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Abstract—Recognizing that power and cooling cost for data
centers are increasing, we address in this study the thermal
impact of storage systems. In the first phase of this work,
we generate the thermal profile of a storage server containing
three hard disks. The profiling results show that disks have
comparable thermal impacts as processing and networking
elements to overall storage node temperature. We develop
a thermal model to estimate the outlet temperature of a
storage server based on processor and disk utilizations. The
thermal model is validated against data acquired by an infrared
thermometer as well as build-in temperature sensors on disks.
Next, we apply the thermal model to investigate the thermal
impact of workload management on storage systems. Our study
suggests that disk-aware thermal management techniques have
significant impacts on reducing cooling cost of storage systems.
We further show that this work can be extended to analysis
the cooling cost of data centers with massive storage capacity.
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I. INTRODUCTION

Thermal management techniques for storage systems can
significantly impact the cooling costs of data centers; tra-
ditional thermal models for data centers do not take into
account disk utilizations. In this paper, we address the ther-
mal impact of hard disks by developing a thermal model for
storage systems. We show how to apply the thermal model
to estimate the outlet temperature of a storage server based
on processor and disk utilizations. With the thermal model
in place, we investigate the thermal impact of workload
management on storage systems.

Motivations. Our proposed thermal model is indispens-
able for next-generation storage systems because of the
following five factors:

1) the ever-increasing cooling and energy costs of large-
scale storage systems,
the impact of storage systems’ temperature on cooling
costs of data centers,
the growing importance of reducing thermal monitor-
ing cost,
the capability of estimating the cooling cost of a data
center during its planning phase, and

2)
3)

4)
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5) the lack of study on the impacts of disk utilizations and

temperatures on outlet temperatures of a data node.

With ever-increasing energy consumption and cooling
costs of large-scale storage systems, data center designers
need to urgently address the energy efficiency issues [11].
The electricity cost of maintaining a data center for four
years may be equivalent to the cost of building a new data
center. Traditional approaches to saving energy cost for data
centers is to improve the energy efficiency of servers and
storage systems as well as cooling systems.

Growing evidence shows that cooling costs contribute
a significant portion of the operational cost of data cen-
ters [5][11]. For example, the power and cooling infrastruc-
ture supporting IT equipment can consume up to 50% of
energy in a data center [5]. Prior research shows reducing
the energy dissipation in cooling systems can effectively
improve the energy efficiency of data centers [17][26]. For
instance, energy cost of cooling systems in data centers can
be saved by reducing the outlet temperatures of servers or
optimizing the air recirculation [23]. A handful of workload
placement strategies are proposed to balance temperature
distribution through workload management [17] [26]. Exper-
imental results obtained by Moore ef al. show that energy
consumption of a data center can be saved up to 40% by
setting a low outlet temperature of data nodes [17]. Reducing
the temperature of hard disks in storage systems can not
only conserve the energy consumption in cooling systems,
but also enhance the reliability and lifetime of the storage
systems [19][28].

The energy models of storage systems have been in-
vestigated in the past years. For example, Allalouf et al
proposed a model to estimate the power consumption of
storage nodes running under certain workload conditions [6].
However, thermal models of storage systems are still in its
infancy. Little attention has been paid to the impact of disk
temperatures on the energy efficiency of cool systems in data
centers.

Setting up temperature sensors in data nodes of a stor-
age system is a common way of monitoring the system’s
temperature. Given a single data node, one can apply at



least two sensors to monitor inlet and outlet temperatures
of the node. In case detailed interior temperatures of the
data node need to be measured, additional sensors must be
deployed. Although this approach is practical to measure
temperatures of small-scale storage systems, it becomes
an infeasible solution when a storage system consists of
hundreds of thousands nodes. It is prohibitively expensive to
acquire and set up a huge number of sensors in a large-scale
data center; deploying sensors can lead to extra energy cost.
Thermal models are a promising alternative to monitoring
temperatures of storage systems.

A data center is a large investment for many companies.
A great deal of planning is a must to ensure a high
return on investment. Cooling and power are two important
considerations to be addressed during the planning process
of data centers. Thus, accurately estimating the cooling and
energy cost of a data center is a key guideline during the
planning phase. Thermal models and simulators can used
to help data center designers to make critical decisions on
thermal management during the design phase.

A variety of factors contribute to the outlet temperatures
of storage systems. Tang et al. show how the outlet temper-
ature of a data node is affected by its inlet temperature and
CPU utilization [23]. Li ef al. propose a model to forecast
temperature of a data node using historical temperatures
and air flow measurements [16]. Kim et al. investigate the
relationship between seek times and disk temperatures [14];
Kim’s study demonstrates how platters affect disk tempera-
tures. In a modern storage system, a data node is comprised
of up to more than 100 hard disks [18]. The temperatures
of these disks play a crucial role in affecting the the data
node’s temperature. Unfortunately, there is a lack of study
on the impacts of disk utilizations and temperatures on outlet
temperatures of a data node.

Contributions. The goal of this study is to build a thermal
model to estimate the outlet temperature of a storage server
(a.k.a., data node) based on processor and disk utiliza-
tions. We make the following three contributions. First, we
generate the thermal profile of a storage server containing
multiple hard disks. The profiling results are obtained by
running I/O intensive workloads imposed by Postmark [13].
When the disks are running under various load scenarios,
we monitor disk temperatures as well as the inlet and outlet
temperatures of the data node. Second, we build a thermal
model to estimate inlet/outlet temperature differences using
inlet temperatures, and workloads. The model also is able to
derive outlet temperatures from CPU and disk utilizations.
Third, to demonstrate the usage of the model, we make use
of this model to investigate the impact of disk temperatures
on the cooling cost of storage systems.

Organization. The rest of this paper is organized as
follows. The next section presents prior studies and related
research issues. Section III describes four preliminary ex-
periments and observations. In Section IV, we develop a
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thermal model for storage systems. We validate the thermal
model against real-world measurement acquired by a thermal
meter as well as build-in temperature sensors on disks. In
Section V, we discuss the impact of data placement on
cooling cost. Finally, Section VI concludes the paper.

II. RELATIVE WORK
A. Energy-Efficient Data Centers

Increasing attention has been paid to energy efficiency of
data centers [8][7]. A study conducted by Koomey in 2000
shows that the total energy consumption in data centers is
approximately 1.2% of U.S. energy consumption [15]. A
reason behind the striking energy consumption in data cen-
ters is the rapid growth of computing and storage capacity
in recent years.

Researchers have proposed a number of energy-saving
approaches to reduce energy costs of data centers. For
example, Bieswanger et. al developed measurement and
management technologies (MMT, for short) for an energy-
efficient data centers [12]. The MMT model integrates real
measurements by deploying sensors in data centers, thereby
providing run-time analysis of energy consumption. Based
on these analytical data, data centers can be operated in an
optimal schedule in terms of energy consumption.

Greenberg et. al benchmarked 22 data centers and ob-
served that annual energy cost per square foot of a typical
data center is more than 15 times of an office building [9].
Greenberg ef. al also examined a set of best practices, in-
cluding air management, optimizing the size of data centers,
utilizing free cooling by using chilled water and the like.
The data collected from these practices indicate that energy
savings in data centers can be potentially achieved.

Verma et. al proposed an approach called sample-
replicate-consolidate mapping or SRCMap to enable energy
proportionality for dynamic I/O workload [27]. SRCMap
activates a minimal number of physical volumes, in which
a selected subset of data in other volumes is duplicated.
When serving I/O requests, SRCMap redirects the requests
to replicas on active volumes in order to keep other volumes
in the sleep mode as long as possible. The experimental
results show that SRCMap is able to effectively reduce the
power consumption of enterprise storage systems.

B. Thermal-aware Resource Management Strategies

Energy efficiency is an important issue in both data center
planning and maintenance. A handful of studies focus on
optimizing power consumption of cooling systems - a major
contributor to the power cost of data centers. In these
studies, thermal-aware resource management strategies were
proposed to balance the temperature distribution among data
nodes in data centers.

Sharma et al. developed a thermal-load-balancing
framework by applying local and regional policies for
dynamical workload distribution. The simulation results



show that uniform temperature distribution, promoted by an
asymmetric workload placement, is able to reduce energy
consumption and improve equipment reliability. Tang et al.
highlighted recirculation process in data centers [24]. They
proposed a task scheduling algorithm, XlInt, for homoge-
neous data centers, thereby minimizing recirculation costs
by balancing the workload within the data center.

Tang et al. observed that cooling costs significantly de-
pend on peak inlet temperatures [25]. In order to achieve the
lowest cooling power, Tang et al. designed a task assignment
policy, MPIT-TA, that minimizes the peak inlet temperature.
They simulated a small-scale data center; the results show
that at MPIT-TA offers at least 20% of cooling energy
savings.

Temperature-aware loading balancing strategies are inves-
tigated in [20] [21]. Taking into account energy conserva-
tion, the strategies limit CPU temperatures to a customized
threshold. If the CPU temperatures exceed the threshold, the
CPU’s voltage and frequency will be dynamically adjusted
with execution time penalty.

Thermal-aware resource management techniques for pro-
cessors have been extensively studied. However, the impact
of disks on thermal management has not been fully explored.
To provide large data capacity, each data node may contain
a number of disks. Under I/O-intensive workload, disk
utilization is extremely high. Hence, appropriately managing
I/0 workload can potentially reduce the cooling cost in data
centers.

C. Disk Energy Consumption and Temperature Models

Tan et al. built a three-dimensional model to evaluate
transient temperatures during frequent seeking [22]. How-
ever, the impact of workload on disk temperatures has been
overlooked in the past years.

Gurumurthi ef al. constructed an integrated disk drive
model used to investigate the thermal behavior of a hard
disk [10]. The model calculates the heat generated from
the following components: internal drive air, spindle motor,
the base and cover of disk, the voice-coil motor, and disk
arms. Kim et al. built the relationship between seek times
and disk temperatures [14]. They also studied the thermal
behaviors of disks by varying platter types and number of
platters. It is worth noting that the above studies ignore
the impact of disk temperatures on cooling systems. In this
paper, we comprehensively evaluate the impact of CPU and
disk temperatures on the inlet and outlet temperatures of a
data node.

III. THERMAL IMPACTS OF DISK I/0
A. Testbed

To characterize the impacts of CPU and disks on the
inlet/outlet temperatures of a data node, we conduct a
number of experiments on a Linux server, in which CPU
temperatures are detected by software lm-sensors [2] and
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disk temperatures are measured by hddtemp [1]. The inlet
and outlet temperature are acquired by an infrared ther-
mometer.

The testbed used in these experiments is equipped with
four Intel(R) Xeon 2.4 GHz CPU, 2.0 GBytes RAM, and
three 160 GBytes SATA disks deployed in a disk array. The
configuration parameters are summarized in Table 1.

Table I Testbed Configurations
l Hardware [
4 x Intel(R) Xeon 2.4 GHz CPU X3430
1 x 2.0 GBytes of RAM
3 X WD 160 GBytes Sata disk
(WDI1600AAJS-75MOAO [4])

Software ‘

Ubuntu 10.04
Linux kernel 2.6.32

B. Impact of CPU and Disks on Inlet/Outlet Temperatures

Outlet temperatures of a node are determined by vari-
ous factors, including CPU and disk temperatures, mother-
board temperatures, and inlet temperatures. The CPU factor
has been addressed in prior studies (see, for example,
[25] [20] [21]). Unfortunately, the thermal impact of disk
I/O on data nodes remains an open issue. To investigate
the relationship between CPU/disks and the inlet/outlet
temperatures, we conduct four groups experiments, in which
a combination of high (100%) and low (0%) utilizations
of CPU and disks are considered. The configuration details
are shown in Table II. In these experiments, CPU and I/O
workloads are generated by stress [3] and postmark [13],
respectively. The power consumption of the testbed are
measured by a power meter. The temperatures of the four
cores and three disks in the testbed are presented in the rest
of this section.

Table II Experiment Configuration

Experiments Utlllzatlon('%) Power (W)
CPU | Disk
1 0 0 73
2 100 0 135
3 0 100 85
4 100 100 142

1) Low CPU and Low Disk Utilization: in the first
experiment, we place both CPU and disks in the idle mode.
Fig. 1 shows that the node’s inlet temperature varies slowly
from 24.8 °C to 30.6 °C, which leads the outlet tem-
perature to vary accordingly. When the outlet temperature
goes up, the inlet temperature also increase due to heat
recirculation. On average, the difference between the inlet
and outlet temperatures is 3.8654 °C, ranging anywhere
between 3.2 °C and 5.0 °C. In this case, the discrepancy
between inlet and outlet temperatures can be expressed as a
constant. Thus, we have:

Taigp1(t) = 3.8654 (1)
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Figure 1: Temperature Evaluation under the Low CPU and Low Disk Utilizations.

Inlet and outlet temperature

38 - - - - - - - - :
Tin
36 Tout
—_ eeoe LY
O 34F 0o’ ’~".'...."c." 4
o e®
o .
532 o° 1
“6 L]
@ 30 1
£
@ 28l 0ee%%0 g% 0 e 1
'_28 cee® o 00%c0e®® O og 00
26 e ® 1
24 1 1 1 1 ; ; 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(\sec)
Temperature of CPU
60 T T T T T T T T T T
55
[5)
& 50
e
2
S 45
(93
£
40
A ——Tcore0
—— Tcorel
35 ——Tcore2 ||
— Tcore3
30 1 1 1 1 1 1 1 : T
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(\sec)

Inlet/outlet temperature difference

75 T T - -
7+ ]
* =, P
. 65¢ P * F * 1
¢ . Fax* *y, ox
. 6 * ¥ 4
4 cx % * * *
% 55k i
@® 5r * 4
g
5 45T 1
4t ]
350 ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(\sec)
Temperature of disks
36 T T T T T T T r
= Tdisk1
— Tdisk2
3551 H
- - - Tdisk3
2 s il
(5]
e
2
© 3451 4
Q
£
5 a4 il
fid
3351 1
a3 | ; 1 1 ; | 1 | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(\sec)

Figure 2: Temperature Evaluation under the High CPU and Low Disk Utilizations.

2) High CPU and Low Disk Utilizations: in the sec-
ond experiment, we keep CPU extremely busy (i.e., CPU
utilization approaches to 100%) while placing disks in the
idle mode. Fig. 2 shows that the CPU temperature goes up
fast; it increases 20 °C in 4 minutes. On the other hand,
the disk temperatures do not change much. The difference
between the inlet and outlet temperatures increases slowly
from 4.6 °C to 6.6 °C in the first 600 seconds, and then
maintain at a constant value in the next 1200 seconds. We
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denote inlet and outlet temperature difference as Ty o,
where t refers to the time at which the data node has run
under 100% CPU and 0% disk utilizations. Thus, we have:

Tyispa(t) = 0.0023 x t + 4.8818, if t < 600
dif 12 6.2692, if t> 600
2
3) Low CPU and High Disk Utilizations: in the third
experiment, we keep a low CPU utilization while increasing

disk utilization up to approximately 100%. We run three
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Figure 3: Temperature Evaluation under the Low CPU and High Disk Utilizations.
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Figure 4: Temperature Evaluation under the High CPU and High Disk Utilizations.

tasks, each of which imposes I/O-intensive load on the disk.
We observe from Fig. 3 that CPU temperature frequently
fluctuates between 31 °C and 35 °C , because the three
I/O-intensive tasks require the CPU resource to issues 1/O
requests. Nevertheless, the CPU utilization remains fairly
low. After completing the tasks, CPU returns to the idle
status and its temperature decreases to the normal value.
In this case, the thermal impact of CPU is negligible. In
contrast, disk temperatures slowly increase at the rate of
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around 2 °C per 1000 seconds. The difference between
inlet and outlet temperature can be expressed by (3).

0.0001 = t + 4.6086, if t < 1000
4.7086, if t > 1000
3)
4) High CPU and High Disk Utilization: in the final
experiment, we push both CPU and disks utilizations up
to 100%. We observe that the CPU temperature increases
20 °C at the beginning and goes back to the original

Taigs(t) = {



value after 1500 seconds when CPU-intensive tasks are
completed. Therefore, we focus on the data collected before
1500 seconds. The inlet and outlet temperature difference
falls in the range from 4.3 °C to 7.5 °C . In the first 660
seconds, the temperature difference increase very fast and
then do not fluctuate much. Thus, we conclude from the
experiment that CPU and disks significantly affect outlet
temperatures, and the discrepancy between inlet and outlet
temperature can expressed as (4).

0.0014 x t + 5.3720, if t < 660
6.8923, if t > 660
“4)
Fig. 4 also shows that the average cold-start time for the
three disks is more than 1200 seconds, much larger than
the cold-start time of CPU (i.e., CPU cold-start time is 100
seconds).

Taigpalt) = {

IV. THERMAL MODELS

It is extremely challenging to model the energy consump-
tion relationship between computing and cooling systems.
The cooling cost depends not only on cooling setting (e.g.,
inlet temperatures and cooling equipment placement), but
also on heat dissipated by computing facilities. CPU and
disks are two major types of components and heat contrib-
utors in data nodes. In this section, we develop a thermal
model that aim to estimate outlet temperatures by consider-
ing the impacts of CPU and disks. Moreover, by combining
a coefficient of performance (COP, for short) model that
predicts cooling costs by CRAC supply temperature [17],
our model can be used to predict the impact of CPUs and
disks on cooling cost.

A. Framework
Outlet
Temperature
Task
Management

Figure 5: Framework of proposed solution

Inlet/Outlet
Temperature
Model

Fig. 5 displays our thermal-modeling framework, which
consists of two components, namely, inlet/outlet-temperature
model and COP. The inlet/outlet-temperature model builds
up the relationship between inlet and outlet temperatures
by profiling analysis. In addition, given an outlet temper-
ature, our model estimates inlet temperatures under cer-
tain workloads. The COP model computes cooling costs
by taking into account inlet temperatures offered by the
inlet/outlet-temperature model. The main contributions of
this framework are: (1) a thermal model that characterizes
the relationship between inlet and outlet temperatures of a
data node and (2) cooling cost estimation for data center
designers.
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B. An Inlet/Outlet Temperature Model

Considering CPU and disk utilizations, we classify work-
loads of a node into four basic types (i.e., see Section I1I-B
for a combination of high and low utilizations of CPU and
disks). During any time period, the workload of a node
can be decomposed into a number of sub-period, in which
the node runs under one of the four basic types. Thus, in
each sub-period, the discrepancy between inlet and outlet
temperatures is modeled by incorporating the four basis
workload types.

Taifs1(t), if Ucpu =0 ,Ugisk =0
. _ Taifp2(t), if Ucpu = 100, Ugisk = 0
Taigs(t) = Tairp3(t), if Ucpu =0 ,Ugisk = 100
Taifra(t), if Ucpy = 100, Ugisk, = 10(%)

Given workloads and a number of sub-period T =
{t1,...tn }, we derive the outlet temperature from (1)-(4) as:

> Taips(ts)

= 6
= (6)

Tairs(%)

C. The COP Model

The energy cost of a node is contributed by the energy
consumption of the node and the cooling cost. We use
COP (i.e., the Coefficient Of Performance model), described
in [17], to calculate the cooling cost.

~

‘ —— COP=(0.0068"T%+0.0008*T+0.458) ‘

=)
T

©
T

Coefficient of Performance(Heat Removed)

; ; ; ; ;
15 20 25 30 35
CRAC Supply Temperature¢C)

40

Figure 6: Coefficient of the performance curve for the
chilled-water CRAC units at the HP Labs Utility Data
Center [17]

Fig. 6 plots COP values that increase with the supply
temperature of CRAC. A large COP value indicates a high
energy efficiency.

COP(T) 0.0068 * T2 + 0.0008 * T + 0.458

(7

In 7, COP is defined as the ratio of heat removed to the
energy cost of the cooling system for heat removal. T" refers
to the supply temperature of CRAC. The cooling cost is
inversely proportional to the COP value.

Pc

Pac = Gopy

®)



D. Case Studies

In order to demonstrate the application of our thermal
model, we conduct three case studies, representing three
typical access patterns of applications. We use the same
testbed (see Section III) to perform the case studies. We keep
all the three disks busy in the high-disk utilization cases. Let
us consider the following access patterns (see Fig. 7) in our
case studies:

o Pattern 1: In the Computing After Reading pattern,
applications first load data from disks, then process the
loaded data using CPU resources.

o Pattern 2: In the Computing Then Writing pattern,
applications perform CPU-intensive computation first,
followed by write-intensive activities to output data to
disks.

o Pattern 3: In the Computing and Reading/Writing in
Parallel pattern, applications concurrently impose
both CPU-intensive and I/O-intensive load to the node.

CPU Utilization

0

CPU Utilization

100 m

0

CPU Utilization

100 /—L

0

> Time > Time > Time

Disk Utilization

i J\

0

Disk Utilization

100 m

0

Disk Utilization

i /—L

0

> Time > Time > Time

Computing and Reading/

|
I
i
i
i
i
|
i
|
i
|
i
|
i
|
i
I
i
i
i
i
! Writing in Parallel

Computing After Reading Computing Then Writing

Figure 7: Three typical access patterns

Since the cold-start phase of disks is longer than that of
CPU, we consider two scenarios in each case study. The first
scenario represents cases where that the execution time of
I/0 tasks is smaller than the cold start phase. In this scenario,
the cold-start issue significantly affects outlet temperatures.
The second scenario represents case where the execution
time of I/O tasks is much longer than the cold-start time. In
the second scenario, the cold-start issue becomes negligible.
In the case studies, P¢ is the node’s power consumption.

1) Impact of the Cold-Start Phase: We set the execution
time of both CPU- and I/O-intensive tasks to 10 minutes,
which is smaller than the cold start phase of disks. During
the period of 10 minutes, the difference between inlet and
outlet temperatures under the four basic workload types are:

Tuifr1(600) = 3.8654 (°C)
Taif2(600) = 6.2618 (°C)
Taif3(600) = 4.6686 (°C)
Taifr4(600) = 6.2120 (°C)

After processing the CPU- and I/O-intensive tasks for
20 minutes in each case study, we evaluate the differences
between inlet and outlet temperatures as follows.

Access Pattern 1. Disks are kept in the busy status

in the first phase; Ty;rr3(600) denotes the inlet/outlet-
temperature difference. The increase of difference between
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inlet and outlet temperatures is Tg;fr3(600)-Ty;r1(0),
which is 0.8032 °C. Since the cold-start time for disks
are longer than 10 minutes, the disk temperature remains
unchanged in the second phase. In this case, if the increase
of the inlet/outlet-temperature difference in the first phase is
considered as the increase in the inlet temperature for the
second phase, and then this increment should be accumu-
lated to the second phase. Therefore, the overall inlet/outlet-
temperature difference can be derived as:

Tpatte'r‘nl (1200)
_ Taifr3(600) 4+ Tgip3(600) — Tgipr1(0) + Taifp2(600)
2

= 5.8668 (°C)

Access Pattern 2. We obtain an average difference
between inlet and outlet temperatures (i.e., 5.4652 °C )
after running the test for 20 minutes. Ti;¢52(600) is the
temperature increment in the first phase, in which CPU
is busy. Then, in the second phase, the CPU temperature
falls down to the normal value in the first 10 seconds; the
CPU temperatures in the second phase can be considered
as a constant. The inlet/outlet temperature difference in the
second phase can be calculated by Ty; 5 ¢3(600). The average
difference of inlet/outlet temperature is described below:

Tdiffg (600) + Tdiffg (600)
2

Tpattern2(1200) =
= 5.4652 (°C)

Access Pattern 3. the inlet and outlet temperature differ-
ence increases from 3.8654 °C to 6.2120 °C in the first
phase. In the second phase, the CPU temperature drops down
quickly; whereas the disk temperature slowly decreases. The
increasing and decreasing rates of disk temperature are slow;
no difference is observed in a 10-minute period. Hence, we
use Ty;rra and Ty;pp1 to calculate Tpairerns(1200) as:

T i £4(600) + Tgif £1(600
Tpatt(zrng(1200): dff4( ); dffl( )

= 5.0387 (°C)

Theoretically, cooling costs under these three patterns can
be reflected by the inlet-outlet-temperature difference. To
precisely evaluate cooling costs, we use the COP model that
takes inlet temperatures as an input and produces cooling en-
ergy consumption. The inlet temperatures in the case studies
are calculated in the way that identical outlet temperatures
will be produced after the CPU- and I/O-intensive tasks
are executed. For example, the inlet temperatures under the
aforementioned access patterns are 24.1 °C, 24.5 °C and
25.0 °C with outlet temperature being 30 °C.

According to the COP model, the COP values of these
access patterns are:

COPpatterns = COP (24.1) = 4.4268
COPpatternz = COP (24.5) = 4.5593
COPpatterns = COP (25.0) = 4.728




Given power (see Table Table II) of the node, we derive the
energy dissipation as:

Ppowrr1 = 135 % 600 + 85 % 600 = 132,000(.J)
Ppow gr2 = 135 % 600 + 85 * 600 = 132, 000(J)
Prowgrs = 142 % 600 + 73 * 600 = 129, 000(J)

The cooling costs calculated by the COP model are:

PpowER1
Pacy = <=SWERL 99, 818(J
act COPpn,tternl ' ( )
Ppow ER2
Paco = —FPOWER2 - _ o 959(J
Acz COPpattern2 ( )
PpowERs
P = ————— = 27,284(J
ACS COPpatternB ’ ( )

From the above analysis, access patten 3 saves the cooling
cost of patterns 1 and 2 by 2,534 J and 1,668 J, respectively.
The total energy cost, including computing and cooling
energy consumption, are shown below:

Prorari = Prower1 + Pac1 = 161,818(J)
Prorar2 = Prowgr2 + Pacz = 160,952(J)
Prorars = Prowrrs + Pacs = 156,284(J)

We observe that access pattern 3 leads to the lowest
energy. Pattern 3 makes it possible to increase CRAC tem-
perature to lower cooling cost. This observation motivates
us to propose an thermal-aware workload management that
minimizes the total energy consumption by data placement
optimization (see Section. V).

To validate the accuracy of the model, we manually mea-
sure the inlet and outlet temperatures of the node by using
an infrared thermometer. We collect 20 temperature samples
in each case study. We compare inlet-outlet-temperature
differences obtained from our model against the real-world
measurement. Table III shows that the precision-errors of
our model for the three case studies are 2.28 %, 3.74%,
and 4.84%, respectively. The precision is calculated by
dividing an average difference between real measurement
and simulation results by real measurement.

Table III Thermal Model Validation
l l Case Study 1 l Case Study 2 l Case Study 3 ‘
2.28 [ 3.74 [ 4.84 |

l Precision Error (%) l

2) Negligible Cold-Start Phase is Insignificant: if the ex-
ecution time of CPU- and I/O-intensive tasks are sufficiently
long, impact of the cold-start phase becomes negligible.
Now, we extend the model to consider cases where the cold-
start phase can be ignored. We set the execution time of the
tasks to be 60 minutes (totally 120 minutes), T; s of the
basic workload types are given below:
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Tuiz£1(3600) = 3.8654(°C)
a5 12(3600) = 6.2692(°C)
T 1 43(3600) = 4.7086(°C)
T £4(3600) = 6.8923(°C)

The average inlet-outlet-temperature differences under the
three access patterns are:

Tpattern1 (7200) = 5.4889(°C)
Tpattern2(7200) = 5.4889(°C)
Tpattern3(7200) = 5.3789(°C)

We can obtain the total energy costs of these cases as:
Prorari = 1,610,000(J)
Prorars = 1,610,000(J)
Prorars = 1,570,000(J)

The results show that compared with patterns 1 and 2,
pattern 3 offer 40,000 J savings in energy.

V. DATA PLACEMENT STRATEGIES
A. Thermal Impacts of Data Placement

In Section IIl, we evaluate the thermal impacts of a
data node equipped with three disks. It is worth noting
that disk configurations may vary greatly among nodes.
More importantly, our results show that workloads and disk
configurations affect heat dissipation in disks.

In this section, we show that given CPU and I/O loads,
workload distribution significantly affects thermal perfor-
mance of data nodes. In this data placement study, we use the
the same testbed described in Section III. We use postmark
to initially create 100 files, the size of which ranges from 1
to 100 MBytes. Three postmark tasks issue 1,000 requests
to the disks. Four scenarios are investigated in this group
of experiments. In the first scenarios, the three tasks are
accessing the three disks respectively. In the other three
scenarios, the three tasks are sharing a single disk.

Fig. 8 plots the disk utilization and temperature of the
four scenarios examined in the three-disk case. In scenario
1, it takes 1,500 seconds to complete all the I/O requests.
Fig. 8(a) shows that the temperatures of disk 1 and 2
increase by 2 °C; and the temperature of disk 3 increases
by 1 °C. When the three tasks are sharing one disk, the disk
temperature increases by 1 °C , whereas temperatures of the
other two disks remain unchanged. Thus, we conclude that
sharing a disk among the three tasks can maintain low disk
temperatures at the cost of increased I/O processing time
(e.g., from 1500 to 3,000 seconds).

B. Thermal-Aware Data Placement

The experimental results shown in the previous subsection
indicate that outlet temperatures affected by disks vary
greatly among cases. Nevertheless, a number of scenarios
have not been evaluated. For example, one possible scenario
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Figure 8: Thermal Impacts of Data Placement in the Three-Disk Case.

might be the load of three disks are high, low, and idle,
respectively. To provide large storage capacity, one may
increase the number of disks in each data node. Manually
measuring all possible scenarios is time-consuming and im-
practical. A promising solution is to use real measurements
collected in the simple disk configurations, and to model the
thermal characteristics of complicated scenarios.

Our results suggest that disk temperatures significantly
affect the outlet temperatures of a node. Disk temperatures
in turn depends on I/O activities and disk configurations.
These observations motivate us to study thermal-aware data
placement strategies, which aim to migrate data among disks
in order to minimize the cooling costs.

VI. CONCLUSION

Energy efficiency and thermal management of storage
systems must be urgently addressed, because energy con-
sumption and cooling costs of large-scale storage systems
in data centers have been increasing in the past decade.
Recent studies show that cooling costs contribute a sig-
nificant portion of the operational cost of data centers.
Thermal management techniques are applied to reduce the
energy consumption in cooling systems, thereby significantly
improving the energy efficiency of data centers. Thermal
models play a key role in thermal management; however,
traditional thermal models for data centers do not take into
account disk utilizations. In this study, we develop a thermal
model to investigate thermal impacts of hard disks on storage
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systems. We show how to apply the thermal model to
estimate the outlet temperature of a storage server based
on processor and disk utilizations. In addition, we study the
impact of data placement on the temperature of disks which
affect the outlet temperature and cooling cost.

Our thermal model offers the following two benefits. First,
the model makes it possible to reduce thermal monitoring
cost. Thermal management of hard disks in storage sys-
tems helps to cut cooling cost and boost system reliability.
Monitoring temperatures is a key issue in thermal manage-
ment techniques; however, it is prohibitively expensive to
acquire and set up a huge number of sensors in a large-
scale data center. Our model is an alternative to monitoring
temperatures of storage systems. Second, our thermal model
enables data center designers to make intelligent decisions
on thermal management during the design phase.
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