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Abstract. Task Scheduling for real-time distributed systems has been investigated extensively in the 

literature. However, conventional wisdom in dynamic scheduling ignores security requirements in real-

time applications. As such, in addition to factoring quality of security in real-time applications running 

in the system, real-time scheduling algorithms need to be security-aware in nature. In this paper we 

first identify the open issues and challenges involved in designing and implementing security-aware 

real-time scheduling schemes, which are intended to consider both security and real-time constraints 

for distributed systems. Then five approaches towards achieving security aware in real-time scheduling 

are described: a security-aware architecture, a uniprocessor real-time scheduling algorithm with 

security awareness (EDF_OPTS) using a preliminary security overhead model and overall system 

performance metrics, security-aware real-time scheduling for homogeneous and heterogeneous 

distributed systems, and a feedback control mechanism to improve quality of security and 

schedulability in run time. Discussions on future security overhead models are also provided. 

Simulation results show that our EDF_OPTS algorithm significantly improves system performance in 

terms of quality of security and schedulability over three baseline algorithms under a wide range of 

workload characteristics.  
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1. Introduction 

A real-time system is a system whose correctness depends not only on the results of 

computation, but also on time instants at which these results become available. Real-time 

systems are divided into two categories: hard real-time systems and soft real-time systems 

based on the consequences of missing deadlines. The consequences of missing deadlines of 

hard real-time systems may be catastrophic, whereas such consequences for soft real-time 

systems are relatively less damaging. Examples of hard real-time applications include aircraft 

control [4], radar for tracking missiles [13], and medical electronics [26]. On-line transaction 

processing systems are examples of soft real-time applications [15]. 



 
Tao Xie et al 

As real-time systems are becoming more and more complex, they are usually implemented 

in distributed computing platforms consisting of multiple modules interacting with one 

another to solve problems. Such real-time distributed systems are often heterogeneous. 

Growing evidence shows that scheduling is a key factor in obtaining high reliability and 

performance in heterogeneous distributed systems supporting real-time applications [14]   

[31]. A typical objective of real-time scheduling is to map tasks onto machines and order their 

execution in a way that task precedence requirements are satisfied and a minimum schedule 

length is given [17].  

 Due to the critical natures of applications executed in real-time systems, high security is 

an inherent requirement for such systems. A single design flaw with respect to security may 

render all security measures useless. This is especially true for distributed real-time 

applications.  For example, in a real-time stock quote update and trading system, each 

incoming request from business partners and each outgoing response from an enterprise’s 

back-end application (a request and a response are referred to as a task in this paper) have 

deadlines and security quality requirements, which have to be met by the server located 

between the business partners and enterprise back-end applications [3]. The server performs 

security operations on behalf of all its clients. In this case, a scheduler running on the server 

dynamically schedules all tasks in a way to guarantee their deadlines in addition to meeting 

their security requirements. 

Security in distributed systems can roughly be divided into two components [27]. One 

part concerns communications among users or processes, possibly residing in different 

machines. A principal mechanism for ensuring secure communication is that of a secure 

channel. The second part concerns authorization, which deals with protecting access to 

resources. To protect a system against all possible security threats, there is a need to provide a 

security policy to precisely describe which actions entities in a system are allowed to take and 

which ones are prohibited. Note that entities include users, services, data, machines, and the 

like. Once a security policy has been laid down, security mechanisms enforcing the policy can 

be developed [1]. Important security mechanisms are encryption, authentication, 

authorization, and auditing.   

Addressing security requirements in the context of real-time distributed systems poses 

various technical challenges. This paper aims at identifying open issues and challenges 

involved in providing high security for real-time distributed systems. The rest of the paper is 

organized as follows. Section 2 identifies open issues in real-time distributed systems with 

security requirements. Section 3 discusses approaches to achieve high security and 

schedulability for real-time distributed systems, and section 4 concludes the paper. 
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2. Real-time and Security Guarantees: Fundamental Challenges 

The issue of scheduling on heterogeneous distributed systems was reported in the literature, 

and these studies addressed various aspects of a complicated problem. Ranaweera and 

Agrawal developed a scalable scheduling scheme for heterogeneous systems [21]. In [24] and 

[2], reliability cost, defined to be a product of processor failure rate and task execution time, 

was incorporated into scheduling algorithms for tasks with precedence constraints. However, 

these algorithms are unable to support real-time applications. 

Conventional real-time scheduling algorithms such as Rate Monotonic (RM) algorithm 

[11], Earliest Deadline First (EDF) [25], and Spring scheduling algorithm [20][30] have been 

successfully applied in real-time systems. Previous work has been done to facilitate real-time 

computing in heterogeneous systems. Huh et al. proposed an approach to dynamically 

managing resources in real-time heterogeneous systems [6]. Santos et al. developed a 

probabilistic model for a client/server heterogeneous multimedia system [22]. These 

algorithms, however, could not tolerate any permanent processor failures. We proposed both 

static [16][18] and dynamic [17] reliability driven real-time scheduling schemes for 

heterogeneous systems which are able to tolerate failures.  

Although real-time scheduling algorithms for distributed systems have been extensively 

investigated, less attention has been paid to real-time systems with security requirements in 

general. Most existing real-time scheduling algorithms are not security-aware in the sense that 

the existing real-time scheduling algorithms ignore security overhead while scheduling real-

time tasks. Next, we present three challenges of   security aware real-time scheduling.   

z The first fundamental challenge is to specify security requirements for a real-time task.  

The security requirements of a task include how to specify the security of the task, the 

possible range of the security quality and the overhead of achieving some particular 

degree of security quality. The difficulty lies in measuring the quality of security of 

real-time tasks.  To the best of our knowledge, no existing literature has directly 

addressed the issue of accurately estimating security overhead experienced by 

security-critical real-time applications, and this becomes a significant open issue in the 

development of real-time security-aware scheduling schemes. To tackle this problem, 

we are studying the fundamental security services and their corresponding mechanisms 

in the literature and proposing some quantitative measure for some standard security 

mechanisms. This will lead to mathematical models that can approximately estimate 

security overhead experienced by real-time tasks. 

z The second fundamental challenge is to design and implement real-time security-

aware scheduling schemes, which can meet specific real-time and security 

requirements of applications executing in distributed systems. The ultimate goal of 
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security-aware scheduling is to guarantee security constraints in addition to real-time 

requirements of tasks running in distributed systems.  

z The third challenge is to introduce a new set of performance metrics including the 

quality of security, deadline guarantee ratio, overall system performance and 

scalability. Quality of security of a system can be represented by a formal 

measurement model based on the quality of security of individual tasks. Deadline 

guarantee ratio, or guarantee ratio for short is a ratio between the number of admitted 

tasks whose deadline can be met and the total number of submitted tasks. The 

scalability can be measured by the capacity of the real-time distributed systems in the 

sense that how the quality of security and guarantee ratio can be scaled by adding 

additional nodes, memory, or processing power. 

3. Scheduling Approaches to Providing Security and Real-time Guarantees  

3.1 Security-aware architecture  

Developing the architecture of security-aware real-time service provider is the key to 

building trustworthy real-time systems. As heterogeneous real-time systems are special case 

of distributed systems, we focus on security-aware architecture in the context of distributed 

computing. The following architecture is based on capabilities of distributed systems for 

information management, security mechanisms for protection, security-aware scheduling 

mechanisms for security management, and real-time mechanisms for guaranteeing timing 

constraints. The architecture is designed for flexible real-time tasks models including the 

periodic and aperiodic task models and is intended to provide a general framework to meet 

user needs by integrating an array of security services on various scales.  The architecture 

makes it possible to develop a wide range of security policies and mechanisms to protect 

heterogeneous real-time systems at all scales from deliberate intrusions and attacks. 

Our security-aware architecture, as illustrated in Figure 1, is augmented with six major 

Security-Aware API 

Security-Aware Scheduling Mechanism

Real-Time Mechanism

Resource monitor Security Services

Networked System Resources Managed by Service Provider

Applications

Figure 1. Security-aware architecture for distributed systems 
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components: security services, a security-aware scheduling mechanism, security-aware 

application programming interface (API), a resource management, a resource monitor, and a 

real-time mechanism.  

In most cases, delivery of data in networked real-time systems has timing constraints. For 

example, a networked radar system can compare images of objects against a database of 

known aircraft type. To adequately support real-time applications, the real-time mechanism is 

responsible for managing networked system resources to guarantee timeliness, which is 

achieved by performing schedulability analysis. The underlying computing resources are 

dynamically monitored by a resource monitor, which provides the real-time mechanism a way 

of conducting feasibility assessment. 

The security-aware scheduling mechanism is responsible for choosing the most appropriate 

security mechanism for each real-time task in a way to maximize resource utilization while 

guaranteeing timeliness. A security-aware API, which enables application programmers to 

implement security-aware real-time applications, is utilized to exchange security and 

performance related information among the security-aware scheduling mechanism and 

applications. The API provides the capability to specify security requirements imposed by 

applications.   

The proposed architecture will provide practical framework and toolkit to seamlessly 

integrate security services with real-time services for distributed systems. Additionally, the 

framework will allow multiple security-aware scheduling algorithms to be efficiently 

designed for distributed computing environments. 

3.2 Uniprocessor Real-time Scheduling with Security Awareness 

We proposed a real-time security-aware scheduling algorithm, which is referred to as the 

earliest deadline first scheduling algorithm with optimized security-awareness, or EDF_OPTS 

for short. EDF_OPTS is intended to achieve a high quality of security for admitted tasks 

while maximizing guarantee ratio [29]. It is assumed that there is only one CPU or node in a 

real-time system. The cases where the real-time system consists of multiple nodes will be 

discussed shortly in the subsequent sections. 

A real-time task is modelled by its arrival time, worst-case execution time, and deadline. It 

is assumed in our study that real-time tasks are indivisible, non-preemptive, and independent 

of one another. Note that the security overhead of the task is not factored in its worst-case 

execution time. We provide a simplified model to specify the security requirement of real-

time tasks. Each task has a security level between 1 and R, where 1 and R are the lowest and 

highest security level, respectively. R is set to 10 in our simulation experiments. For the sake 

of simplicity, we model the security overhead of a real-time task as a linear function of its 

worst-case execution time. The rationale behind it is based on the observation that security 
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overhead of a particular application tends to be proportional to the execution time of the 

application and the size of data handled.  

The EDF_OPTS algorithm is focused on optimizing the security levels of tasks in the 

priority queue. Specifically, EDF_OPTS strives to maximize the security levels of all the 

admitted tasks without violating real-time constraints. Under the circumstance where load is 

relatively high the EDF_OPTS algorithm will rejects real-time tasks whose deadlines are 

unable to be met. In contrast, real-time tasks that can be accomplished before their deadlines 

will be accepted by EDF_OPTS and placed in a priority queue, where priorities are assigned 

based on the tasks’ deadlines in a way that tasks with the earliest deadlines can be executed 

first. There is a trade-off between guarantee ratio and quality of security. Generally speaking, 

a high guarantee ratio results in low security levels. This is because EDF_OPTS attempts to 

admit as many tasks as possible in a way of reducing security overhead and decreasing the 

security levels. The goal of the EDF_OPTS algorithm is to maximize the overall system 

performance, or OSP, which is defined as a product of guarantee ratio (GR) and security value 

(SV). The security value SV is calculated as a sum of security levels of all admitted tasks. 

Thus, the EDF_OPTS makes an effort to achieve a high guarantee ratio while optimizing 

security value. Specifically, EDF_OPTS maximizes the security level of an admitted task in 

the queue, subjecting the following two constraints. (1) Increasing a task’s security level does 

not violate its deadline constraint. (2) The increment in the security level leads to no potential 

rejection of subsequent admitted real-time tasks. 

To quantitatively evaluate the effectiveness of the proposed EDF_OPTS, we compared our 

EDF_OPTS algorithm against three baseline heuristic scheduling algorithms, namely, 

EDF_MINS, EDF_MAXS, and EDF_RNDS. The EDF_MINS algorithm selects the lowest 

security level of each admitted task. Therefore, EDF_MINS improves guarantee ratios at the 

cost of reducing overall security value. Conversely, EDF_MAXS chooses the highest security 

level for each accepted task. As a result, the security values are increased while decreasing 

guarantee ratio. Unlike EDF_MINS and EDF_MAXS, the EDF_RNDS algorithm randomly 

picks a value within the range of security levels specified by each task in the queue. Hence, 

the performance of EDF_RNDS is somewhere between that of EDF_MINS and EDF_MAXS.  

The security values and guarantee ratios of four algorithms on various task arrival rates are 

respectively plotted in Figures 2 and 3. The execution time of each task is randomly chosen 

uniformly between 1 and 200 time units. Figure 2 clearly indicates that our EDF_OPTS 

consistently outperforms all the other three algorithms in security value when the arrival rate 

is larger than 0.75 Tasks/Time-Unit. Specifically, it is shown from Figure 2 that the security 

value of the proposed EDF_OPTS is 85.3%, 26.3%, and 16.6% higher than those of 

EDF_MINS, EDF_RNDS, and EDF_MAXS. In addition, the discrepancy in security value 
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between EDF_OPTS and other algorithms is more pronounced when the arrival rate increases. 

Interestingly, the results reveal that the security value performance of EDF_OPTS is better 

than that of EDF_MAXS. This is mainly because EDF_MAXS admitted some long tasks, 

which cause rejections of other short tasks. On the contrary, EDF_OPTS give higher priorities 

to short tasks by enhancing the security levels of the short tasks, resulting in fewer rejections 

for other real-time tasks. 

        Figure 2. Security values                                     Figure 3. Guarantee ratios 

We can see from Figure 3 that when the arrival rate is 0.1 Tasks/Time-Unit, there are only 

few tasks submitted to the system and, thus, guarantee ratio is relatively high (from 40% to 

57%). In contrast, when the system workload becomes extremely heavy, i.e., the arrival rate is 

3.0 Tasks/Time-Unit, guarantee ratio becomes very low (from 5% to 25%). The guarantee 

ratio performance of EDF_OPTS is better than those of EDF_MAXS and EDF_RNDS. We 

attribute this result to the fact that EDF_MAXS and EDF_RNDS always select higher 

security levels for admitted tasks and, 

therefore, many real-time tasks are rejected 

due to the acceptance of tasks with high 

security levels. The guarantee ratio of 

EDF_OPTS is only 5% less than that of 

EDF_MINS, and such discrepancy between 

EDF_OPTS and EDF_MINS becomes less 

obvious with the increasing arrival rate. 

However, aforementioned results showed that 

EDF_OPTS improves the performance in 

security value over EDF_MINS by 85.3%. 

As such, EDF_OPTS delivers the Overall 

System Performance (OSP) improvement over EDF_MINS by an average of 50.6%. 

Figure 4. Normalized average security 
values of the EDF_OPTS algorithm and 
three baseline algorithms 
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Additionally, our EDF_OPTS improves the overall system performance (OSP) over 

EDF_MAX and EDF_RNDS by 90.7% and 36.7%, respectively. 

We also conducted another group of experiments using normalized average security value, 

or NASV, rather than absolute security value as a performance metric. Before introducing 

NASV, we define a new measurement of security level referred to as normalized security 

level (NSL). The NSL value of a task is defined as a ratio between its security value and the 

highest security level required by the task. NASV can be calculated as the sum of the NSL 

values of all admitted tasks divided by the total number of submitted tasks to the system. 

Figure 4 plots the normalized average security values of the EDF_OPTS algorithm and three 

baseline algorithms. Figure 4 shows that the performance of EDF_OPTS in terms of security 

is better than those of the other three baseline algorithms. This result is consistent with the 

results shown in Figure 2.  

We are investigating some other performance metrics to better reflect the quality of security 

and therefore, better reflect the Overall System Performance of a security aware real-time 

system. 

3.3 Security-aware real-time scheduling with a feedback control mechanism 

Although the EDF_OPTS algorithm is capable of improving security value of a real-time 

system, there exist some limitations, one of which is that EDF_OPTS is an open-loop 

scheduling algorithm. While EDF_OPTS performs efficiently in static systems or dynamic 

systems with predictable workloads, it performs poorly in unpredictable dynamic 

environments, i.e., workloads are unable to be accurately modelled. In other words, 

EDF_OPTS is not adaptive in nature in 

the sense that it is not robust to sudden 

changes of system workloads.  

Since EDF_OPTS fails in detecting 

sudden changes in workloads, it may 

continue increasing security levels of 

tasks even under the circumstances that 

system guarantee ratios are extremely 

low. The unawareness of such changes 

will in return worsen the guarantee 

ratios, implying that more submitted 

tasks are likely to be rejected. To tackle 

this problem, a feedback control 

mechanism for security-aware real-time 

scheduling can be developed. The 

   Newly    
  arrived tasks

Admitted 
tasks 

 

 Monitor

Feedback 
Controller 

Security-aware 
Scheduler 

Queued  
tasks 

 
Computational 

Node 

Completed 
tasks 

Figure 5. The feedback-control mechanism for 
security-aware real-time scheduling 
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feedback control mechanism can dynamically monitor system guarantee ratio. If the guarantee 

ratio is lower than a certain threshold, the mechanism will make an effort to increase the 

guarantee ratio by loosening security levels of currently admitted tasks, thereby 

accommodating more future incoming tasks. 

The feedback control mechanism for security-aware real-time scheduling, or 

FCEDF_OPTS, is outlined in Figure 5. The mechanism consists of a security-aware 

scheduler, a feedback controller, a monitor, and computational nodes. The scheduler behaves 

as an actuator to control job admissions. For a system where real-time and security constraints 

both have to be factored in, accepting more jobs to the system may become counterproductive 

with respect to the quality of security. Thus, the feedback controller makes the best effort to 

dynamically maximize both the quality of security and the resource utilization and by 

accepting the most appropriate tasks to run in the system. 

3.4 Discussions: quantitative measurement of security overheads 

With a security overhead model in place, schedulers can be enabled to be aware of security 

overheads, thereby incorporating the overheads into the process of scheduling tasks. In 

previous study, we modelled the security overhead of a task as a linear function of its 

execution time. To make security-aware scheduling algorithms practical, we need to 

investigate and propose an accurate mathematical model to quantitatively measure security 

overheads. Unfortunately, less attention has been paid to the mathematical model used to 

measure security overheads imposed by tasks’ security requirements. Therefore, it is desirable 

to develop an effective model, which is capable of approximately or reasonably measuring 

overheads of a collection of widely used security techniques. To achieve this goal, we can, as 

the first step in this study, conduct extensive experiments to glean some understanding of how 

much extra execution time imposed by a particular security mechanism applied to real-time 

applications. The second step is then to build a mathematical model used to quantitatively 

predict security overheads related to various security levels. Note that a particular security 

level consists of a collection of security techniques, i.e., SSL, digital signature, encryption and 

decryption methods. The accomplishment of this study will provide a solid foundation, which 

is expected to make security-aware real-time scheduling algorithms more practical.  

3.5 Security-aware real-time scheduling for homogeneous distributed systems 

A homogeneous distributed system is comprised of a group of identical computers or 

servers loosely connected through a network and distributed middleware, which allow 

computers to coordinate their computation tasks and to share computing resources in a way 

that users perceive the system as a integrated computing platform. We are developing a 

security-aware real-time scheduling for distributed systems, where dynamic scheduling 
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algorithms are implemented as a middleware service processing requests with security and 

timing constraints between clients and servers. 

In a distributed system, a centralized server could be used to handle the issue of real-time 

scheduling. However, when the centralized server becomes increasingly overloaded with the 

growth of system size, it will inevitably become a severe bottleneck, making the distributed 

system suffer a significant performance drop. To effectively alleviate the potential burden of 

the centralized server, our security-aware real-time scheduler, or SARED, is distributed in 

nature in the sense that the scheduling workload can be evenly distributed among other 

servers. 

Application servers running on distributed systems specify an array of services by 

registering with security and real-time binding services to which clients make requests. The 

security and real-time binding services along with the security-aware real-time scheduling 

mechanism are responsible of the binding the most appropriate application services to clients 

requests to achieve high quality of security and meet timing constraints. 

When client task are submitted to the distributed system, the tasks specify the quality of 

service including security levels and deadlines. The security-aware real-time scheduling 

algorithm dynamically assigns security levels to tasks running in the distributed system. As 

discussed in prior sections, tasks with high security levels tend to experience high CPU 

overhead and cost of other resources. It is noted that the security overhead of a particular 

security level on all the servers are identical, indicating that we can apply the same security 

overhead model to an array of servers in the distributed systems.  

Besides deciding the security levels for real-time tasks, the scheduler is able to improve 

utilization of resources in distributed systems by sharing load among servers. Upon the arrival 

of a real-time task to a server in the system, the scheduler assigns the task to the local server if 

its load is not higher than a certain threshold. If the local server is overloaded, the scheduler 

will migrate the task to a remote server with the lightest load in the system. The local server 

monitors the resource utilization of the system by periodically receiving load information 

from other peer servers. Similarly, the local server repeatedly broadcasts its load information 

to other servers. 

3.6 Security-aware real-time scheduling for heterogeneous distributed systems 

Recent studies in the area of heterogeneous systems showed that there exist a number of 

challenges to be accommodated within a short span of time. One challenge is dynamic real-

time scheduling for parallel tasks running in heterogeneous systems. Scheduling of parallel 

jobs is one of the key factors in achieving high performance in heterogeneous systems 

[9][19][28]. The objective of real-time scheduling is to map tasks onto multiple nodes of a 

system in a way that task precedence constraints are satisfied and a minimal schedule length is 
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generated [17]. Many scheduling schemes have been introduced for parallel computing 

systems [5]. Some of them assume precedence requirements among tasks being scheduled, 

and use directed acyclic graph (DAG) to model such constraints [7][14]. However, most of 

existing algorithms did not consider tasks’ security requirements, which are essential for 

security-critical real-time applications running in a distributed system as heterogeneous as the 

Grid. 

A potential solution to tackle the above problem is to develop a security-aware real-time 

scheduling algorithm, or SAREH, which is capable of dynamically scheduling parallel jobs 

submitted to a heterogeneous distributed system. Specifically, a scheduler running on a 

dedicated node is in charge of scheduling jobs and dispatching them to other nodes to execute. 

The SAREH algorithm has to take into account dispatch times, schedule times, and most 

importantly, security overheads experienced by submitted jobs with various security 

requirements. The SAREH scheduling algorithm will decide start times and security levels for 

tasks within a parallel job in addition to finding a proper group of nodes for the job.  

The objective of the scheduling algorithm is twofold: enhance security values and minimize 

schedule lengths. To achieve high quality of security, our scheduling algorithm aims to 

dispatch tasks with higher security demands to more secure nodes with minimal security 

overheads. The quality of security of parallel jobs can be further improved by reducing data 

communication, because networks are insecure in nature for parallel jobs running in 

distributed systems.  
Table 1. Summary of Representative Scheduling Algorithms and Their Features 

Open Loop/ 
Closed Loop 

Static/ 
Dynamic 

Real-
time 

Homogeneous
/ 

Heterogeneous 

Security-
aware Algorithms 

Features 

CTSH [23] Open Static No Uniprocessor No 
RM [11] Open Static Yes Uniprocessor No 
EDF [25] Open Dynamic Yes Uniprocessor No 
Spring [20][30] Open Dynamic Yes Uniprocessor No 
FC_EDF [12] Close Dynamic Yes Uniprocessor No 
SQFCFS [8] Open Dynamic No Homogeneous No 
HEFT [28] Open Dynamic Yes Heterogeneous No 
EDF_OPTS [29] Open Dynamic Yes Uniprocessor Yes 
FCEDF_OPTS Close Dynamic Yes Uniprocessor Yes 
SARED Close Dynamic Yes Homogeneous Yes 
SAREH Close Dynamic Yes Heterogeneous Yes 
A second advantage of reducing communication overheads among tasks is to efficiently 

decrease schedule lengths. Communication overhead incurred by data transmission between 

two tasks allocated on the same node is negligible, because this can be performed through 

local memory with zero time cost. Our scheduling algorithm strives to reduce communication 
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overheads by allocating tasks with high communication requirements on the same node while 

assigning the heaviest inter-task communication to the most secure network links. As such, 

our SAREH scheduling algorithm is designed to make it possible to enhance schedulability 

and quality of security of heterogeneous distributed systems with no extra hardware cost. 

To enforce security and real-time guarantees for a diverse set of parallel jobs in a 

heterogeneous system, the SAREH algorithm incorporates the feedback control architecture 

as described in Section 3.3 to provide performance guarantees to a wide variety of 

applications while achieving high utilization of system resources shared by these applications 

executing in a dynamic heterogeneous computing environment. 

We summarize in Table 1 the most relevant scheduling algorithms described in the 

literature. It is noted from Table 1 that SAREH differs from the existing algorithms in that it 

is a closed-loop, dynamic, real-time, security-aware algorithm designed for heterogeneous 

distributed systems. 

4. Conclusions 

This paper identified open issues involved in providing both security and real-time 

guarantees to real-time applications with security requirements. We proposed five approaches 

to achieving high quality of security and schedulability: a security aware architecture, the 

uniprocessor real-time scheduling algorithm with security awareness (EDF_OPTS), the 

feedback control mechanism, security-aware real-time scheduling for homogeneous and 

heterogeneous distributed systems. 

We have conducted extensive simulation experiments to show that our EDF_OPTS 

algorithm can consistently improve system performance in terms of quality of security and 

guarantee ratios over three baseline algorithms. In particular, EDF_OPTS delivers the overall 

system performance improvement over the three baseline algorithms by 90.7%, 50.6%, and 

36.7%, respectively. We can further improve the performance of EDF_OPTS by 

incorporating the feedback control mechanism into the scheduling framework. 

Future studies in this research can be performed in several directions. First, a systematic 

security overhead model for real-time tasks will be developed. Second, the feedback control 

mechanism will be developed to dynamically monitor and adjust security levels and guarantee 

ratios. It is interesting to evaluate the performance of the feedback control mechanism in a 

large-scale distributed system. Finally, The SARED and SAREH algorithms will be 

implemented in the grid environment. 
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