

INFORMATION ISSN 1343-4500

 Volume 9, Number 2, pp.215-230 2006 International Information
Institute

Open Issues and Challenges in Security-aware Real-Time Scheduling for
Distributed Systems

Tao Xie*, Xiao Qin*, and Man Lin**

*Department of Computer Science, New Mexico Institute of Mining and Technology

801 Leroy Place, Socorro, New Mexico, 87801, USA
E-mail: {xietao, xqin}@cs.nmt.edu

** Department of Computer Science

St. Francis Xavier University
Antigonish, NS, B2G 2W5, Canada

E-mail: mlin@stfx.ca

Abstract. Task Scheduling for real-time distributed systems has been investigated extensively in the

literature. However, conventional wisdom in dynamic scheduling ignores security requirements in real-

time applications. As such, in addition to factoring quality of security in real-time applications running

in the system, real-time scheduling algorithms need to be security-aware in nature. In this paper we

first identify the open issues and challenges involved in designing and implementing security-aware

real-time scheduling schemes, which are intended to consider both security and real-time constraints

for distributed systems. Then five approaches towards achieving security aware in real-time scheduling

are described: a security-aware architecture, a uniprocessor real-time scheduling algorithm with

security awareness (EDF_OPTS) using a preliminary security overhead model and overall system

performance metrics, security-aware real-time scheduling for homogeneous and heterogeneous

distributed systems, and a feedback control mechanism to improve quality of security and

schedulability in run time. Discussions on future security overhead models are also provided.

Simulation results show that our EDF_OPTS algorithm significantly improves system performance in

terms of quality of security and schedulability over three baseline algorithms under a wide range of

workload characteristics.

Key Words: Security-aware, Real-time Scheduling, Distributed Systems, Quality of Security

1. Introduction

A real-time system is a system whose correctness depends not only on the results of

computation, but also on time instants at which these results become available. Real-time

systems are divided into two categories: hard real-time systems and soft real-time systems

based on the consequences of missing deadlines. The consequences of missing deadlines of

hard real-time systems may be catastrophic, whereas such consequences for soft real-time

systems are relatively less damaging. Examples of hard real-time applications include aircraft

control [4], radar for tracking missiles [13], and medical electronics [26]. On-line transaction

processing systems are examples of soft real-time applications [15].

Tao Xie et al

As real-time systems are becoming more and more complex, they are usually implemented

in distributed computing platforms consisting of multiple modules interacting with one

another to solve problems. Such real-time distributed systems are often heterogeneous.

Growing evidence shows that scheduling is a key factor in obtaining high reliability and

performance in heterogeneous distributed systems supporting real-time applications [14]

[31]. A typical objective of real-time scheduling is to map tasks onto machines and order their

execution in a way that task precedence requirements are satisfied and a minimum schedule

length is given [17].

 Due to the critical natures of applications executed in real-time systems, high security is

an inherent requirement for such systems. A single design flaw with respect to security may

render all security measures useless. This is especially true for distributed real-time

applications. For example, in a real-time stock quote update and trading system, each

incoming request from business partners and each outgoing response from an enterprise’s

back-end application (a request and a response are referred to as a task in this paper) have

deadlines and security quality requirements, which have to be met by the server located

between the business partners and enterprise back-end applications [3]. The server performs

security operations on behalf of all its clients. In this case, a scheduler running on the server

dynamically schedules all tasks in a way to guarantee their deadlines in addition to meeting

their security requirements.

Security in distributed systems can roughly be divided into two components [27]. One

part concerns communications among users or processes, possibly residing in different

machines. A principal mechanism for ensuring secure communication is that of a secure

channel. The second part concerns authorization, which deals with protecting access to

resources. To protect a system against all possible security threats, there is a need to provide a

security policy to precisely describe which actions entities in a system are allowed to take and

which ones are prohibited. Note that entities include users, services, data, machines, and the

like. Once a security policy has been laid down, security mechanisms enforcing the policy can

be developed [1]. Important security mechanisms are encryption, authentication,

authorization, and auditing.

Addressing security requirements in the context of real-time distributed systems poses

various technical challenges. This paper aims at identifying open issues and challenges

involved in providing high security for real-time distributed systems. The rest of the paper is

organized as follows. Section 2 identifies open issues in real-time distributed systems with

security requirements. Section 3 discusses approaches to achieve high security and

schedulability for real-time distributed systems, and section 4 concludes the paper.

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

2. Real-time and Security Guarantees: Fundamental Challenges

The issue of scheduling on heterogeneous distributed systems was reported in the literature,

and these studies addressed various aspects of a complicated problem. Ranaweera and

Agrawal developed a scalable scheduling scheme for heterogeneous systems [21]. In [24] and

[2], reliability cost, defined to be a product of processor failure rate and task execution time,

was incorporated into scheduling algorithms for tasks with precedence constraints. However,

these algorithms are unable to support real-time applications.

Conventional real-time scheduling algorithms such as Rate Monotonic (RM) algorithm

[11], Earliest Deadline First (EDF) [25], and Spring scheduling algorithm [20][30] have been

successfully applied in real-time systems. Previous work has been done to facilitate real-time

computing in heterogeneous systems. Huh et al. proposed an approach to dynamically

managing resources in real-time heterogeneous systems [6]. Santos et al. developed a

probabilistic model for a client/server heterogeneous multimedia system [22]. These

algorithms, however, could not tolerate any permanent processor failures. We proposed both

static [16][18] and dynamic [17] reliability driven real-time scheduling schemes for

heterogeneous systems which are able to tolerate failures.

Although real-time scheduling algorithms for distributed systems have been extensively

investigated, less attention has been paid to real-time systems with security requirements in

general. Most existing real-time scheduling algorithms are not security-aware in the sense that

the existing real-time scheduling algorithms ignore security overhead while scheduling real-

time tasks. Next, we present three challenges of security aware real-time scheduling.

z The first fundamental challenge is to specify security requirements for a real-time task.

The security requirements of a task include how to specify the security of the task, the

possible range of the security quality and the overhead of achieving some particular

degree of security quality. The difficulty lies in measuring the quality of security of

real-time tasks. To the best of our knowledge, no existing literature has directly

addressed the issue of accurately estimating security overhead experienced by

security-critical real-time applications, and this becomes a significant open issue in the

development of real-time security-aware scheduling schemes. To tackle this problem,

we are studying the fundamental security services and their corresponding mechanisms

in the literature and proposing some quantitative measure for some standard security

mechanisms. This will lead to mathematical models that can approximately estimate

security overhead experienced by real-time tasks.

z The second fundamental challenge is to design and implement real-time security-

aware scheduling schemes, which can meet specific real-time and security

requirements of applications executing in distributed systems. The ultimate goal of

Tao Xie et al

security-aware scheduling is to guarantee security constraints in addition to real-time

requirements of tasks running in distributed systems.

z The third challenge is to introduce a new set of performance metrics including the

quality of security, deadline guarantee ratio, overall system performance and

scalability. Quality of security of a system can be represented by a formal

measurement model based on the quality of security of individual tasks. Deadline

guarantee ratio, or guarantee ratio for short is a ratio between the number of admitted

tasks whose deadline can be met and the total number of submitted tasks. The

scalability can be measured by the capacity of the real-time distributed systems in the

sense that how the quality of security and guarantee ratio can be scaled by adding

additional nodes, memory, or processing power.

3. Scheduling Approaches to Providing Security and Real-time Guarantees

3.1 Security-aware architecture

Developing the architecture of security-aware real-time service provider is the key to

building trustworthy real-time systems. As heterogeneous real-time systems are special case

of distributed systems, we focus on security-aware architecture in the context of distributed

computing. The following architecture is based on capabilities of distributed systems for

information management, security mechanisms for protection, security-aware scheduling

mechanisms for security management, and real-time mechanisms for guaranteeing timing

constraints. The architecture is designed for flexible real-time tasks models including the

periodic and aperiodic task models and is intended to provide a general framework to meet

user needs by integrating an array of security services on various scales. The architecture

makes it possible to develop a wide range of security policies and mechanisms to protect

heterogeneous real-time systems at all scales from deliberate intrusions and attacks.

Our security-aware architecture, as illustrated in Figure 1, is augmented with six major

Security-Aware API

Security-Aware Scheduling Mechanism

Real-Time Mechanism

Resource monitor Security Services

Networked System Resources Managed by Service Provider

Applications

Figure 1. Security-aware architecture for distributed systems

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

components: security services, a security-aware scheduling mechanism, security-aware

application programming interface (API), a resource management, a resource monitor, and a

real-time mechanism.

In most cases, delivery of data in networked real-time systems has timing constraints. For

example, a networked radar system can compare images of objects against a database of

known aircraft type. To adequately support real-time applications, the real-time mechanism is

responsible for managing networked system resources to guarantee timeliness, which is

achieved by performing schedulability analysis. The underlying computing resources are

dynamically monitored by a resource monitor, which provides the real-time mechanism a way

of conducting feasibility assessment.

The security-aware scheduling mechanism is responsible for choosing the most appropriate

security mechanism for each real-time task in a way to maximize resource utilization while

guaranteeing timeliness. A security-aware API, which enables application programmers to

implement security-aware real-time applications, is utilized to exchange security and

performance related information among the security-aware scheduling mechanism and

applications. The API provides the capability to specify security requirements imposed by

applications.

The proposed architecture will provide practical framework and toolkit to seamlessly

integrate security services with real-time services for distributed systems. Additionally, the

framework will allow multiple security-aware scheduling algorithms to be efficiently

designed for distributed computing environments.

3.2 Uniprocessor Real-time Scheduling with Security Awareness

We proposed a real-time security-aware scheduling algorithm, which is referred to as the

earliest deadline first scheduling algorithm with optimized security-awareness, or EDF_OPTS

for short. EDF_OPTS is intended to achieve a high quality of security for admitted tasks

while maximizing guarantee ratio [29]. It is assumed that there is only one CPU or node in a

real-time system. The cases where the real-time system consists of multiple nodes will be

discussed shortly in the subsequent sections.

A real-time task is modelled by its arrival time, worst-case execution time, and deadline. It

is assumed in our study that real-time tasks are indivisible, non-preemptive, and independent

of one another. Note that the security overhead of the task is not factored in its worst-case

execution time. We provide a simplified model to specify the security requirement of real-

time tasks. Each task has a security level between 1 and R, where 1 and R are the lowest and

highest security level, respectively. R is set to 10 in our simulation experiments. For the sake

of simplicity, we model the security overhead of a real-time task as a linear function of its

worst-case execution time. The rationale behind it is based on the observation that security

Tao Xie et al

overhead of a particular application tends to be proportional to the execution time of the

application and the size of data handled.

The EDF_OPTS algorithm is focused on optimizing the security levels of tasks in the

priority queue. Specifically, EDF_OPTS strives to maximize the security levels of all the

admitted tasks without violating real-time constraints. Under the circumstance where load is

relatively high the EDF_OPTS algorithm will rejects real-time tasks whose deadlines are

unable to be met. In contrast, real-time tasks that can be accomplished before their deadlines

will be accepted by EDF_OPTS and placed in a priority queue, where priorities are assigned

based on the tasks’ deadlines in a way that tasks with the earliest deadlines can be executed

first. There is a trade-off between guarantee ratio and quality of security. Generally speaking,

a high guarantee ratio results in low security levels. This is because EDF_OPTS attempts to

admit as many tasks as possible in a way of reducing security overhead and decreasing the

security levels. The goal of the EDF_OPTS algorithm is to maximize the overall system

performance, or OSP, which is defined as a product of guarantee ratio (GR) and security value

(SV). The security value SV is calculated as a sum of security levels of all admitted tasks.

Thus, the EDF_OPTS makes an effort to achieve a high guarantee ratio while optimizing

security value. Specifically, EDF_OPTS maximizes the security level of an admitted task in

the queue, subjecting the following two constraints. (1) Increasing a task’s security level does

not violate its deadline constraint. (2) The increment in the security level leads to no potential

rejection of subsequent admitted real-time tasks.

To quantitatively evaluate the effectiveness of the proposed EDF_OPTS, we compared our

EDF_OPTS algorithm against three baseline heuristic scheduling algorithms, namely,

EDF_MINS, EDF_MAXS, and EDF_RNDS. The EDF_MINS algorithm selects the lowest

security level of each admitted task. Therefore, EDF_MINS improves guarantee ratios at the

cost of reducing overall security value. Conversely, EDF_MAXS chooses the highest security

level for each accepted task. As a result, the security values are increased while decreasing

guarantee ratio. Unlike EDF_MINS and EDF_MAXS, the EDF_RNDS algorithm randomly

picks a value within the range of security levels specified by each task in the queue. Hence,

the performance of EDF_RNDS is somewhere between that of EDF_MINS and EDF_MAXS.

The security values and guarantee ratios of four algorithms on various task arrival rates are

respectively plotted in Figures 2 and 3. The execution time of each task is randomly chosen

uniformly between 1 and 200 time units. Figure 2 clearly indicates that our EDF_OPTS

consistently outperforms all the other three algorithms in security value when the arrival rate

is larger than 0.75 Tasks/Time-Unit. Specifically, it is shown from Figure 2 that the security

value of the proposed EDF_OPTS is 85.3%, 26.3%, and 16.6% higher than those of

EDF_MINS, EDF_RNDS, and EDF_MAXS. In addition, the discrepancy in security value

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

between EDF_OPTS and other algorithms is more pronounced when the arrival rate increases.

Interestingly, the results reveal that the security value performance of EDF_OPTS is better

than that of EDF_MAXS. This is mainly because EDF_MAXS admitted some long tasks,

which cause rejections of other short tasks. On the contrary, EDF_OPTS give higher priorities

to short tasks by enhancing the security levels of the short tasks, resulting in fewer rejections

for other real-time tasks.

 Figure 2. Security values Figure 3. Guarantee ratios

We can see from Figure 3 that when the arrival rate is 0.1 Tasks/Time-Unit, there are only

few tasks submitted to the system and, thus, guarantee ratio is relatively high (from 40% to

57%). In contrast, when the system workload becomes extremely heavy, i.e., the arrival rate is

3.0 Tasks/Time-Unit, guarantee ratio becomes very low (from 5% to 25%). The guarantee

ratio performance of EDF_OPTS is better than those of EDF_MAXS and EDF_RNDS. We

attribute this result to the fact that EDF_MAXS and EDF_RNDS always select higher

security levels for admitted tasks and,

therefore, many real-time tasks are rejected

due to the acceptance of tasks with high

security levels. The guarantee ratio of

EDF_OPTS is only 5% less than that of

EDF_MINS, and such discrepancy between

EDF_OPTS and EDF_MINS becomes less

obvious with the increasing arrival rate.

However, aforementioned results showed that

EDF_OPTS improves the performance in

security value over EDF_MINS by 85.3%.

As such, EDF_OPTS delivers the Overall

System Performance (OSP) improvement over EDF_MINS by an average of 50.6%.

Figure 4. Normalized average security
values of the EDF_OPTS algorithm and
three baseline algorithms

Tao Xie et al

Additionally, our EDF_OPTS improves the overall system performance (OSP) over

EDF_MAX and EDF_RNDS by 90.7% and 36.7%, respectively.

We also conducted another group of experiments using normalized average security value,

or NASV, rather than absolute security value as a performance metric. Before introducing

NASV, we define a new measurement of security level referred to as normalized security

level (NSL). The NSL value of a task is defined as a ratio between its security value and the

highest security level required by the task. NASV can be calculated as the sum of the NSL

values of all admitted tasks divided by the total number of submitted tasks to the system.

Figure 4 plots the normalized average security values of the EDF_OPTS algorithm and three

baseline algorithms. Figure 4 shows that the performance of EDF_OPTS in terms of security

is better than those of the other three baseline algorithms. This result is consistent with the

results shown in Figure 2.

We are investigating some other performance metrics to better reflect the quality of security

and therefore, better reflect the Overall System Performance of a security aware real-time

system.

3.3 Security-aware real-time scheduling with a feedback control mechanism

Although the EDF_OPTS algorithm is capable of improving security value of a real-time

system, there exist some limitations, one of which is that EDF_OPTS is an open-loop

scheduling algorithm. While EDF_OPTS performs efficiently in static systems or dynamic

systems with predictable workloads, it performs poorly in unpredictable dynamic

environments, i.e., workloads are unable to be accurately modelled. In other words,

EDF_OPTS is not adaptive in nature in

the sense that it is not robust to sudden

changes of system workloads.

Since EDF_OPTS fails in detecting

sudden changes in workloads, it may

continue increasing security levels of

tasks even under the circumstances that

system guarantee ratios are extremely

low. The unawareness of such changes

will in return worsen the guarantee

ratios, implying that more submitted

tasks are likely to be rejected. To tackle

this problem, a feedback control

mechanism for security-aware real-time

scheduling can be developed. The

 Newly
 arrived tasks

Admitted
tasks

 Monitor

Feedback
Controller

Security-aware
Scheduler

Queued
tasks

Computational

Node

Completed
tasks

Figure 5. The feedback-control mechanism for
security-aware real-time scheduling

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

feedback control mechanism can dynamically monitor system guarantee ratio. If the guarantee

ratio is lower than a certain threshold, the mechanism will make an effort to increase the

guarantee ratio by loosening security levels of currently admitted tasks, thereby

accommodating more future incoming tasks.

The feedback control mechanism for security-aware real-time scheduling, or

FCEDF_OPTS, is outlined in Figure 5. The mechanism consists of a security-aware

scheduler, a feedback controller, a monitor, and computational nodes. The scheduler behaves

as an actuator to control job admissions. For a system where real-time and security constraints

both have to be factored in, accepting more jobs to the system may become counterproductive

with respect to the quality of security. Thus, the feedback controller makes the best effort to

dynamically maximize both the quality of security and the resource utilization and by

accepting the most appropriate tasks to run in the system.

3.4 Discussions: quantitative measurement of security overheads

With a security overhead model in place, schedulers can be enabled to be aware of security

overheads, thereby incorporating the overheads into the process of scheduling tasks. In

previous study, we modelled the security overhead of a task as a linear function of its

execution time. To make security-aware scheduling algorithms practical, we need to

investigate and propose an accurate mathematical model to quantitatively measure security

overheads. Unfortunately, less attention has been paid to the mathematical model used to

measure security overheads imposed by tasks’ security requirements. Therefore, it is desirable

to develop an effective model, which is capable of approximately or reasonably measuring

overheads of a collection of widely used security techniques. To achieve this goal, we can, as

the first step in this study, conduct extensive experiments to glean some understanding of how

much extra execution time imposed by a particular security mechanism applied to real-time

applications. The second step is then to build a mathematical model used to quantitatively

predict security overheads related to various security levels. Note that a particular security

level consists of a collection of security techniques, i.e., SSL, digital signature, encryption and

decryption methods. The accomplishment of this study will provide a solid foundation, which

is expected to make security-aware real-time scheduling algorithms more practical.

3.5 Security-aware real-time scheduling for homogeneous distributed systems

A homogeneous distributed system is comprised of a group of identical computers or

servers loosely connected through a network and distributed middleware, which allow

computers to coordinate their computation tasks and to share computing resources in a way

that users perceive the system as a integrated computing platform. We are developing a

security-aware real-time scheduling for distributed systems, where dynamic scheduling

Tao Xie et al

algorithms are implemented as a middleware service processing requests with security and

timing constraints between clients and servers.

In a distributed system, a centralized server could be used to handle the issue of real-time

scheduling. However, when the centralized server becomes increasingly overloaded with the

growth of system size, it will inevitably become a severe bottleneck, making the distributed

system suffer a significant performance drop. To effectively alleviate the potential burden of

the centralized server, our security-aware real-time scheduler, or SARED, is distributed in

nature in the sense that the scheduling workload can be evenly distributed among other

servers.

Application servers running on distributed systems specify an array of services by

registering with security and real-time binding services to which clients make requests. The

security and real-time binding services along with the security-aware real-time scheduling

mechanism are responsible of the binding the most appropriate application services to clients

requests to achieve high quality of security and meet timing constraints.

When client task are submitted to the distributed system, the tasks specify the quality of

service including security levels and deadlines. The security-aware real-time scheduling

algorithm dynamically assigns security levels to tasks running in the distributed system. As

discussed in prior sections, tasks with high security levels tend to experience high CPU

overhead and cost of other resources. It is noted that the security overhead of a particular

security level on all the servers are identical, indicating that we can apply the same security

overhead model to an array of servers in the distributed systems.

Besides deciding the security levels for real-time tasks, the scheduler is able to improve

utilization of resources in distributed systems by sharing load among servers. Upon the arrival

of a real-time task to a server in the system, the scheduler assigns the task to the local server if

its load is not higher than a certain threshold. If the local server is overloaded, the scheduler

will migrate the task to a remote server with the lightest load in the system. The local server

monitors the resource utilization of the system by periodically receiving load information

from other peer servers. Similarly, the local server repeatedly broadcasts its load information

to other servers.

3.6 Security-aware real-time scheduling for heterogeneous distributed systems

Recent studies in the area of heterogeneous systems showed that there exist a number of

challenges to be accommodated within a short span of time. One challenge is dynamic real-

time scheduling for parallel tasks running in heterogeneous systems. Scheduling of parallel

jobs is one of the key factors in achieving high performance in heterogeneous systems

[9][19][28]. The objective of real-time scheduling is to map tasks onto multiple nodes of a

system in a way that task precedence constraints are satisfied and a minimal schedule length is

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

generated [17]. Many scheduling schemes have been introduced for parallel computing

systems [5]. Some of them assume precedence requirements among tasks being scheduled,

and use directed acyclic graph (DAG) to model such constraints [7][14]. However, most of

existing algorithms did not consider tasks’ security requirements, which are essential for

security-critical real-time applications running in a distributed system as heterogeneous as the

Grid.

A potential solution to tackle the above problem is to develop a security-aware real-time

scheduling algorithm, or SAREH, which is capable of dynamically scheduling parallel jobs

submitted to a heterogeneous distributed system. Specifically, a scheduler running on a

dedicated node is in charge of scheduling jobs and dispatching them to other nodes to execute.

The SAREH algorithm has to take into account dispatch times, schedule times, and most

importantly, security overheads experienced by submitted jobs with various security

requirements. The SAREH scheduling algorithm will decide start times and security levels for

tasks within a parallel job in addition to finding a proper group of nodes for the job.

The objective of the scheduling algorithm is twofold: enhance security values and minimize

schedule lengths. To achieve high quality of security, our scheduling algorithm aims to

dispatch tasks with higher security demands to more secure nodes with minimal security

overheads. The quality of security of parallel jobs can be further improved by reducing data

communication, because networks are insecure in nature for parallel jobs running in

distributed systems.
Table 1. Summary of Representative Scheduling Algorithms and Their Features

Open Loop/
Closed Loop

Static/
Dynamic

Real-
time

Homogeneous
/

Heterogeneous

Security-
aware Algorithms

Features

CTSH [23] Open Static No Uniprocessor No
RM [11] Open Static Yes Uniprocessor No
EDF [25] Open Dynamic Yes Uniprocessor No
Spring [20][30] Open Dynamic Yes Uniprocessor No
FC_EDF [12] Close Dynamic Yes Uniprocessor No
SQFCFS [8] Open Dynamic No Homogeneous No
HEFT [28] Open Dynamic Yes Heterogeneous No
EDF_OPTS [29] Open Dynamic Yes Uniprocessor Yes
FCEDF_OPTS Close Dynamic Yes Uniprocessor Yes
SARED Close Dynamic Yes Homogeneous Yes
SAREH Close Dynamic Yes Heterogeneous Yes
A second advantage of reducing communication overheads among tasks is to efficiently

decrease schedule lengths. Communication overhead incurred by data transmission between

two tasks allocated on the same node is negligible, because this can be performed through

local memory with zero time cost. Our scheduling algorithm strives to reduce communication

Tao Xie et al

overheads by allocating tasks with high communication requirements on the same node while

assigning the heaviest inter-task communication to the most secure network links. As such,

our SAREH scheduling algorithm is designed to make it possible to enhance schedulability

and quality of security of heterogeneous distributed systems with no extra hardware cost.

To enforce security and real-time guarantees for a diverse set of parallel jobs in a

heterogeneous system, the SAREH algorithm incorporates the feedback control architecture

as described in Section 3.3 to provide performance guarantees to a wide variety of

applications while achieving high utilization of system resources shared by these applications

executing in a dynamic heterogeneous computing environment.

We summarize in Table 1 the most relevant scheduling algorithms described in the

literature. It is noted from Table 1 that SAREH differs from the existing algorithms in that it

is a closed-loop, dynamic, real-time, security-aware algorithm designed for heterogeneous

distributed systems.

4. Conclusions

This paper identified open issues involved in providing both security and real-time

guarantees to real-time applications with security requirements. We proposed five approaches

to achieving high quality of security and schedulability: a security aware architecture, the

uniprocessor real-time scheduling algorithm with security awareness (EDF_OPTS), the

feedback control mechanism, security-aware real-time scheduling for homogeneous and

heterogeneous distributed systems.

We have conducted extensive simulation experiments to show that our EDF_OPTS

algorithm can consistently improve system performance in terms of quality of security and

guarantee ratios over three baseline algorithms. In particular, EDF_OPTS delivers the overall

system performance improvement over the three baseline algorithms by 90.7%, 50.6%, and

36.7%, respectively. We can further improve the performance of EDF_OPTS by

incorporating the feedback control mechanism into the scheduling framework.

Future studies in this research can be performed in several directions. First, a systematic

security overhead model for real-time tasks will be developed. Second, the feedback control

mechanism will be developed to dynamically monitor and adjust security levels and guarantee

ratios. It is interesting to evaluate the performance of the feedback control mechanism in a

large-scale distributed system. Finally, The SARED and SAREH algorithms will be

implemented in the grid environment.

Acknowledgements

The work reported in this paper was supported in part by Intel Corporation under

Grant 2005-04-070 and by the New Mexico Institute of Mining and Technology under

Grant 103295.

Open Issues and Challenges in Security-aware Real-Time Scheduling for Distributed
Systems

References

[1] M. Bishop, “Computer Security: Art and Science,” Addison Wesley
Professional, ISBN 0201440997; Published: Dec 2, 2002.

[2] A. Dogan, F. Ozguner, “Reliable matching and scheduling of precedence-
constrained tasks in heterogeneous distributed computing,” Proc. Int’l Conf. on
Parallel Processing, pp. 307-314, 2000.

[3] G. Donoho, “Building a Web Service to Provide Real-Time Stock Quotes,”
MCAD.Net, February, 2004.

[4] W. E. Faller, S. J. Schreck, “Real-time prediction of unsteady aerodynamics:
Application for aircraft control and manoeuvrability enhancement,” IEEE
Transactions on Neural Networks, Vol. 6 , No. 6 , pp 1461 – 1468, Nov. 1995.

[5] D. G. Feitelson, L. Rudolph, “Job Scheduling for Parallel Supercomputers,” In
Encyclopedia of Computer Science and Technology, Vol. 38, New York, 1998.

[6] E.N. Huh, L.R. Welch, B.A. Shirazi and C.D. Cavanaugh, “Heterogeneous
Resource Management for Dynamic Real-Time Systems,” In Proc. of the 9th
Heterogeneous Computing Workshop, 2000, 287-296.

[7] M. Iverson and F. Ozguner, "Dynamic, Competitive Scheduling of Multiple
DAGs in a Distributed Heterogeneous Environment," In Proc. of the Seventh
Heterogeneous Computing Workshop, pp.70-78, Orlando, Florida, USA, 1998.

[8] H. D. Karatza, R. C. Hilzer, “Parallel Job Scheduling in Homogeneous
Distributed Systems,” SIMULATION: Transactions of the Society for Modeling
and Simulation, vol. 79, issue 5, pp. 287-298(12), May 2003.

[9] D. Kebbal, E.G. Talbi, J.M. Geib, “Building and Scheduling Parallel Adaptive
Applications in Heterogeneous Environments,” 1st IEEE Computer Society
International Workshop on Cluster Computing, Melbourne, Australia, December
02 - 03, 1999.

[10] J.-C. Laprie. “Dependable Computing: Concepts, Limits, Challenges”. Special
Issue of the 25th International Symposium On Fault-Tolerant Computing, pp.
42-54, IEEE Computer Society Press. Pasadena, CA. 1995.

[11] C. L. Liu, J.W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment,” Journal of ACM, Vol.20, No.1, pp. 46-61, 1973

[12] C. Lu, J. A. Stankovic, G. Tao, S. H. Son, “Design and Evaluation of a Feedback
Control EDF Scheduling Algorithm,” Proceedings IEEE Real-Time Systems
Symposium, Phoenix, Arizona, December 1999.

[13] B. Mahafza, S. Welstead, D. Champagne, R. Manadhar, T. Worthington, and S.
Campbell, “Real-time radar signal simulation for the ground based radar for national
missile defense,” Proc. the 1998 IEEE Radar Conference, pp 62 – 67, May 1998.

[14] M. Maheswaran and H. J. Siegel, “A Dynamic Matching and Scheduling
Algorithm for Heterogeneous Computing Systems,” Proc. the 7th
Heterogeneous Computing Workshop, pp.57-69, 1998.

[15] J. Nilsson and F. Dahlgren, “Improving performance of load-store sequences for
transaction processing workloads on multiprocessors,” Proc. International
Conference on Parallel Processing, pp. 246-255, 21-24 Sept. 1999.

[16] X. Qin, H. Jiang, D. R. Swanson, “An Efficient Fault-tolerant Scheduling
Algorithm for Real-time Tasks with Precedence Constraints in Heterogeneous
Systems,” Proc. Int’l Conf. on Parallel Processing, British Columbia, Canada,
pp.360-368, Aug. 2002.

Tao Xie et al

[17] X. Qin, H. Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time
Jobs in Heterogeneous Systems,” In the Proceedings of the 30th International
Conference on Parallel Processing (ICPP 2001), pp.113-122, Valencia, Spain,
September 3-7, 2001

[18] X. Qin, H. Jiang, C. Xie, and Z. Han, "Reliability-driven scheduling for real-time
tasks with precedence constraints in heterogeneous distributed systems,"
Proceedings of the International Conference Parallel and Distributed
Computing and Systems 2000, November 6-9, 2000.

[19] A. Radulescu, Arjan J.C. van Gemund, “Fast and Effective Task Scheduling in
Heterogeneous Systems,” In Proc. of the 12th Euromicro conferences on Real-
time Systems, pp229-238, 2000

[20] K. Ramamritham, J. A. Stankovic, “Dynamic task scheduling in distributed hard
real-time system,” IEEE Software, Vol. 1, No. 3, July 1984.

[21] S. Ranaweera, and D.P. Agrawal, “Scheduling of Periodic Time Critical
Applications for Pipelined Execution on Heterogeneous Systems,” Proc. Int’l
Conf. on Parallel Processing, pp. 131-138, Sept. 2001.

[22] R. M. Santos, J. Santos, and J. Orozco, “Scheduling heterogeneous multimedia
servers: different QoS for hard, soft and non real-time clients,” Proc. Euromicro
Conf. on Real-Time Systems, pp.247-253, 2000.

[23] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling heuristic for
Interconnection-Constrained Heterogeneous Machine Architectures,” IEEE
Trans. Parallel and Distributed Systems, 4(2), pp.175-187, 1993.

[24] S. Srinivasan, and N. K. Jha, “Safty and Reliability Driven Task Allocation in
Distributed Systems,” IEEE Trans. Parallel and Distributed Systems, 10(3), pp.
238-251, 1999.

[25] J. A. Stankovic, M. Spuri, K. Ramamritham, G.C. buttazzo, “Deadline
Scheduling for Real-Time Systems – EDF and Related Algorithms,” Kluwer
Academic Publishers, 1998.

[26] S. Suzuki, T. Katane, H. Saotome, O. Saito, “Electric power-generating system
using magnetic coupling for deeply implanted medical electronic devices,” IEEE
Transactions on Magnetics, Vol. 38 , No. 5, pp. 3006 – 3008, Sept. 2002.

[27] A. Tanenbaum, “Distributed systems: principles and paradigms,” Prentice Hall,
ISSN/ISBN: 0-13-088893-1, 2001

[28] H. Topcuoglu, S. Hariri, M.-Y. Wu, “Task Scheduling Algorithms for
Heterogeneous Processors,” In Proc. of 8th Heterogeneous Computing
Workshop, pp.3-14, 1999.

[29] T. Xie, A. Sung, and X. Qin, “Dynamic Task Scheduling with Security
Awareness in Real-Time Systems,” Proc. of the 19th Int’l Parallel and
Distributed Processing Symp., Int’l Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed Systems, IEEE/ACM,
April 4-8, 2005.

[30] W. Zhao, K. Ramamritham, J.A. Stankovic, “Preemptive Scheduling Under
Time and Resource Constraints,” IEEE Transactions on Computers, pp. 36-38,
1987.

[31] Y. Zhang and A. Sivasubramaniam, “Scheduling Best-Effort and Real-Time
Pipeline Application on Time-Shared Clusters,” Proc. Int’l Symp Parallel
Architecture and Algorithm, 2001.

	Tao Xie*, Xiao Qin*, and Man Lin**
	E-mail: {xietao, xqin}@cs.nmt.edu
	1. Introduction

	2. Real-time and Security Guarantees: Fundamental Challenges
	3. Scheduling Approaches to Providing Security and Real-time
	3.1 Security-aware architecture
	3.2 Uniprocessor Real-time Scheduling with Security Awarenes
	3.3 Security-aware real-time scheduling with a feedback cont
	3.4 Discussions: quantitative measurement of security overhe
	3.5 Security-aware real-time scheduling for homogeneous dist
	3.6 Security-aware real-time scheduling for heterogeneous di

	4. Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

