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Abstract—This paper presents a novel Predictive Energy-
Aware Management (PEAM) system that is able to reduce the
energy costs of storage systems by appropriately selecting data
transmission methods. In particular, we evaluate the energy
costs of three methods (1. transfer data without archiving
and compression; 2. archive and transfer data; 3. compress
and transfer data) in preliminary experiments. According to
the results, we observe that the energy consumption of data
transmission greatly varies case by case. We cannot simply
apply one method in all cases. Therefore, we design an energy
prediction model that can estimate the total energy cost of data
transmission by using particular transmission methods. Based
on the model, our predictive energy-aware management system
can automatically select the most energy efficient method for
data transmission. Our experimental results show that our
system performs better than simply selecting any one among
the three methods for data transmission in terms of energy
efficiency.
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I. INTRODUCTION

Due to the rapid growth of data volume in data centers,

efficiently managing a massive amount of data becomes

a challenging problem. For example, Facebook maintains

over 260 billion images (20 petabytes of data) in their

distributed storage systems. There are one billion photos

(around 60 terabytes) uploaded by users each week [6].

Data-management mechanisms issue big data operations to

optimize file placement and achieve improved I/O perfor-

mance in data centers. These big data operations inevitably

introduce extra performance and energy overheads due to

frequent data movement among servers and storage systems.

For example, in the Google file system, data would be moved

back and forth among storage nodes to keep workload and

disk space balanced across the storage system [10]. To

offer good reliability, storage systems maintain one or more

replicas for each file. Upon the arrival of new data, the

storage systems create replicas on multiple storage nodes

(see, for example, GFS [10] and HDFS [24]). To enhance

energy efficiency of data centers, one may have hot data

migrated to a portion of fast storage nodes that continuously

provide services, while turning other nodes archiving cold

data into the standby mode [20][17].
An increasing number of energy conservation techniques

have been proposed to reduce the surprisingly high energy

costs of data centers. According to a report [5], data centers

contribute to nearly 1.5% (i.e., 4.5 billion dollars in 2006)

of total electricity consumption in the U.S.. Moreover, the

electricity costs contribute to a large portion of energy

consumption in data centers [12]. Even worse, many data

centers are rapidly growing in storage capacity to meet the

needs of big data newly collected on daily basis.
Designing energy-efficient data-movement policies are

crucial for the next-generation storage systems. Our study

in this paper is motivated by the following three factors.

1) the lack of study on the impacts of data movement

among servers on energy consumption of cluster stor-

age systems,

2) the capability of estimating the total energy cost of

data movement over network in data centers, and

3) the possibility of reducing the energy costs of data-

movement schemes by selecting an appropriate data-

movement policy.

In this paper, we first conduct a preliminary experiment,

where three data-movement policies are applied to transfer

real-world data sets between two servers. We observe that

the total energy consumption of data movement significantly

varies case by case in the experiment. Unfortunately, none

of the investigated policies can achieve the best energy

efficiency among all the tested cases. For example, directly

transferring a large number of small files over the network is

an inefficient method. Network latencies lead to noticeable

delays during the data-movement process, thereby increasing

the energy costs of transferring the massive amount of

data. On the other hand, archiving or compressing a large

data set before a transmission induces extra CPU energy

consumption.
The preliminary findings motivate us to develop a predic-

tive energy-aware management system called PEAM. Under

dynamically changing workload conditions, PEAM aims to

intelligently select the most appropriate data-movement pol-

icy based on predicted energy costs. At the heart of PEAM
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is our proposed energy prediction model, which estimates

the energy costs of specific data transmission methods. The

energy prediction model integrates our new performance

model with the recently developed energy/thermal models

in the context of storage systems. We evaluate the total

energy costs of all methods on two larger real datasets.

The experimental results show evidence that PEAM makes

accurate decisions on selecting the best data-transmission

method to improve energy efficiency. We also demonstrate

that PEAM outperforms the existing solutions when it comes

to energy efficiency in data storage systems.

Organization. The rest of this paper is organized as
follows. The next section presents prior studies and related

research issues. Section III describes our preliminary ex-

periments and observations. In Section IV, we propose a

predictive energy-aware management for storage systems.

The experimental results are shown in Section V. Finally,

Section VI concludes the paper.

II. RELATIVE WORK

A. Thermal-aware Resource Management Strategies

Improving data-center energy efficiency becomes increas-

ingly important. Techniques reducing energy consumption

of computing facilities and cooling systems make a major

contribution to advance energy-efficient data centers. For

example, thermal-aware resource management strategies re-

organize data or redistribute workloads to achieve balanced

temperature distribution among data nodes.

Sharma et al. designed a thermal-load-balancing frame-
work, in which local and regional policies are applied to

dynamically distribute the workload across servers in a data

center to reduce energy consumption [23]. Their simulation

results show that equipment reliability can be improved by

placing an asymmetric workload and uniformly distributing

temperature in data centers. Tang et al. proposed an optimal
recirculation process in homogeneous data centers [27].

A thermal-aware task scheduling algorithm, XInt, is able

to minimize recirculation costs by balancing the workload

within a data center. Tang et al. discovered that cooling costs
highly depend on peak inlet temperatures [28]. In order to

lower cooling power, Tang et al. designed a task assignment
policy, MPIT-TA, which reduces peak inlet temperatures.

Their simulation results show that MPIT-TA saves at least

20% of cooling energy.

A handful of studies were focused on temperature-aware

load balancing strategies [21][22]. In these studies, a cus-

tomized threshold is set to limit CPU temperatures, thereby

conserving CPU energy consumption. If the CPU tempera-

tures exceed the threshold, the CPU’s voltage and frequency

are dynamically adjusted at the cost of increased execution

times.

B. Thermal Models

After investigating IBM’s 5-1/4-in fixed disk drives,

Eibeck et al. proposed a thermal model that predicts the
transient temperatures of disk drives [9]. Tan et al. created
a three-dimensional transient temperature model used to

evaluate disk temperatures when frequent seeking opera-

tions are performed [26]. By considering five components

(internal drive air, spindle motor, the base and cover of the

disk, the voice-coil motor, and disk arms), Gurumurthi et
al. built a comprehensive model that calculates the thermal
behaviour of a hard disk [11]. Their findings show that heat

generated by the components make contributions on disk

temperatures. Kim et al. investigated impacts of seek times
on disk temperatures [15]; they studied the thermal behaviors

of disks by varying platter types and the number of platters.

Lin et al. proposed approaches to coordinating proces-
sors and memory to improve system performance and/or

power efficiency during memory thermal emergency [16].

They designed the adaptive core gating (DTM-ACG) and

coordinated DVFS (DTM-CDVFS) schemes as well as a

thermal model to predict DRAM temperatures. Their ex-

periments conducted on real platforms show that the two

schemes exhibit 6.7% and 15.3% of improvements in terms

of performance.

C. Compression Methods

Data compression techniques have been widely applied

to achieve good space efficiency in storage systems and to

shorten data retrieval time. The compression techniques are

able to reduce data sizes; however, the existing techniques

introduce extra CPU overhead. Compression ratios of a

certain method can vary greatly for different file types.

Cannane and Williams proposed a semi-static phrase-

based scheme called XRAY [7]. An offline model was

first built by training samples selected from data collection.

Then, the entire collection can be compressed online in a

single pass. The experimental results show that their method

performs very well for large general-purpose collection com-

pression, especially in the case when an individual record

or document is required to be decompressed.

Reetuparna et al. explored the performance and en-

ergy behaviours of data compression on Network-on-Chip

(NoC) [8]. Two configurations examined in their study

include Cache Compression (CC) and Compression in the

Network Interface Controller (NIC). Decompression latency

can be hidden by overlapping with NoC communication

latency. The simulation results show that the compression-

on-NoC method achieves energy savings by 20%.

D. Predictive Thermal Management

Srinivasan and Adve demonstrated a performance-

effective Dynamic Thermal Management (DTM) for mul-

timedia applications [25]. In their study, a predictive DTM
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algorithm was developed to efficiently use response mech-

anisms. The experimental results confirm that the DTM

algorithm performs significantly better than the existing

reactive DTM algorithms.

Ramos and Bianchini built a software structure for Inter-

net services (C-Oracle), in which the best reaction is selected

by predicting and evaluating temperature and performance

impacts of various thermal management reactions [19]. C-

Oracle effectively manages thermal emergencies without

unnecessary performance degradation.

The impact of data movement on energy efficiency of

storage systems has not been fully explored in the aforemen-

tioned technologies. Keeping workload balanced and uni-

form temperature distribution across servers in a data center

lead to frequent data migrations, which in turn give rise

to increased energy costs caused by data reads, writes, and

transmission over network interconnections. To significantly

reduce energy consumption incurred by data migrations, we

are motivated to design and investigate thermal-aware data

migrations – an open issue that is currently unresolved.

Appropriately and dynamically selecting an energy-efficient

data-migration policy can potentially reduce the overall

energy and cooling costs in data centers. In this paper,

we propose a predictive thermal management strategy that

judiciously makes the best data-migration decisions by pre-

dicting thermal and energy impacts of each data migration.

III. PRELIMINARY RESULTS

To characterize the overall energy cost of data transmis-

sions over network interconnections, we start this study by

investigating the performance and thermal behaviours of

various data transmission strategies. In this section, we first

describe a testbed and three data transmission methods used

in our preliminary experiments. Next, we conduct the exper-

iments on two real datasets and illustrate thermal impacts

made by these three strategies. Finally, we demonstrate the

motivation of our predictive energy-aware management for

storage systems.

A. Testbed

The testbed consists of two Linux servers connected

through the fast Ethernet. Table I summarizes the configura-

tion details of the servers performing as nodes of a storage

cluster. In the experiment, CPU and disk temperatures are

collected from embedded device sensors. The inlet and outlet

temperatures of the storage nodes are monitored by four

sensors attached to the nodes.

We transfer two real-world datasets between the two

storage nodes, the results of which are presented in the fol-

lowing two subsections. Three data-transmission strategies

examined in this preliminary experiment are listed below.

• Method 1: Direct Transmission (DT). Transfer data
over the network without any data archiving and com-

pression.

Table I Testbed Configurations

Node 1 Node 2

CPU Intel(R) Celeron(R) 450@2.2GHz

Network 1 GigaBit Ethernet network card

Disk WD-500GB Sata disk( [3]) WD-160GB Sata disk( [2])

Operating Ubuntu 10.04(lucid) Ubuntu 10.04(lucid)

System Linux kernel 2.6.32-43 Linux kernel 2.6.32-38

• Method 2: Archived Transmission (AT). Data is

archived before transmission over network. This strat-

egy reduces overheads (e.g., network latencies) incurred

by transferring a large number of small files.

• Method 3: Compressed Transmission (CT). Data is
compressed before transmissions. This method per-

forms very well if a high compression ratio can be

achieved and the compression process is completed in

a short time period.

B. Transferring A Single Text File

In the first experiment, we apply the above three methods

to transfer a single text file of 507.7 MB from node 1 to

node 2.

Fig. 1 displays the temperature and utilization of CPUs

and disks during the data transmission of a large text file.

We observe that the execution times of DT and AT are very

close; however, CT is an outlier doubling the execution time

of both DT and AT. Regardless of the methods, CPU tem-

peratures significantly increase, whereas disk temperatures

stay unchanged. Constant disk temperatures are reasonable

because disks have relatively longer heat-up periods (i.e., 30

minutes) [13]. Staying in the active state for a short period

(e.g., less than one minute) has no significant impact on the

disk temperature.

Figs. 1(a), 1(c), and 1(e) show that node 1’s CPU

utilization and temperature goes up rapidly, whereas disk

utilization remains at a low level. The CT scheme gives rise

to extremely high CPU utilization because the compression

process is very computation intensive. On the other hand,

CT’s disk utilization is simply half of those of the other

two methods. DT and AT have similar CPU and disk

utilizations. Figs. 1(b), 1(d), and 1(f)) reveal that node 2’s

CPU utilization is close to that of node 1 under the DT

and AT cases, except that node 2’s CPU utilization is only

one fifth of that of node 1 in the CT case. Thus, the CPU

temperature of node 2 under DT is also lower than those

of the same node under the other two methods. For all the

three strategies, node 2 has lower disk utilization than node

1.

Table II summarizes the execution times and file size,

as well as compression ratios. In this table, N1 and N2

represent node 1 and node 2, respectively. CT enjoys a

compression ratio of 21.9%; data is not compressed in the

other two methods. DT exhibits the shortest execution time
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(a) Node 1 in direct transmission.
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(b) Node 2 in direct transmission.
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(c) Node 1 in archived transmission.
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(d) Node 2 in archived transmission.
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(e) Node 1 in compressed transmission.
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(f) Node 2 in compressed transmission.

Figure 1: Performance of 1 text file transmission.

Table II Summary of single text file transmission.

Methods DT AT CT
N1 N2 N1 N2 N1 N2

Execution Time(s) 17 17 18 20 42 47

AVG UCPU (%) 65.7 63.9 63.0 61.5 93.4 17.9

AVG UDisk(%) 20.3 65.0 19.3 55.9 6.8 19.0

MAX TCPU (°C) 47 48 47 48 49 43

MAX TDisk(°C) 33 33 33 33 33 33

Data Transferred(MB) 507.7 507.7 111.2

Compression Ratio(%) 100 100 21.9

Total Energy Cost(J) 4036.9 4459.2 9952.8

among the three test strategies.

The temperatures and utilizations of CPU and disks are

summarized at the bottom of Table II. We observe that CT

suffers from the highest CPU utilization on node 1 due to

compression overhead, whereas in node 2, CPU utilization

is lower than those in the other two methods. The peak CPU

temperature of node 2 under the CT method is the lowest

among all the methods. The first two methods share similar

thermal impact on the two nodes. By comparing the overall

energy cost of these three methods, we observe that DT is

the most energy-efficient approach.

In short, we conclude that the archiving and compression

process leads to high CPU temperature and utilization, which

in turn have noticeable impact on the total energy cost in

storage systems.
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(a) Node 1 in direct transmission.
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(b) Node 2 in direct transmission.
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(c) Node 1 in archived transmission.
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(d) Node 2 in archived transmission.
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(e) Node 1 in compressed transmission.
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(f) Node 2 in compressed transmission.

Figure 2: Performance of transferring Linux kernel files.

C. Transferring Source Code Files

We evaluate a second case where Linux source code files

are transferred between two storage nodes. Fig. 2 reveals

temperatures and utilizations of CPUs and disks where the

three data transfer strategies are adopted. The detailed results

are summarized in Table III.

We observe from the table that AT achieves the best per-

formance in terms of execution time. The CT scheme only

transfers 103.8 MB of data, which is 23% of the original

data size, over the network. However, CT does not exhibit

the shortest transmission time due to extra overhead caused

by data compression and decompression. When it comes to

the AT method, even the size of data transferred over the

network is larger than that of DT; the transmission time of

Table III Empirical results of transferring Linux source

code files.

Methods DT AT CT
N1 N2 N1 N2 N1 N2

Execution time(s) 81 90 40 60 49 57

AVG UCPU (%) 20.8 16.1 24.2 17.4 68.6 15.7

AVG UDisk(%) 27.4 23.0 56.7 69.1 45.9 61.5

MAX TCPU (°C) 46 44 46 44 48 46

MAX TDisk(°C) 33 32 32 33 33 32

Data Transferred(MB) 454.8 475.8 103.8

Compression Ratio(%) 100 100 23

Total Energy Cost(J) 16164 15938 16718
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DT is much shorter than that of AT. This performance trend

is reasonable because the Linux kernel package contains a

large number (i.e., 40,927) of small files. Transferring these

small files one by one takes a long time due to network

latencies. Merging small files into a single large file helps

to reduce the network overhead.

Like findings obtained from the first experiment, the

compression process results in the highest CPU temperature

and utilization in the case of CT. Although the peak disk

temperature is different from that observed in the first

experiment, the peak temperature remains unchanged in all

the methods during the execution period (see Fig. 2). From

the thermal behaviour’s perspective, DT and AT are more

thermal friendly than CT. From the energy’s perspective,

AT consumes less energy than the other two strategies.

D. Motivation of the Predictive Thermal Management

The above preliminary findings suggest that it is challeng-

ing to accurately estimate energy costs of data transmissions

due to the following three reasons. First, the total energy

cost (including computing and cooling costs) caused by data

transmissions depends on CPU and disk temperatures, trans-

mission times, and compression ratios. Second, there is a

lack of energy-efficient data-transfer strategies that can fit the

needs of a wide range of cases. The DT scheme can energy

efficiently transfer a single large text file (see Section III-B);

whereas AT is the most energy-efficient strategy to transfer

a large number of small files (see Section III-C). The

impact of data compression on energy consumption largely

relies on the features of files being transferred. Third, data

transmissions occur frequently in cluster storage systems. It

is impractical to manually choose the best data-transfer strat-

egy in a dynamic computing environment, where the features

of transferred files are continually changing. To address this

problem, we design a predictive energy-aware management

system or PEAM. There are two phases incorporated in

PEAM. The first phase is to predict energy consumption

incurred by executing each candidate data-transfer strategy.

Predictions are obtained by comprehensively considering

compression ratios, transmission times, file types, and data

sizes. The second phase is a straightforward selection made

by comparing the predicted energy costs induced by the

candidate strategies. The details on PEAM are illustrated

in the next section.

IV. DESIGN

Motivated by the preliminary results, we propose a pre-

dictive energy-aware management system called PEAM.

Three modules integrated in PEAM are an energy predictor,

a method selector, and a data-transmission monitor. The

energy predictor module predicts the energy consumption

of data transmissions carried out by a particular method.

The method selector chooses the best data-transfer strategy

based on energy predictor’s estimates. The monitor keeps

track of data transmissions. Before a data transfer is initiated,

the module sends a request to the method selector; the data

start being transferred after a feedback is received from the

selector.

A. The Framework of PEAM
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Figure 3: The framework of the predictive energy-aware

management (PEAM).

Fig. 3 displays a cluster equipped with n storage nodes.
Our predictive energy-aware management system – PEAM

– runs on each node. The monitor module gathers runtime

information related to data transmissions, file metadata, and

storage nodes (e.g., temperatures and utilizations). When a

data transmission is detected, the module sends a request to

the method selector, which makes a decision on the most

energy-efficient data-transfer strategy.

The Method Selector not only maintains candidate data-

transfer strategies, but it also judiciously chooses the best

strategy to reduce energy consumption. Fig. 3 shows that

upon the arrival of a data-transmission request, the Method

Selector forwards the request along with all the candidate

strategies to the energy predictor. According to an energy

estimate offered by the predictor, the Method Selector no-

tifies the monitor module of a candidate strategy that will

cause the lowest energy cost to transfer the data.

The Energy Predictor, shown in Fig. 4, provides the en-

ergy estimates of data transmissions handled by a particular

strategy. In the PEAM system, the predictor is focused on

the overall energy consumption of a cluster storage system.

Thus, the overall energy cost includes both computing

energy cost and cooling cost. We build a performance

model to quantify CPUs and disks utilization as well as

data transmission time. With these information in place, the

computing energy cost can be computed by a computing

model (see (7)). Moreover, the cooling cost can be calcu-

lated by integrating a thermal model and the coefficient of

performance model (a.k.a., COP).

B. The Energy Predictor Model

The Energy Predictor model consists of the following sub-

models.
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Figure 4: Framework of the Energy Predictor module.

(COP: Coefficient of Performance)

1) Performance Model: The performance model derives
CPU/disk utilization and data-transmission time from the in-

formation provided by prediction requests; such information

includes network bandwidth, dataset size, data transmission

methods, and compression ratios. Compression schemes and

their compression ratios for given file types are maintained

in the model as a static data structure. The execution

time of a data-transmission process is made up of data

transmission time and compression/decompression time if

it is applicable. The compression/decompression time is

determined by data size and compression methods. If a

data-transmission strategy does not apply data compression

techniques, the compression/decompression time should be

ignored. Obviously, data compression overhead might be

offset by time saved in transferring data over the network.

The utilization of CPUs and disks can be derived as

a function of Method (i.e., a data-transfer method) and

Rcompression (i.e., compression ratio). Thus, we have

UCPU = g(Method,Rcompression), (1)

Udisk = h(Method,Rcompression), (2)

where UCPU and Udisk are average CPU and disk utiliza-

tions.

We express the execution time of a data-transmission

process as:

Texecution =k(size,Method,Rcompression, Bandwidth)

=Tread + TMethod
pre−proc + Tsend

+ Treceive + TMethod
after−proc + Twrite

(3)

where size, Rcompression, and Bandwidth denote the data
size, compression ratio, and network bandwidth. Texecution

is the execution time if Method is applied to transfer the
data. Tread is the time spent in reading the original file

to cache on the source node, and Tread depends on the

size value. TMethod
pre−proc is the time of pre-processing the data

with a specific method; for example, with the DT method,

the data should be compressed in the source node’s cache.

TMethod
after−proc is the time of processing the transferred data

(e.g., decompression). Tsend and Treceive are sending and

receiving times of the data delivered over the network; Tsend

and Treceive are affected by Bandwidth and Rcompression.

Twrite is the time spent in writing the received data to a

destination disk.

2) Thermal Model: The thermal model estimates outlet
temperatures of a storage node based on its CPU and disk

utilizations. CPU temperatures, which are sensitive to CPU

utilization, can be expressed as:

TCPU (t) = fCPU (T
CPU
i , TA, UCPU , t), (4)

where TCPU
i and TA denote initial CPU temperature and

ambient temperature. UCPU represents CPU utilization, and

t is the CPU running time under a specific utilization.
Differing from CPU temperatures, disk temperatures are

not noticeably sensitive to disk utilizations during a short

period of time. However, if a disk is active for a longer pe-

riod, the disk’s temperature is affected by its utilization [14].

The disk temperature can be modelled as:

Tdisk(t) = fdisk(T
disk
i , TA, Udisk, t), (5)

where T disk
i and TA are initial disk temperature and ambient

temperature. Udisk represents disk utilization. t is the time
that disk works in active state.

Since CPU and disk are two major contributors to outlet

temperatures of storage nodes, we use the following outlet

temperature model to quantify the thermal impact of CPU

and disk activities on outlet temperatures (see [14] for the

details of the model).

Toutlet = Tinlet + α ∗ TCPU + β ∗ Tdisk + γ, (6)

where Tinlet and Toutlet are the inlet and outlet temperatures

of a storage node. α is the thermal impact from CPU

temperatures, β is the impact from disk temperatures, and

γ represents the impact of other components on the outlet
temperature.

3) Computing Energy Power Model: We use (7) to cal-
culate the computing energy power, where Pi is the power

of a component that is sitting idly, Ucomponent refers to the

utilization of the component in storage nodes. Pmax
component

and P idle
component are the power when the component works

in full capacity and is in the idle state, respectively.

PC = Pi+Σ(Ucomponent∗(Pmax
component−P idle

component)) (7)

4) COP: A Cooling Power Model: Fig. 5 shows that COP
values increase as the supply temperature of computer room

air conditioning (CRAC) goes up [18]. A large COP value

indicates a high energy efficiency of a storage system.

COP (T ) = 0.0068 ∗ T 2 + 0.0008 ∗ T + 0.458 (8)

Equation (8) defines COP as a ratio of removed heat to

the energy cost of a cooling system for heat removal [18].

The supply temperature of CRAC (i.e., Computer Room Air

Conditioning) is denoted by T . The cooling cost is inversely
proportional to the COP value.
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Figure 5: Coefficient of the performance curve for the

chilled-water CRAC units at the HP Labs Utility Data

Center [18]

The cooling power PAC can be derived from COP using

(9).

PAC =
PC

COP (T )
, (9)

where PC is the computing energy power.

With the computing and cooling power in place, we can

express the overall power as:

PTotal = PC + PAC , (10)

V. EXPERIMENTS

In this section, we compare our PEAM with the three

baseline solutions using two real-world datasets. For each

dataset, we evaluate execution time and energy consumption

caused by transferring the data from one node to another

within a storage cluster. The testbed description can be found

in Section III.

A. Datasets

The first tested 60 GB dataset is the Human Genome se-

quences, which is available from NIH’s (National Institutes

of Health) NCBI website1. Each large sequence file contains

the DNA sequence of an entire chromosome. These DNA

sequences are widely used in the bioinformatics research

(e.g., sequence alignments and gene predictions). The second

50 GB dataset is comprised of millions of songs2 archived in

a multimedia storage system. Maintaining a large number of

multimedia files becomes increasingly challenging in terms

of improving performance and energy efficiency of storage

systems. For example, five million photos are uploaded to

instagram every day [1]; Youtube receives 48 hours of new

video every minute [4].

B. Human Genome Dataset

Fig. 6 displays the transmission time and total energy

cost of transferring the Human Genome data using the

1ftp://ftp.ncbi.nih.gov/genomes/H_sapiens
2http://www.infochimps.com/collections/million-songs
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Figure 6: Transmission time and total energy cost of

transferring the Human Genome dataset.

four strategies. CT takes much longer than the other three

methods because compressing and decompressing a large

dataset is computationally expensive. DT and AT perform

very similarly. Transferring data over the network takes

most of the time, which depends on data size and network

bandwidth. More importantly, AT is 15 seconds slower than

DT due to the data-archiving overhead. DT does not need to

repeatedly build the network connections. The performance

of our PEAM is close to that of DT. PEAM’s only extra

overhead is induced selecting transfer strategy. We ignore

this overhead in our experiments because it is too small

(i.e., less than 10 ms) compared with total execution times.

Our evidence shows that the computational overhead of the

energy predictor and method selector module in PEAM is

as low as a few milliseconds.

Not surprisingly, CT spends much more energy trans-

ferring the Genome data than the other strategies because

both CPU and disks take a longer time period to complete

the data transmission task. Compared with AT, DT saves

2964 Joule energy during the transmission process. AT is

not energy-efficient because AT takes an extra 15 seconds

on data archiving and de-archiving, thereby leading CPUs

and disks active for a longer time span. Thus, extra energy is

consumed by the CPUs and disks. Due to the archiving and

de-archiving time, the CPU temperature increases, which in

turn causes additional energy costs for the cooling system.

The energy consumption of PEAM is very close to that of

DT because PEAM only suffers from negligible overhead.

C. Multimedia Dataset

Fig. 7 plots the transmission time and total energy cost

of moving the real-world multimedia dataset by applying

the four strategies. Similarly, the transmission time of CT

is the highest due to the compression process. Interestingly,

DT is 458 seconds slower than AT because the multimedia

dataset contains millions of small files. When it comes to the
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Figure 7: Execution time and total energy cost of moving

multimedia dataset.

DT scheme, network latency becomes a major performance

bottleneck in data transmission. The network connections

must be created for each small file; such overhead becomes

considerably expensive when the number of small files is

excessively large. Thus, even with the overhead of data

archiving and de-archiving, AT performs better than DT in

terms of transmission time.

Similar to the CT tested in the Human Genome case, CT

in the multimedia case exhibits the lowest energy efficiency

among all the strategies due to its long transmission times.

DT consumes much more energy than AT because of DT’s

long transmission times. PEAM accurately predicts that AT

is the most energy-efficient and selects AT to transfer the

dataset. Hence, both the transmission time and energy cost

of PEAM is close to the AT scheme. The overhead of PEAM

is proved to be negligible.

D. Overall Evaluation

Using two real-world datasets, we demonstrate that

PEAM can accurately and quickly predict the performance

of the candidate data-transfer strategies. We assume that

one method is selected for data transmissions in the tested

storage system. Fig. 8 shows that CT’s performance is

the worst among the four methods. In addition, DT is

energy efficient when it is applied to transfer the Human

Genome dataset; DT consumes more energy while moving

the multimedia dataset. PEAM is able to accurately and

automatically predict and select the best method, and, there-

fore, compared with DT, AT, and CT, PEAM reduces the

energy consumption by 346,989 J, 2,964 J, and 2,686,572

J, respectively.

VI. CONCLUSION

Surprisingly high energy consumption of data centers

makes it demanding to improve energy efficiency of large-

scale storage systems. In modern data centers, data man-

agement introduces big data operations to achieve high I/O
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Figure 8: Overall energy cost of moving two datasets.

performance by judiciously placing files. Big data operations

can incur both performance and energy overheads due to

frequent data movement. We aim to reduce the energy

costs of data centers by offering an energy-aware data

management strategy to improve energy efficiency of data

storage systems.

In this paper, we first characterized the thermal and

performance behaviours of three data transmission methods.

The preliminary findings motivate us to develop a novel

predictive energy-aware management system called PEAM,

which is capable of dynamically choosing the most appropri-

ate data transmission method to reduce energy consumption

caused by large data transfers among storage nodes. En-

ergy estimates are calculated by a validated model, which

integrates our new performance model with the recently

designed energy/thermal models. Our experimental results

showed PEAM makes accurate decisions on selecting the

most energy-efficient data transmission method. The results

also demonstrated that PEAM can significantly improve

energy efficiency of large-scale storage systems in data

centers.
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