)

 ) , the reliability cost of links in the system, can be derived from Equation (2). 
Thus,  equals to the summation over all link’s reliability cost, and therefore we have,  

,,( JXΜRCLINK

),,( JXΜRCLINK

∑ ∑
= ≠=

=
m

k

m

kbb
kbLINK JXΜRJXΜRC

1 ,1
),,(),,( .                                      (3) 

We are now in a position to determine , the heterogeneous cluster’s reliability cost 

that is a summation of the reliability cost of machines and links. Hence, we obtain  

from Equation (1) and (3) as below:  

),,,( JXΜRC Λ

),,,( JXΜRC Λ

                                 =                      (4) ),,,( JXΜRC Λ +Λ ),,( JXRC PN ),,( JXΜRCLINK

Given a cluster with the reliability cost as RC(Λ,Μ,X,J), the reliability is given by Euqation (5):      

                (5) ( ) ( ) ( )(exp)(exp)(-exp)( Μ,X,JRCΛ,X,JRCΛ,Μ,X,JRCΛ,Μ,X,JyReliabilit LINKPN −−==

Therefore, scheduling a task with larger execution time to a more reliable machine is a good 

approach to increase the system's overall reliability. For the convenience of reference in the rest of the 

paper, we sumarize the notation of the system and reliability models in Table 1. 
Table 1.  Model Parameters 

Parameter          Explanation 
cij  execution time of task vi on machine pj

eij a message transmitted from task vi to vj

wij  time for transmitting a message of unit length between machine pi and pj

λi failure rate of machine pi

µij failure rate of a link between pi and pj

xij xij =  1 if and only if task vi has been assigned to machine pj; otherwise xij = 0  
RC reliability cost of a heterogeneous cluster 

RCPN reliability cost of machines in a cluster 
RCLINK reliability cost of communication links in a cluster  

3.3 Scheduling and Dispatching Times 
In a dynamic scheduling environment, it takes a scheduler a certain amount of time to schedule a 

parallel job. This time can be significant if the number of tasks in the job is large. To the best of our 

knowledge, most dynamic real-time scheduling algorithms either assumes zero scheduling time or do 

not take scheduling time into account. In real clusters, a dynamic real-time scheduling algorithm that 

does not consider scheduling time may not be predictable. Therefore in this study we will incorporate 

scheduling time into the proposed scheme. To further improve the predictability of real-time 
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scheduling, we also take the so-called dispatch time - the time it takes a scheduler to send real-time 

tasks of an accepted job from the DQ to the processing elements - into consideration. 

Assume that vi is a real-time task in job Jk, thus, vi ∈ V(Jk). Let and denote the 

time overhead of dispatching task v

)( idispatch vt )( ischedule Jt

i from the scheduler to the processing element and the scheduling 

time for job Ji, respectively. It is assumed that the underlying network that connects the scheduler 

with the processing elements affords real-time communications [12], which is able to guarantee a 

given task vi to be dispatched within time interval . denotes the queuing delay in 

DQ experienced by task v

)( idispatch vt )( i
DQ
delay vt

i, and represents the queuing delay in SQ experienced by job J)( i
SQ
delay Jt i. 

Let be the inter-arrival interval between two consecutive jobs J)( k
job

interval Jt k-1 and Jk. denotes 

the time interval between J

)( i
task
interval vt

k’s arrival at the scheduler and vi’s arrival at its target processing element. 

The reason why the derivation of is important and indispensable in a practical 

heterogeneous cluster is that a task v

)( i
task
interval vt

i can not start executing on a machine pj until vi arrives at pj. Thus, 

the earliest start time of vi on any processing machine, determined in expression (10) to be presented 

shortly, is less than or equal to . The time interval consists of four time intervals, 

namely, queuing delay experienced in SQ, scheduling overhead incurred in job J

)( i
task
interval vt )( i

task
interval vt

k, delay time 

experienced in DQ and the dispatch time. Therefore, can be defined below, )( i
task
interval vt

                                  ,                                   (6) )()()()()( idispatchi
DQ
delaykschedulek

SQ
delayi

task
interval vtvtJtJtvt +++=

where vi ∈ V(Jk),         and  )()( j
SQJ

schedulek
SQ
delay JtJt

j

∑
∈

= = ∑
∈

=
DQv

jdispatchi
DQtdelay

j

vtv )()(

                      0,                           if  with probability      )()()( 11 k
job

intervalkschedulek
SQ
delay JtJtJt ≤+ −− )( k

s Jp ,

                  ,      otherwise with probability 1-  )()()( 11 k
job

intervalkschedulek
SQ
delay JtJtJt −+ −− )( k

s Jp .

Let  denote the probability that there is no task currently queued in the scheduling queue. 

Thus, the probability of  being equal to 0 is . For simplicity, we assume that the event 

represented by is independent of other submitted jobs. However, our approach to calculating 

 does not depend on this assumption. The probability  can be obtained either from 

experimental data or through profiling. 

)( k
s Jp

)( k
SQ
delay Jt )( k

s Jp

)( k
s Jp

)( k
SQ
delay Jt )( k

s Jp

From the above equation, the following recursive expression can be obtained for k ≥ 2. 
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                    .                           (7) ( )( )()()()(1)( 11 k
job

intervalkschedulek
SQ
delayk

s
k

SQ
delay JtJtJtJpJt −+−= −− )

)
Applying the above equation recursively k-1 times, we obtain:  

                                  .                       (8) ( )({ }∏∑
=

−
=

−−=
k

ji
j

job
intervaljschedulek

s
k

j
k

SQ
delay JtJtJpJt )()()(1)( 1

1

For future reference, we sumarize the notation for scheduling and disptaching times in Table 2. 
Table 2.  Notation of Scheduling and Dispatching Times 

Notation                     Explanation 
)( ischedule Jt  scheduling time for job Ji

)( idispatch vt  time overhead of dispatching task vi from the scheduler to its processing element 
)( i

DQ
delay vt  queuing delay in a Dispatch Queue experienced by task vi

)( i
SQ
delay Jt  queuing delay in a Schedule Queue experienced by job Ji

)( k
job

interval Jt  inter-arrival interval between two consecutive jobs Jk-1 and Jk

)( i
task
interval vt  time interval between Jk’s arrival at the scheduler and vi’s arrival at its processing element 

4. Scheduling Algorithms 
4.1 Definitions and Assumptions 

To facilitate the presentation of the proposed algorithm, it is necessary to introduce some additional 

definitions and assumptions. Let st(vi), ft(vi) and dt(vi) be the start time, finish time, and deadline of 

task vi, respectively. Our scheduling algorithms are devised to determine vi’s start time, which is 

subject to constraints: ft(vi) = st(vi) + cij and ft(vi) ≤  dt(vi), where vi is allocated to pj. 

Let  be v)( r
j vest r’s earliest start time on pj.  must satisfy the following three conditions: )( r

j vest

(4.1a) It is later than the time when all messages from vi’s predecessors arrive at pj,  

(4.1b) It is later than the delay time  and )( i
task
interval vt ,

(4.1c) Machine pj has an idle time slot sufficient to accommodate vi.  

Before  is computed, it is assumed that, without loss of generality, tasks v)( r
j vest  i1, v i2,, …, v iq 

have been allocated to pj. The idle time slots on pj are [0, st(vi1)], [ft(vi1), st(vi2)], …, [ft(vi(q-1)), st(viq)], 

[ft(viq), ∞], and all idle time slots are scanned from left to right. Consequently, the first idle time slot 

[ft(vik), st(vik+1)] that satisfies the following inequality is chosen, 

                                                                 (9) ))}(),(),({)( )1( ijiki
task
intervali

j
ki cvftvtveatMAXvst ≥−+

Thus, the earliest start time is determined as follows:  

                                                                        (10) )}(),(),({)( iki
task
intervali

j
i

j vftvtveatMAXvest =
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where  is the earliest available time when all messages sent from v)( i
j veat i’s predecessors arrive at pj. 

The earliest available time is computed as follows. Recall that D(v)( i
j veat i) is a set of messages 

from vi’s predecessors to vi, ),( eveat i
j  denotes the earliest available time of task vi if message e 

represents the only precedence constraint. Thus, we have: 

)},({)(
)(

eveatMAXveat i
j

i
j

ivDe∈

=                                              (11) 

where  can be obtained from the earliest start time of message e, mst(e), which depends on 

how the message is routed and scheduled on the links. Thus, a message is allocated to a link if the 

link has an idle time slot that is later than the sender’s finish time and is large enough to 

accommodate the message. Before presenting the expression to calculate , we outline 

below the algorithm to determine mst(e).   

),( eveat i
j

),( eveat i
j

mst(e): 
Note: e = (vj, v), mst(er+1) = ∞, mst(e0) = 0, |e0| = 0, and MQi = { e1, e2, …, er } is the message queue 
containing all messages scheduled to the link. 
1. for (g = 0 to r + 1) do /* Check the idle time slots */ 
2.    if mstik(eg+1) - MAX{mst(eg) + wik*|eg|, ft(vj)} ≥  wik*|e|  then /* If the idle time slots */ 
3.          return mst(eg) + wik*|eg|, ft(vj);                          /* can accommodate v, return the value */ 
4.   end for 
5.   return ∞; /* No such idle time slots is found, mst is set to be ∞ */  

As mentioned earlier, , can be derived from mst(e). More precisely, , given 

in expression (11), is equal to the finish time of message e if v

),( eveat i
j ),( eveat i

j

i and its predecessor that generates e are 

allocated to different machines, otherwise is fixed to be the finish time of its predecessor.  ),( eveat i
j

),( eveat i
j =         mst(e) + |e|× wsj, where  xij=1 and xks = 1,  if j ≠ s                                                             (12) 

                                    ft(vk),                                                           otherwise 

4.2 Non-Reliability-Cost-Driven Scheduling Algorithms 
In this section we present two variations of the list-scheduling family of algorithms, DASAP 

(schedule As Soon As Possible) and DALAP (schedule As Late As Possible), in which system 

reliability is not considered. The DASAP algorithm is an extended version of ASAP, a well-known 

static scheduling algorithm presented in [23][39]. 

The DASAP algorithm, shown formally below, picks a job J at the head of SQ, if it is not empty, to 

schedule. The real-time tasks in J are sorted in the increasing order of their deadlines. Thus, the task 
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with the earliest deadline is scheduled first. For each task vi, the algorithm computes its earliest start 

time  on each p)( i
j vest j, then the machine on which vi has the earliest start time is chosen. If the 

deadline is not guaranteed, all scheduled tasks that belong to J are rejected and deleted from DQ, 

otherwise vi is moved to the dispatch queue. Only when all the tasks in J have been moved into the 

dispatch queue, can these tasks be dispatched to designated machines in the heterogeneous cluster. 

The DASAP algorithm: 
1. Get a job J from the head of the schedule queue SQ; 
2. Sort tasks in J by their deadlines in increasing order;  
3. for each task vi in J do 
4.  est ← ∞; 
5.  for each pj in P do 
6.   if ( )  < est) then  ( i

j vest
                   est ← ; x)( i

j vest ij ← 1; xik ← 0 where k ≠ j; 
7. end for 
8.       if est + cij ≤ dt(vi), where xij = 1 then 
9.        st(vi) ← est; ft(vi) ← est + cij; 
10.         Move vi into the dispatch queue DQ; 
11.     else Reject vi and deleted the scheduled tasks in J  from the dispatch queue DQ; 
12.     Update information of each message; 
13. end for 
14. Goto 1. to schedule the next job; 

The algorithm outlined below is a DALAP. In this algorithm, tasks start as late as possible, subject 

to the constraint that deadlines of all real-time tasks in a job are guaranteed. Let  be the latest 

start time of task v

)( r
j vlst

r on pj.  is subject to four conditions, of which three are identical to 

conditions 4.1a-4.1c presented in Section 4.1, and the fourth condition is described below. 

)( r
j vlst

(4.2a) Task vr has to be finished before deadline dt(vr). 

Again, before calculating lstj(vr), we assume that, without loss of generality, tasks v i1, v i2,, …, v iq 

have been allocated to machine pj. The idle time slots on machine pj are [0, st(vi1)], [ft(vi1), st(vi2)], …, 

[ft(viq), ∞). To find the latest idle time slot that satisfies above four conditions, we scan idle time slots 

from right to left to select the first idle time slot [ft(vik), st(vik+1)] that satisfies the following inequality, 

                                                    (13) −+ )}(),({ 1 iik vdtvstMIN )()}(),(),({ i
j

iki
task
intervali

j vcvftvtveatMAX ≥

Hence, the latest start time is computed as below:  

                                                                           (14) )}(),(),({)( iki
task
intervali

j
i

j vftvdtveatMAXvlst =

 

13 
 
 
 
 



The DALAP algorithm is a modified version of the ALAP algorithm (As Late As Possible), a static 

scheduling algorithm described by Marwedel [20]. Since ALAP belongs to the static scheduling 

category, its applications are limited to offline scheduling only. However, DALAP is an online 

scheduling algorithm in the sense that can dynamically schedule tasks with precedence constraints. 

The DALAP picks a job J at the head of SQ, if it is not empty, computes  of each task v)( i
j vlst i in J 

on each machine in the cluster, then selects the machine on which vi has the latest . v)( i
j vlst i is 

moved into DQ, if such proper machine is available. Otherwise, job J is not schedulable, and all 

scheduled tasks belonging to J are deleted from DQ. DALAP is shown below. 

The DALAP algorithm: 
1. Get a job J from the head of the schedule queue SQ; 
2. Sort tasks in J by their deadlines in increasing order;  
3. for each task vi in job J do 
4.     lst ← 0; schedulable ← no; 
5.      for each machine pj in P do 
6.               if lstj(vi) is available then 
7.                   schedulable ← yes; 
8.                  if lstj(vi) > lst then  
                          lst ← ) ; x( i

j vlst ij ← 1; xik ← 0 where k ≠ j; 
9.             end if 
10.    end for   
11.    if (schedule = yes) then 
12.    st(vi) ← est; ft(vi) ← est + cij, where xij = 1;  
13.       Move vi into the dispatch queue DQ; 
14 .   else  Reject vi and deleted the scheduled tasks in J from  the dispatch queue DQ; 
15.    Update information of each message; 
16. end for 
17. Goto 1. to schedule the next job; 

4.3 A Dynamic Reliability-Cost-Driven (DRCD) Scheduling Algorithm 

To improve the performance of the above algorithms, we make use of the following necessary 

condition to identify jobs that are not feasible for any scheduling algorithm.  

Necessary Condition 1. Let vi be a task of job J running on a cluster with m machines, then the 

deadline of vi must be greater than or equal to the minimum execution time of vi. This argument is 

formalized in the following expression. If job J has a feasible schedule, then:  

                                                  ∀vi ∈ J: dt(vi) ≥  { }ij
m
i cMIN 1=

Due to the fact that DASAP and DALAP do not take reliability cost into account, we design in 

what follows a dynamic reliability-cost-driven (DRCD) scheduling algorithm. The DRCD algorithm 

 

14 
 
 
 
 



improves the reliability of the system with no extra hardware cost, by incorporating reliability cost 

into task scheduling and reducing the overall reliability cost. The main objective of DRCD is to 

minimize the system reliability cost, thereby increasing the reliability that is inversely proportional to 

the reliability cost. Each real-time task is allocated in such a way that results in a minimal reliability 

cost. DRCD is described below. 

The DRCD algorithm: 
1. Get a job J from the head of the schedule queue SQ; 
2. If the job is not feasible for any scheduling algorithms (based on Necessary Condition 1) then 
3.   Goto 1. to schedule the next job; 
4. Sort tasks in J by their deadlines in increasing order;  
5. for each task vi in job J do 
6.   st ← ∞; find ← no; rc ← ∞; /* Initialization */ 
7.   for each machine pj in P do 
8.        est ← ; /* Calculate the earliest start time of v)( i

j vest i on pj */ 
9.   if est + cij ≤ dt(vi) then /* Check whether the deadline of vi can be guaranteed */ 
10.           find ← yes;  
11.          x’ik← xik, where 1≤ k ≤ m; xij←1; xik←0 where k≠j; /* Backup the previous schedule */ 

12.               rcPN←λj cij; rcLINK← ; /* Calculate the reliability cost */ ({∑ ∑∑
∈ = =

−
)( 1 1ik vDv

m

a

m

b
jiabibjaab ewxxµ )}

13.           if (rcPN + rcLINK < rc) or (rcPN + rcLINK = rc and est < st) then 
14.               st← est; rc←rcPN+rcLINK; /* Update the schedule, minimizing the reliability cost */ 
15.          else  xik ← x’ik, where 1≤ k ≤ m; /* Rollback to the previous schedule */ 
16.      end if 
17. end for 
18. if (find = yes) then 
19.        st(vi) ← est; ft(vi) ← est + cij; 
20.       Move vi into the dispatch queue DQ; 
21. else   Reject vi and deleted the scheduled tasks in J  from  the dispatch queue DQ; 
22.    Update information of each message; 
23. end for 
24. Goto 1. to schedule the next job; 

The time complexity of DRCD is given in Theorem 1 as follows. 

Theorem 1. Let n be the number of tasks, m be the number of machines in a heterogeneous cluster, 

and u be the number of messages in a job. The time complexity of the DRCD algorithm is O(m×n2×u).  

Proof. It takes DRCD O(log(n)) time to sort the real-time tasks according to their deadlines. It takes 

O(u) time to compute the eat, thus, the time complexity for calculating est is O(n×u). Since there are 

m machines in the heterogeneous cluster and n real-time tasks in the job, the for loop takes 

O(m×n)O(n×u). Therefore, time complexity of this algorithm is O(m×n2×u).                                        
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5. Performance Evaluation 
To evaluate performance of the proposed scheduling approach, we present in this section several 

sets of experimental results obtained from extensive simulations. In Section 5.1, we describe the 

simulator, the workload parameters, and the performance metrics of interest. Performance 

comparisons between our reliability-driven algorithm (DRCD) and two existing scheduling 

algorithms (DASAP and DALAP) are provided in Section 5.2. Section 5.3 presents results showing 

how job arrival rates affect guarantee ratios. Section 5.4 presents simulation results illustrating the 

impact of scheduling times on guarantee ratio performance. A study of the performance impact of 

dispatching times is presented in Section 5.5. In Section 5.6, we show how cluster sizes affect the 

performance of DRCD. The effect of execution time on reliability cost is illustrated in Section 5.7. 

Section 5.8 reports experimental results that show impacts of computational heterogeneity on the 

guarantee ratio. Finally, to validate the results generated from synthesized benchmarks, to study the 

scalability and effectiveness of DRCD on real-world applications, we applied DRCD to a benchmark 

representing digital signal processing (DSP) applications in Section 5.9. 

5.1 The Experimental Platform 
In our simulation experiments, it is assumed that jobs arrive at the heterogeneous cluster according 

to a Poisson Process [3][35]. In addition to a real-world real-time application, DSP [40], chosen as 

our benchmark for the experimental study, we also conducted simulation studies on three different 

types of real-time task graphs that are representative of many real-life parallel applications, namely, 

binary trees [26][34], lattices [26][34] and random graphs [1][2][8]. Workload parameters are chosen 

in such a way that they are either based on those used in the literature (see, for example, [1][2][8][19] 

[29][34]) or represent reasonably realistic workload and provide some stress tests for our algorithm. 
Table 3.  Parameters for simulation experiments 

Parameter          Explanation Value (Fixed)   (Varied) 
FRPN Failure rate of machines -(0.95,0.96, …,1.05)×10-6/hour

FRLINK Failure rate of links Chosen uniformly from the range 7.5×10-6 to 12.5×10-6/hour 
MIN E Minimum execution time (5) - (15, 25, 35 Sec.)
MAX E Maximum execution time (200) - (100, 120, 140, 160, 180, 200)  (170, 180, 190 Sec.)

δ Range for generating deadlines ([1, 10]) - ([1, 100),  [1, 300], …, [1, 1100 Sec.]) 
MIN_W, MAX_W Communication weights (0.5, 1.5)  - 
MIN_V,  MAX_V Communication volumes (1, 10) - 

M Number of machines in clusters  (8) - (10, 15, 20, …, 40) 
N Number of tasks in a job (30, 50, 70) for Btree, (9, 25, 36, 49) for Lattice 
Γ Job arrival rate - (5, 10, 15, 20, 25)×10-4 No./Sec. 

MIN_D, MAX_D Minimum and maximum dispatch (1, 10) - (5, 10, 15, 20, 25 Sec.) 

For each point in the performance curves, the number of jobs arriving in the heterogeneous cluster 
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is 20,000. The parameters used in the simulation studies are given in Table 3. The heterogeneous 

cluster for the simulation experiments is described as follows: 

(1) The number of machines reflects the system size of a cluster [4][18]. Its default value is 8.  

(2) The Failure rate for each machine is uniformly distributed [8] in the range from 0.95×10-6/hour to 

1.05 × 10-6/hour [26][34]. 

(3) The link failure rates are uniformly distributed in the range from 0.75×10-7 to 1.25×10-7/hour [34]. 

The computation and communication workloads for the simulation are generated as follows: 

(1) For each real-time task, the worst-case computation time in the execution time vector is randomly 

chosen, uniformly distributed between MIN_E and MAX_E [18][19]. The scale of this range 

approximates the level of computational heterogeneity. 

(2) Given vi ∈V(J), if vi is on pk and vj is on pl, then vi’s deadline is chosen as follows: dt(vi) = 

max{dt(vj)} + 1 + |eji| × wlk + max{cik} + δ, where eji ∈ E(J), k∈[1, m], and δ is randomly computed 

according to a uniform distribution. 

(3) The dispatch time of each task is chosen uniformly between MIN_D and MAX_D. This range 

reflects the variance in job’s size and parallelism. 

(4) Since the time complexity of the scheduling algorithm is O(m×n2×u), given in Theorem 1, we 

model the scheduling time of a job as a function of m, n, and u, namely, 10-5× (m×n2×u). For random 

graphs, we assume that u = n/2. The scheduling time is given in Table 4.  
                         Table  4. Scheduling time as a product of  m = 8, n2 and u 

 10 30 50 70 90
Btree 0.07 2.09 9.80 27.05 57.67 

Random 0.04 1.08 5 13.72 29.16 
N 9 25 49 64 81 

Lattice 0.08 2.00 16.14 36.70 75.59 

(5) Communication weight (wij) is chosen uniformly between MIN_W and MAX_W. The scale of this 

range approximates the level of communicational heterogeneity. 

(6) Communication volume between two real-time tasks is uniformly selected [18] between MIN_V 

and MAX_V. This range reflects the variance in message size. 

The performance measures in our simulation study are reliability cost (RC) that is defined in 

expression (4) and guarantee ratio (GR) defined as follows [19][26].  

                  %100
arrived jobs ofnumber  Total

deadlines meet their  toguaranteed jobs ofnumber  Total ×=GR                     (15) 

While reliability cost gives a measure of system reliability as a result of a particular schedule, 
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guarantee ratio indicates how many of the arriving jobs can be scheduled, thus measuring the 

effectiveness and power of a scheduling algorithm. 

5.2 Reliability Cost 
To validate the DRCD algorithm and compare its performance against two existing approaches, we 

have tested the reliability cost performance of DRCD, DASAP, and DALAP. The benchmark task 

graphs used for the evaluation include random graphs, binary trees, and lattices. We have chosen this 

collection of task graphs as a set of benchmarks because they are representative of various 

applications modeled as directed acyclic graphs. In Figures 2 and 3 we plot reliability cost with 

increasing job size and job arrival rate. Since results for lattices and random graphs have similar 

patterns as those for binary tree, we only show results of binary tree in Figure 2. 
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Fig. 2. Impact of task load on RC. Job aarrival 
rate = 15*10-4 No./Sec. Binary trees are used. 

Fig. 3. Impact of job arrival rate on reliability cost. 
Binary tree, lattice, and random graphs are used. 

Figure 2 shows that, compared with the existing scheduling approaches, DRCD reduces the 

reliability cost of DASAP and DALAP by up to 71.4% and 66.8% (with average of 63.7% and 

61.3%), respectively. The advantage of DRCD over DASAP and DALAP becomes more pronounced 

as the job size increases. This is expected because DASAP and DALAP do not consider reliability 

cost as one of their scheduling objectives. DRCD, however, tends to assign tasks to machines on 

which their reliability cost are minimum.  

Another interesting result from this experiment is that job arrival rate seems to have no impact on 

reliability cost performance. Since DRCD, DASAP and DALAP share the same feature, we only ran 

DRCD algorithm on three benchmark task graphs. The results shown in Figure 3 indicate that the 

reliability cost performance depends on job size rather than job arrival rate. This can be attributed to 

 

18 
 
 
 
 



the fact that the scheduling algorithms employ an admission control strategy, which rejects jobs 

whose deadlines cannot be guaranteed. 

5.3 Guarantee Ratio 
In this section we present some experimental results with respect to guarantee ratios. We present 

two different groups of experimental results based on a set of synthetic benchmarks. First we present 

performance comparison of the DRCD, DASAP, and DALAP algorithms on a heterogeneous cluster. 

Second, we illustrate the impact of workload and job size on guarantee ratios. 

Fig. 4 shows the results of the experiment where random graphs are used as benchmarks. Results 

for binary trees and lattices are omitted because they are expected to be similar to those of random 

graphs. We set the job arrival rate from 1×10-3 to 7×10-3No./Sec. in increments of 1×10-3No./Sec. 

Figure 4 shows that the guarantee ratio of DRCD is slightly higher than that of the DALAP algorithm, 

and DRCD significantly outperforms DASAP in terms of guarantee ratio. This is mainly because the 

resource utilization of DRCD is less than those of DASAP and DALAP.  In general, this result can be 

attributed to the fact that, in an effort to minimize reliability cost, the DRCD approach constantly 

strives to shorten execution times of each task in a job. 
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Fig. 4. Guarantee ratios of DRCD, DASAP, and 
DALAP. Random graphs are tested. n = 10 

Fig. 5. Impact of job load and task load on 
guarantee ratio. Binary trees are tested. 

Figure 5 shows the results of the second experiment on two types of benchmark task graphs: binary 

trees and lattices. For each curve in Figure 5, the number of tasks in each job is fixed, whereas the job 

arrival rate is changed from 5×10-4 to 25×10-4 No./Sec. Figures 4 and 5 show the drop in guarantee 

ratio with increasing values of job arrival rate. Additionally, Figure 5 illustrates that guarantee ratio 
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decreases as the number of tasks increases. This is because increasing job arrival rate and size results 

in increased scheduling and dispatching times, which in term give rise to lowered guarantee ratio. 

5.4 Scheduling Time 
To study the impact of scheduling time on guarantee ratios, we present in this section two sets of 

experimental results. First, we illustrate the results for the DRCD algorithm in Figure 6. Second, we 

compare DRCD against DASAP and DALAP with respect to the impact of the scheduling time on 

their guarantee ratios (See Fig. 7). Although the scheduling time of each job can be estimated as a 

function of m, n, and u (see Section 5.1 item 4), the scheduling time in this experiment varies from 10 

to 90. This simplification deflates any correlations between scheduling times and other workload 

parameters, but the goal of this simulation is to examine the impact of the scheduling time on system 

performance by controlling the scheduling time as a parameter. 

    Fig. 7. Guarantee ratios of the three heuristics   
    when scheduling time is varied. Random graphs 
   are tested. N = 10, arrival rate is 2*10-3No./Sec. 
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Fig. 6. Impact of scheduling time on guarantee 
ratio. Arrival rate is 2*10-3 No./Sec.  

Both binary tree-, lattice- and random graph-based jobs are considered. For each curve in Fig. 6, 

the job size is fixed and the job arrival rate is set to be 2*10-3No./Sec. Fig. 6 shows guarantee ratio as 

a function of scheduling time. It reveals that the scheduling time makes significant impact on the 

performance of a dynamically scheduled real-time heterogeneous cluster. Without considering 

scheduling time, the predictions on which scheduling is based cannot be accurate, thus lowering GR. 

This impact is more pronounced as job arrival rate increases. The result also suggests that, under the 

same workload, shortening the scheduling time can improve guarantee ratios, thus allowing more jobs 

to be completed before their given deadlines. Ahmad and Kwok have developed a parallel algorithm 

(referred to as PBSA) that could perform scheduling using multiple processors [2]. Therefore, it is 
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highly desirable to apply the parallel technique reported in [2] to our algorithm, thereby shortening 

scheduling time to ultimately enhance the performance of the heterogeneous cluster. 

Fig. 7 compares the guarantee ratios of the three heuristics when the scheduling time is varied in 

this experiment. We find that DRCD can outperform the other alternatives in terms of guarantee ratio, 

and this finding is consistent with the results shown in Fig. 4. We also observe from Fig. 7 that the 

guarantee ratios of the DASAP and DALAP algorithms are more sensitive to changes in the 

scheduling time than DRCD. The result reveals that the improvement in guarantee ratio offered by 

DRCD becomes more pronounced when the scheduling time is relatively large.  

5.5 Dispatching Time 
Figure 8 shows the impact of dispatching time of the DRCD algorithm on guarantee ratio for 

different values of n. Again, job arrival rate is fixed at 2*10-3No./Sec. Dispatching time is increased 

from 5 to 25 with increments of 5 Sec.  Job size is set to 50 and 70 for binary tree, 25 for lattice, and 

20 for random graph, respectively. Fig. 8 clearly shows that decreasing dispatching time can 

significantly improve guarantee ratios of the heterogeneous cluster. This result strongly suggests that 

using a high-speed network to speed up the dispatching of scheduled tasks can substantially enhance 

the system performance. 

 

 

 

 

 

 

 

5.6 Heterogeneous Cluster Size 
To study the impact of the heterogeneous cluster size m (number of nodes) on the performance of 

DRCD, we fixed job arrival rate at 10*10-4No./Sec., and increased m from 10 up to 140. Figure 9 

shows scheduling time as a function of the heterogeneous cluster size, indicating a noticeable impact 
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of both the heterogeneous cluster size (m) and job size (n) on scheduling time. When the job size is 

small, the impact of m on scheduling time is not very significant. But this impact becomes 

increasingly noticeable as the job size increases. This is because scheduling time is the product of m, 

n and u (Theorem 1). 

Figure 10 illustrates the impact of the heterogeneous cluster size on the reliability cost. It shows 

that under the same workload, the performance with respect to reliability cost improves as the 

heterogeneous cluster size increases. The main reason behind this is that for a large heterogeneous 

cluster, the DRCD algorithm has more choices for scheduling a real-time task. It is also observed 

from Fig. 10 that when the cluster size is more than 30 the improvement in reliability cost starts to 

diminish.  This is because a higher value of m can result in a longer scheduling time (see Fig. 9), 

especially when the value of n is also high.  This result suggests that, under the workload in this 

experiment, it may not be cost-effective for the system to grow beyond 30 machines. An optimal 

value of m for a particular workload may be determined by experiments. 
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reliability cost of DRCD.  Arrival rate is 
1*10-3No./Sec. 

Fig. 11. Impact of the number of nodes on 
guarantee ratio of the DRCD algorithm, arrival 
rate is 1*10-3No./Sec.  

The impact of cluster size on guarantee ratio is shown in Fig. 11, where guarantee ratio is plotted 

as a function of the number of nodes. The results indicate that the impact of the cluster size on 

guarantee ratios is mixed. On the negative side, a higher value of m can lead to a longer scheduling 

time, as illustrated in Fig. 9. On the positive side, increasing the number of machines enhances the 

computational capability of the system, which may in turn guarantee more jobs to be completed 

before their deadlines. The final result depends on which side makes more significant impact. 

As shown in Fig. 11, three curves illustrate the positive side, and two other curves depict the 

negative side. We observe that when n (job size) is comparatively low, the net effect is positive (see 
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the three curves in Fig. 11 with n = 25, n = 30); whereas, the negative effect emerges as n becomes 

relatively high (see two curves in Fig. 10, with n = 49 and n = 70). This suggests that the number of 

machines is a critical parameter for scheduling parallel real-time jobs, which must be determined 

carefully based on experiments. 

5.7 Execution time 
Figure 12 shows the impact of execution time on reliability cost. We only consider the DRCD 

algorithm, since DASAP and DALAP have similar properties and are less relevant. In this experiment, 

the job arrival rate is set at 10*10-4No./Sec., and MAX_E is varied from 100 to 200 Sec. with 

increments of 20 Sec. For each value of MAX_E, we ran the DRDC algorithm on binary trees, lattices 

and random graphs. From the simulation results shown in Fig. 12, we observe that the reliability cost 

increases with the increase in the execution time. This is due to the simple fact that when execution 

time in each cij increases the task reliability cost of machines, RCPN, also increases. We can conclude 

from this experiment that as the execution time increases, the reliability cost of the cluster also 

increases.  

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200

btree,n=70
btree,n=30
lattice,n=81
lattice,n=49
random,n=20

MAX_E

Reliability cost (10-4)
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Fig. 13. Effect of the execution time on GR of 
DRCD. Arrival rate is 1*10-3No./Sec. 

As shown in Fig. 13, execution time also has a noticeable impact on guarantee ratios. When the 

value of n is low (see the curve with n = 30), execution time does not make a significant impact on 

guarantee ratio, but when n becomes large (see the curve with n = 81), we observe that guarantee 

ratios are affected noticeably by the execution time. Since deadline is assumed to be a function of 

execution time in our simulation model, the deadlines of tasks increase accordingly when execution 

time increases. More real-time tasks can be guaranteed if their deadlines are relaxed.  
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5.8 Computational Heterogeneity 
Fig. 14 shows the guarantee ratio as a function of job arrival rates, with different variances in task 

execution time, where job arrival rate increases from 2*10-4No./Sec. to 12*10-4No./Sec. with 

increments of 2*10-4No./Sec. Again, we only consider the DRCD algorithm and binary tree based 

jobs in this experiment, since the other two types of jobs behave similarly.  
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Fig. 15. Impact of computational heterogeneity 
on reliability cost. Task graphs are btrees         

Fig. 14. Impact of computational heterogeneity  
 on guarantee ratios. Task graphs are btrees        

Computational heterogeneity is reflected by the variance in execution times. In the experiment four 

sets of execution times, all with the same average value, are selected uniformly from the four ranges, 

[5, 200], [15, 190], [25, 180] and [35, 170], respectively. These four ranges correspond to four 

different levels of heterogeneity, with [5, 200] being the highest. Fig. 14 and Fig. 15 indicate that the 

DRCD scheduling algorithm has better performance for jobs with higher computational 

heterogeneity. This result suggests that high computational heterogeneity helps the DRCD algorithm 

increase guarantee ratio and reduce reliability cost, thereby enhancing the schedulability. This can be 

explained by the fact that the advantage of DRCD over the two non-reliability driven algorithms in 

schedulability mainly comes from the variance in tasks' reliability costs among different machines 

and reduced heterogeneity implies reduced variance in tasks' reliability costs. It is proved by this 

experiment that DRCD is efficient in terms of scheduling heterogeneous jobs, and its performance 

varies with the heterogeneity of the parallel real-time jobs.  

5.9 Performance on Real Applications 
The goal of this experiment is two-fold: (1) to validate the results from the synthetic application 

cases and (2) to test the scalability of the proposed algorithm. We chose a real-life application, a 

digital signal processing (DSP) system with 119 tasks in the task graph [40], as a case study to 
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quantitatively evaluate the improvements in guarantee ratio and reliability cost as we increase the 

number of nodes in the cluster.  
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Fig. 17. Impact of the number of nodes 
on reliability cost for the DSP example 

Fig. 16. Impact of the number of nodes 
on guarantee ratio for the DSP example 

We conducted experiments with eight cluster sizes (the number of nodes is varied from 10 to 80). 

The guarantee ratio and reliability cost were obtained for each heterogeneous cluster, where machine 

failure rates were randomly chosen between 9.5×10-7 and 10.5×10-7/hour and link failure rates 

between 7.5×10-6 and 12.5×10-6/hour. Job arrival rates were kept constant at 1.0×10-4 No./ms., and 

ranges for generating deadlines were fixed to 500 ms. Fig. 16 shows the guarantee ratios of the 

DRCD, DASAP, and DALAP algorithms running on eight heterogeneous clusters. Comparing DRCD 

with two other algorithms, we find that the DRCD algorithm performances better than the other 

alternatives, and DRCD improves guarantee ratios over DASAP and DALAP by up to 3% and 45%, 

respectively. Fig. 17 compares reliability cost for the DRCD, DASAP, and DALAP algorithms. We 

observe that with respect to reliability cost, DRCD is constantly better than the other two algorithms. 

Specifically, DRCD can reduce the reliability cost of DASAP and DALAP by up to 92% and 25% 

(with average of 89% and 21%), respectively. From these results, we conclude that the proposed 

DRCD algorithm can achieve the most reliable allocations for both small- and large-scale applications 

by leveraging the reliability-cost driven technique while improving resource utilization. 

6. Conclusion 
Most research work in the area of real-time task scheduling in heterogeneous systems either 

ignored reliability issues, or only considered homogeneous clusters, or assumed independent tasks, or 

only schedule tasks with precedence constraints offline. In this paper, we have addressed these issues 
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by proposing a reliability aware algorithm (DRCD) that dynamically schedules real-time tasks with 

precedence constraints in heterogeneous cluster environments. To make the scheduling more practical 

and realistic, both scheduling time and dispatching time are incorporated in our scheduling algorithm. 

In the DRCD algorithm, reliability cost is used as one of the objective functions for scheduling tasks 

in parallel jobs. For comparison purposes, we have introduced two variations of the list-scheduling 

family of algorithms, DASAP and DALAP, which are greedy in nature but make no effort to 

maximize reliability. Simulation results show that DRCD outperforms DASAP and DALAP with 

respect to reliability and schedulability in both synthetic workloads and real life applications. In 

addition, our experiments suggested that higher computational heterogeneity is conducive to 

improving the schedulability of DRCD, while computational heterogeneity had no apparent effect on 

reliability. Simulation results also reveal that both scheduling time and dispatching time can 

significantly impact the effectiveness of a scheduling algorithm. Thus, it is highly desirable to 

substantially reduce both scheduling and dispatching time by parallelizing schedulers and providing 

high-speed network capability. 

This work represents our first and preliminary attempt to study a very complicated problem. Future 

studies in this area are twofold. First, based on the DRCD algorithm, a dynamic fault-tolerant 

scheduling algorithm will be investigated, and primary/backup versions will be our approach. Second, 

we plan to study a more complex version of DRCD algorithm, in which power conservative issues are 

taken into account. 
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