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Load balancing for clusters has been investigated extensively, mainly focusing on the effective usage
of global CPU and memory resources. However, previous CPU- or memory-centric load balancing
schemes suffer significant performance drop under I/O-intensive workloads due to the imbalance
of I/O load. To solve this problem, we propose two simple yet effective I/O-aware load-balancing
schemes for two types of clusters: (1) homogeneous clusters where nodes are identical and (2) hetero-
geneous clusters, which are comprised of a variety of nodes with different performance character-
istics in computing power, memory capacity, and disk speed. In addition to assigning I/O-intensive
sequential and parallel jobs to nodes with light I/O loads, the proposed schemes judiciously take
into account both CPU and memory load sharing in the system. Therefore, our schemes are able
to maintain high performance for a wide spectrum of workloads. We develop analytic models to
study mean slowdowns, task arrival, and transfer processes in system levels. Using a set of real
I/0O-intensive parallel applications and synthetic parallel jobs with various I/O characteristics, we
show that our proposed schemes consistently improve the performance over existing non-I/O-aware
load-balancing schemes, including CPU- and Memory-aware schemes and a PBS-like batch sched-
uler for parallel and sequential jobs, for a diverse set of workload conditions. Importantly, this per-
formance improvement becomes much more pronounced when the applications are I/O-intensive.
For example, the proposed approaches deliver 23.6-88.0 % performance improvements for 1/0-
intensive applications such as LU decomposition, Sparse Cholesky, Titan, Parallel text searching,
and Data Mining. When I/O load is low or well balanced, the proposed schemes are capable of
maintaining the same level of performance as the existing non-I/0O-aware schemes.
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1. INTRODUCTION

In the last decade, clusters have become increasingly popular as powerful and
cost-effective platforms for executing parallel applications [Zhu et al. 2004].
In such systems, load-balancing schemes can improve system performance by
attempting to assign work, at run time, to machines with idle or underuti-
lized resources. Several distributed load-balancing schemes, based on this ar-
chitecture, have been presented in the literature, primarily considering CPU
[Harchol-Balter and Downey 1996; Hui and Chanson 1999], memory [Acharya
and Setia 1999; Voelker et al. 1997], network [Cruz and Park 2001], a com-
bination of CPU and memory [Zhang et al. 2000], or a combination of CPU
and network resources [Basney and Livny 2000]. For example, Harchol-Balter
and Downey [1996] proposed a CPU-based preemptive migration policy that
was more effective than non-preemptive migration policies. Zhang et al. [2000]
focused on load sharing policies that consider both CPU and memory services
among the nodes. Although these policies achieve high system performance by
increasing the utilization of resources in distributed systems, they are less ef-
fective when the workload comprises a large number of I/O-intensive jobs and
I/0 resources exhibit an imbalanced load.

Typical examples of I/O-intensive applications include long running simu-
lations of time-dependent phenomena that periodically generate snapshots of
their state [Tanaka 1993], remote-sensing database systems that process re-
mote sensing data [Chang et al. 1997], and biological sequence analysis [Zhu
et al. 2004], to name just a few. The high performance of I/O-intensive ap-
plications heavily depends on the effective usage of global storage, because
the impact of disk I/O on overall system performance is becoming increas-
ingly significant due to the rapidly widening gap between CPU and disk I/O
speeds. To alleviate the I/O bottleneck in clusters, load balancing policies have
to achieve high utilization of disk I/O resources by being I/O-aware, which in
turn improves the overall performance of cluster systems under I/O-intensive
workloads.

A large body of work can be found in the literature that addresses the issue
of balancing the load of disk I/O. For example, Lee et al. [2000] proposed two
file assignment algorithms that balance the load across all disks. The I/O load
balancing policies in these studies have been shown to be effective in improving
overall system performance by fully utilizing the available hard drives. Zhang
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et al. [1993] proposed three I/O-aware scheduling schemes that are aware of the
job’s spatial preferences. However, because these techniques are developed to
balance explicit I/O load, these approaches become less effective under a com-
plex workload where I/O-intensive tasks share resources with many memory-
and CPU-intensive tasks. The main distinction between the existing I/O-aware
load balancing schemes and our approaches is fourfold. First, our schemes con-
sider both explicit I/O invoked by application programs and implicit I/O induced
by page faults. Second, while these approaches address the issue of load bal-
ancing at the storage level, our technique tackles the problem of load balancing
at the application level. Third, one of our schemes considers heterogeneities in
CPU, memory, and disk resources. Fourth, our schemes can handle imbalanced
loads in three difference types of resources under a diverse set of workload
conditions, whereas the existing ones can only deal with an imbalance in disk
resources.

Communication-aware load balancing has been studied in Cruz and Park
[2001] and Keren and Barak [2003]. Our approach takes into account the com-
munication load as a measure to determine the migration cost, but balancing
the network load is beyond the scope of this paper.

Many researchers have shown that I/O cache and buffer are useful mech-
anisms to optimize storage systems. Ma et al. [2002] implemented an active
buffering scheme to alleviate I/O burdens by using local idle memory and over-
lapping I/O with computation. We developed a feedback control mechanism to
improve performance of clusters by adaptively manipulating the I/O buffer size
[Qin et al. 2003a]. Forney et al. [2002] investigated storage-aware caching algo-
rithms for heterogeneous clusters. Although we focus solely on balancing disk
I/0 load in this article, the approach proposed here is also capable of improving
the buffer utilization of each node.

The work presented in this article extends our previous work in load bal-
ancing strategies for sequential I/O-intensive jobs [Qin et al. 2003b, 2003c].
In the first part of this study, we develop two simple yet effective I/O-aware
load-balancing schemes for parallel jobs in homogeneous clusters. Extensive
simulations show that the proposed schemes are capable of balancing the load
of a cluster in such a way that CPU, memory, and I/O resources at each node
can be simultaneously well utilized under a wide spectrum of workload. It is
assumed in this part that the clusters are homogeneous in nature.

Although this assumption is reasonable for a new and stand-alone cluster
system, upgraded clusters or networked clusters are likely to be heterogeneous
in practice. This is because, to improve performance and support more users,
new nodes that might have different characteristics than the original ones
may be added to the systems or several smaller clusters of different charac-
teristics may be connected via a high-speed network to form a bigger one.
Accordingly, heterogeneity may exist in a variety of resources such as CPU,
memory, and disk storage. Heterogeneity in disks tends to induce more signifi-
cant performance degradation when coupled with imbalanced load of memory
and I/O resources and therefore, we have addressed the issue of heterogene-
ity in the second part of this study. A load balancing scheme is proposed to
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hide the heterogeneity of resources, especially that of I/O resources, by judi-
ciously balancing I/O work across all the nodes in a cluster. The experimental
results, generated from extensive simulations driven by both synthetic and real-
application traces, indicate that our proposed schemes significantly improve the
performance of the existing load balancing schemes that only consider CPU and
memory.

The main contributions of this article are summarized as follows. (1) a disk
I/0O model is proposed to efficiently estimate I/O load levels in the long term,;
(2) an analytical model is built to approximate mean slowdown of all jobs run-
ning on a cluster; (3) two I/O-aware load balancing schemes are developed for
homogeneous clusters; (4) an I/O-aware load balancing scheme is designed for
heterogeneous clusters; (5) a simulated cluster is implemented to verify the pro-
posed load balancing schemes; (6) a detailed comparison with the performance
of three other load balancing policies is provided; and (7) six real-world appli-
cations are used to demonstrate the strengths of our I/O-aware load balancing
approaches.

The rest of the article is organized as follows. Section 2 introduces system
models. Section 3 describes two I/O-aware load-balancing policies for parallel
jobs running on homogeneous clusters. In Section 4, I/O-aware load balancing
policies for heterogeneous clusters are studied. Finally, Section 5 summarizes
the paper and comments on future directions for this work.

2. SYSTEM MODELS

A head node in a cluster could apply a broadcast mechanism (e.g., gather and
scatter like operations) to handle load distribution in a dedicated computing
cluster. The head node increasingly becomes a severe bottleneck when the clus-
ter scales up. In this study, we propose a scalable infrastructure, where each
node maintains a load manager that is responsible for controlling, monitoring,
and load balancing the available resources, in addition to handling the execu-
tion of processes generated from the local node. In this infrastructure, every
job has a “home” node that it prefers for execution [Lavi and Barak 2001]. The
home model has two features: (1) the input data of a job has been stored in the
home node, and (2) the job was created on its home node. The network con-
sidered in this study is full connectivity in the sense that any two nodes are
connected through either a physical link or a virtual link. The memory burden
placed by migrating data is ignored, because data movement can be handled
by interface controllers without the local CPU’s intervention [Geoffray 2002].
To improve performance of disk subsystems, disk arrays may be attached to
nodes in a cluster. For simplicity and without loss of generality, we assume that
each node as a single disk subsystem. This model captures the key aspects of
nodes with disk arrays, since in the model we are able to treat an disk array in
each node as a single disk by readily configuring disk mechanical delay param-
eters (e.g., device rotation, arm positioning, and data transfer). Our model is
also valid for clusters equipped with networked storage systems. The reason is
twofold. First, in most clusters a local disk is attached to each computing node
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to cache the most popular data sets. Second, some network storage subsystems
have computing capacities.

The collective I/O technique is widely employed in clusters, where large
files are stored over a number of disks in different nodes in a RAID-like fash-
ion (see, for example, PVFS: a Parallel File System [Carns et al. 2000]). Our
proposed I/O-aware load balancing mechanism can be readily integrated with
PVFS, because large datasets can be distributed in a RAID-like fashion across
multiple disks in different nodes. In addition, we consider disk parallel I/O
processes, where I/O processes communicate with one another through the
message-passing interface or MPI. Thus, our approach is adequate for a va-
riety of parallel I/O patterns.

3. LOAD BALANCING FOR I/O-INTENSIVE JOBS
ON HOMOGENEOUS CLUSTERS

In this part of the study, we consider the problem of dynamic load balancing
among a cluster of homogeneous nodes connected by a high-speed network,
where tasks arrive at each node dynamically and independently, and share
resources available there. Some preliminary results of this part of study have
been discussed in Qin [2008].

3.1 1/0 Aware Load Balancing Schemes

3.1.1 I/0-Aware Load Balancing with Remote Execution (IOCM-RE). In
this section, we present IOCM-RE, a simple yet effective dynamic I/O-aware
load-balancing scheme. For a parallel job, arriving in its home node via the client
services, the IOCM-RE scheme attempts to balance three different resources
simultaneously in the following manner.

(1) When the I/O load of a node is greater than zero, tasks running on
the node, especially those with I/O- and memory-intensive workloads, are
likely to experience waiting time for I/O processing. To alleviate the problem
of unevenly distributed I/0 load, IOCM-RE selects a group of nodes with a
lighter load. If there are a number of choices, the one with the smallest value
of memory load will be chosen to break the tie. It is noted that, in this study,
the proposed load balancing schemes utilize an I/O load index to quantitatively
measure two types of I/O accesses: the implicit I/O load induced by page
faults and the explicit I/O requests resulting from tasks accessing disks. Let
page(, j) denote the implicit I/O load of task j running on node i, and IO(j)
denote the explicit I/O requirement of task j. Thus, node i’s I/O load index is
expressed by Equation (1).

Lio(i) =) . . page(i, j)+ ). 10()). (1)

Many existing load-balancing schemes use load levels of current time as
a means of defining load indices; therefore, load-balancing mechanisms may
overreact to temporary load fluctuations. To remedy this limitation, we propose
anew way to efficiently estimate future load levels, which capture CPU, memory
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and disk I/O requirements of tasks running on each node. The load indices
used in this study can closely approximate load levels in the long term, thereby
helping to solve the load fluctuation problem. The tasks of the parallel job are
assigned to the selected remote nodes satisfying a criterion based on remote
execution cost, in addition to load distribution. The criterion guarantees that
the response time of the expected execution on the selected remote node is
less than the local execution. Formally, the criterion is described as: r(i, j) >
r(k, j)+c;j@i, k), wherer(, j)andr(k, j) are the expected response times of task
J on the local node i and on the remote node %, respectively, and c;(i, k) is the
remote execution cost. (2) If no I/O load is imposed on the node, the IOCM-RE
scheme considers the node’s memory load, defined as the sum of the memory
space allocated to the tasks running on the node. When the memory load exceeds
the amount of available memory space, the IOCM-RE policy transfers the tasks
of the newly arriving parallel job from the overloaded node to the remote nodes
that are lightly loaded with respect to memory. (3) If both the disk I/O and
memory resources of the node are well balanced, IOCM-RE attempts to evenly
distribute the CPU load. Specifically, if the node is overloaded in terms of CPU
resource, the IOCM-RE policy transfers the tasks of the newly arriving job to
the remote node with the lightest CPU load. Therefore, IOCM-RE is capable
of resulting in a balanced CPU load distribution for systems under a CPU-
intensive workload.

3.1.2 I0-Aware Load Balancing with Preemptive Migration (IOCM-PM).
We are now in a position to study IOCM-PM, another I/O-aware load-balancing
scheme that improves the performance by considering not only incoming jobs
but also currently running jobs.

For a newly arriving job at its home node, the IOCM-PM scheme balances
the system load in the following manner. First, IOCM-RE will be invoked to
assign the tasks of the newly arriving parallel job to a group of suitable nodes.
Second, if the home node is still overloaded, IOCM-PM determines a set of
currently running processes that are eligible for migration. The migration of
an eligible task is able to potentially reduce the slowdown of the task, and
this step substantially improves the performance over the IOCM-RE scheme
with nonpreemptive migration. The set of eligible migrant tasks is: EM(i, k) =
{j € M;|rpmG, j) > rem(k, j)+ (i, k)}, where rpy(i, j) and rpy(k, j) are the
expected response time of task j on the local node i and on the remote node,
respectively, and c;(i, k) is the migration cost of task j. In other words, each
eligible migrant’s expected response time on the source node is greater than
the sum of its expected response time on the destination node and the expected
migration cost. Finally, the eligible processes are preempted and migrated to a
remote node with lighter load, and the load of the home node and remote nodes
is updated accordingly.

We can employ a task migration mechanism (see, for example, M-JavaMPI
and LAM/MPI) to migrate tasks that are part of a parallel job (e.g., MPI jobs).
The task migration mechanism is able to migrate tasks from one node to another
in a cluster by virtue of saving tasks’ images. To migrate a task of a parallel
application, the migration mechanism transfers the task’s image from its local

ACM Transactions on Storage, Vol. 5, No. 3, Article 9, Publication date: November 2009.



Dynamic Load Balancing for I/O-Intensive Applications on Clusters . 9:7

node to a remote node, where the task resumes its execution without having to
restart the entire parallel application.

In an effort to integrate an existing task migration mechanism with our load-
balancing schemes, we have to distinguish two types of parallel applications:
embarrassingly parallel applications and parallel applications with commu-
nications. Tasks in an embarrassingly parallel application are executed inde-
pendently; thus, the tasks can be readily migrated without dealing with the
issue of synchronizations. In contrast, many parallel applications with commu-
nications typically have barrier synchronization events from time to time. It is
imperative that migrations of a task in a parallel application do not intervene in
synchronizations of the task with other tasks in the application. Therefore, the
task migration mechanism must bring the parallel application into a consistent
state after each task migration in the application is successfully completed.

3.2 Analytic Model

In this subsection, we develop models to help in evaluating the performance of
the proposed schemes. With the analytic models in place, we study task arrival
and transfer processes in the level of cluster computing systems. First and
foremost, let us estimate the mean slowdown (see Equations (5) and (6)) of all
jobs running on a cluster. Note that Equations (5) and (6) can be derived from
Equations (2)—(4).

Let R be the cumulative execution time of a node, and pg (i) be the probability
that the cumulative execution time is ¢ (i.e., pr(i) = Pr(R = i)). Since the
cumulative execution time consists of both I/O execution time (denoted by Rjo)
and CPU execution time (denoted by Rcpy), pr(i) is expressed as

Pr@) =Pr(R =1) = PI‘(RIO + Rcpy =1)

i—1 . . . (2)
= (Pr(R[o = j)Pr(Rcpy =1 — J))’

Jj=0

where Pr(R;o = j) is the probability that the I/O cumulative execution time
equals to j, and Pr(R¢cpy = i — j) represents the probability that the CPU
cumulative execution time is i — j. Thus, the expected cumulative execution
time of a node is obtained from

00 00 i—1
ER)=) ipri)=) (i > prolj)pcruli — j)), (3)

i=0 i=0 \ ;=0

where p;o(j) = Pr(Ro = j)and pcpy(i — j) = Pr(Repy =i — j).

Let T, Tepy, and Tjo denote the execution time, I/O time, and CPU time of
a task. Then, we have T' = Tcpy + Tjo. The execution of a task requires j time
units in I/O processing with probability «;(1 < j <) and & time units on CPU
with probability 8,(1 < & < m). The expected execution time E(T') is computed
by Equation (4).

l+m l+m i
E(T)= ZipT(i) = Z <i Oljﬁij), 4)
io1

i=1 \ j=0
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The performance metric used in our experiments is the mean slowdown
[Harchol-Balter and Downey 1996; Zhang et al. 2000] of all jobs in a trace.
The slowdown of a job, which reflects the performance degradation of the job
due to resource sharing with other jobs and migration overhead, is defined as
the ratio between the job’s execution time in a resource-shared setting and its
execution time running in the same system but without any resource sharing.
Let S be the slowdown of a job, and the mean slowdown can be expressed as
E(R)+ E(T)

Substituting Equations (3) and (4) into (5), we get
>ico (i Yo pro(j)pepuli — j ))
YT (i Yo Oljﬁi—j)

Now we derive the composite job arrival rate };(L;o, Lygy, Lepy) at node ¢
(see Equation (7)), where Ljo, Lyrym, and Lepy are the I/O, memory, and CPU
load of a node. The composite job arrival rate of each node is used in our em-
pirical experiments to estimate the load of each node. Note that the composite
job arrival rate, which depends on Lj;o, Lygy, and Lcpy, is a summation of
external arrival rate i and transferred rate denoted by p;(Ljo, Lyeym, Lepy).
Let ¢;(Ljo, Lyeym, Lepy) be the rate of transferring jobs out of node ¢ when the
node’s I/0, memory, and CPU loads are Lo, Ly, and Lcpy, respectively. Con-
sequently, we have

E(S) = +1. (6)

ri(Lio, Lyem, Lepu) = A + pi(Lio, Lueym, Lepu) — ¢i(Lio, Luem, Lepy).  (7)

The composite job arrival rate computed by Equation (7) can be derived
from ¢;(Lo, Lygey, Lepy) and p;(Lio, Lyeym, Lepy), which are expressed as
Equations (8) and (12), respectively. In what follows, we approximate these
two important parameters used to model transfer and location policies. The pa-
rameter ¢;(Ljo, Lyey, Lepy) corresponds to the transfer policy used in a load-
balancing scheme, because the transfer policy determines if a job has to be
executed remotely. A job is transferred to other nodes if Ljo is greater than zero
and performance gains are not offset by migration cost (see Euqation (1)). If no
I/O load is imposed on the node, the memory and CPU load will be balanced
(see Equations (2) and (3)). Thus, we have Equation (8), which can be derived
from Equations (9)—(11).

9i(L1o, Lurym, Lepy) = A o(Lio)vo(Lio)
+ 21 — Ul (L10) - o (Lagenn 0l g Lvin) (8)
+ 4i(1 = ub o (L10)) - (1 — (Lt pr( Lepu)Viapp(Lepy),
where uﬁo, ufleM’ u‘bPU are the probabilities that I/O, memory, and CPU loads
need to be balanced given that node i’s load indices are Ljo, Lygy, and Lepy.
V10> Viem Vepy @re the probabilities that balancing I/O, memory, and CPU loads

can ultimately result in performance gains. For node i in a cluster with n nodes,
we can obtain u,(Lio) from Equation (9), where gj,(%) is the probability that
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node j’s I/0 load equals to &, and []}_; ;; ZZO:LIOH quo(k) is the probability
that the I/O load of node i is the lowest among all the nodes in the cluster.
woLi)=1— [ > afpk) (9)
Jj=1,j#i k=Ljp+1
Suppose the workload conditions of all the nodes are identical, that is, Y1 <
J < n: q{o(k) = qro(k), Equation (9) can be rewritten as u},(Lio) = 1 —
(X per,o+1qroR)"1. Similarly, uﬁ,[EM_(LMEM) and LfLCPU(LCPU) in Equation (8)
can be expressed as follows, where qJ{IEM(k) and qéPU(k) are the probabilities
that node j’s memory and CPU loads equal to %, respectively.

j=1.j#i k=Lig+1

n oo .
ugppLer) =1— [ D. alpy®) (11)
Jj=1j#i k=Ljp+1
Now we are positioned to derive parameter p;(Ljo, Lygm, Lepy) character-
izing the location policy determining to which remote node a job has to be mi-
grated. The proposed schemes choose the best candidate remote node to which
jobs submitted to overloaded nodes will be transferred. Without loss of gener-
ality, we assume that the external arrival rates of all the nodes are identical,
that is, V1 < j <n:A; = A and, thus, we express p;(Ljo, Lygu, Lepy) in terms
of Lio, Lyewm, and cpy as
pi(L10, Lugy, Lepu) = Aromio(Lio)0o(Lio)
+ A1 = pr0) - umEMT gy (LviEm)O3 g (LvEM) (12)
+ M1 = w01 — pyEm) - epunt ppy(Lepv)bepy(Lepu),

where 1), ithypy Hepy are the probabilities that I/O, memory, and CPU loads
are unbalanced, respectively. 7}, 7}, T(py are the probabilities that node
i has the lightest load with respect to I/O, memory, and CPU resources.
010> Oy Ocpy are the probabilities that transferring jobs from other nodes to
node balancing I/O, memory, and CPU loads can improve system performance.
710(L10), Wy (Luewm) and ;L‘CPU(LCPU) in Equation '(12) can be obtained by the
following equations, where g, (%), ¢35, (k), and gl p;(k) are the probabilities

that node j’s I/O, memory, and CPU indices respectively equal %.

TioLio)= [] Y. appk) (13)

Jj=1j#i k=Ljp+1

n e8]

Ty Lum) = [ D) afpu® (14)
Jj=1,j#i k=Lip+1
teppLerr) = ] Y. alpp®). (15)

Jj=1,j#i k=Ljp+1
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3.3 Performance Evaluation

3.3.1 Evaluation of the IOCM-RE Scheme. To evaluate the performance of
our I/O-aware load balancing schemes, we performed a large number of trace-
driven simulations. We have extended the simulator implemented by Harchol-
Balter and Downey [1996]. Zhang et al. [2000] also upgraded this simulator
by incorporating memory recourses. Compared to the earlier versions of this
simulator, ours embraces the following four new features. First, the new load
balancing schemes were implemented. Second, a fully connected network was
simulated. Third, our simulator was integrated with a simple disk model. Last,
an I/O buffer was implemented in a simulated disk in each node. We simulated
a cluster with 32 nodes. The workload we used is represented by trace files
extrapolated from those reported in Harchol-Balter and Downey [1996] and
[Zhang et al. 2000]. To simulate a multiuser time-sharing environment where
a mixture of sequential and parallel jobs are running, the number of parallel
jobs in each trace are chosen, respectively, to be 30% and 60% of the total num-
ber of jobs in the trace. The number of tasks in each parallel job is randomly
generated according to a uniform distribution between 2 and 32. We simulated
a bulk-synchronous style of communication, where processes concurrently com-
pute during a computation phase, and then processes will be synchronized at
a barrier so that messages can be exchanged among these processes during
the communication phase [Dusseau et al. 1996]. In our simulation, the time
interval between two consecutive synchronization phases is 100 ms. A realistic
cluster is likely to have a mixed workload, where some jobs are I/O-intensive
and other jobs are either CPU or memory intensive. Thus, we randomly choose
10% of jobs from the trace to be non-I/O-intensive by setting their I/O access
rate to be 0. Among these non-I/O-intensive jobs, 50% of jobs are made to be
CPU-intensive by scaling their execution time by a factor of 10, and other jobs
are modified to be memory-intensive with page fault rate set to 8 No./ms.

Disk I/O operations issued by each task are modeled as a Poisson Process
with a mean arrival rate. Although the durations and memory requirements of
the jobs are specified in trace data, the I/O access rate of each job is randomly
generated according to a uniform distribution. This simplification deflates any
correlations between I/O requirement and other job characteristics, but we are
able to control the mean I/O access rate as a parameter and examine its impact
on system performance. Data sizes of the I/O requests are randomly generated
based on a Gamma distribution with the mean size of 256Kbyte, which reflects
typical data characteristics for many data-intensive applications [Pasquale and
Polyzos 1994; Roads and et al. 1992]. The parameters for disk subsystems are
listed in Table 1.

We compare IOCM-RE with a centralized load balancing approach used in
a space-sharing cluster, where nodes of the cluster are partitioned into disjoint
sets and each set can only run one parallel job at a time. Since this scheme
is commonly used for batch systems [Kannan et al. 2001]. We term this load-
balancing scheme BS (Batch System) or PBS-like [Bode et al. 2000].

To compare IOCM-RE and BS under I/O-intensive workload conditions, we
set the page fault rate to a low value of 0.5 No./ms. This type of workload
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Table I. Disk Subsystem Characteristics

Description Value
Disk Model Seagate Cheetah STs9205LC
Standard Interface SCSI
Storage Capacity 9.17 GBytes
Number of Platters 1
Rotational Speed 10,000 RPM
Average Seek Time 5.4 msec
Average Rotation Time 3 msec
Transfer Rate 31 MB/Sec
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Fig. 1. Mean slowdown as a function of I/O access rate. Page fault rate is 0.5 No./ms. The traces
only contain sequential jobs.

reflects a scenario where memory-intensive jobs exhibit high temporal and spa-
tial locality of accesses. We randomly choose 10% of jobs from the trace to be
non-I/O-intensive by setting their I/O access rate to 0.

Figures 1 and 2 plot slowdown as a function of the mean I/O access rate. While
Figure 1 reports the results for seven traces with sequential jobs, Figure 3
illustrates the mean slowdown of another seven traces with 30% jobs being
parallel. Figures 2 and 3 indicate that both IOCM-RE and BS experience an
increase in the mean slowdown when the I/O access rate increases. This is
because high I/O load leads to high utilization of disks, causing longer waiting
time on I/O processing.
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Fig. 2. Mean slowdown as a function of I/O access rate on the traces with 30% parallel jobs. Page
fault rate of 0.5 No./ms.

We observe from Figures 1 and 2 that under the I/O-intensive workload,
IOCM-RE is significantly better than BS. The results suggest that it is more
difficult to utilize dedicated clusters as efficient, multiuser time-sharing plat-
forms to execute I/O-intensive jobs. Figure 2 shows that the performance of I/O-
intensive jobs drops considerably when a number of parallel jobs are waiting in
the queue of the centralized node to be executed, because the synchronizations
among processes of parallel jobs further decrease the utilization of resources.

Now, we compare the performance of IOCM-RE with two existing schemes:
CPU-based (CPU) [Eager et al. 1986; Harchol-Balter and Downey 1996] and
memory-based (MEM) [Zhang et al. 2000] policies. We also simulated a policy
(called NLB) that makes no effort to alleviate the problem of imbalanced load
in any resource. Figures 3 and 4 plot slowdown as a function of I/O access
rate in the range between 0.45 and 0.8 No./ms. Figures 3 and 4 show that
IOCM-RE significantly outperforms the CPU-based and memory-based policies.
The results suggest that the existing policies are inadequate for I/O-intensive
workloads because these two policies ignore imbalanced I/O loads.

After comparing Figure 3 with Figure 4, we realize that if the mean I/O
access rate is unchanged, the mean slowdowns of the four policies all increase
with the percentage of parallel jobs. The results are expected because a higher
percentage of parallel jobs leads to more tasks being concurrently executed,
causing more synchronization overhead and longer waiting time on both CPU
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Fig. 3. Mean slowdown as a function of I/O access rate on the traces with 30% parallel jobs. Page
fault rate is 0.5 No./ms.
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Fig. 4. Mean slowdown as a function of I/O access rate on the traces with 60% parallel jobs. Page
fault rate is 0.5 No./ms.
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Fig. 5. Mean slowdown as a function of page fault rate on the traces with 30% parallel jobs. Mean
I/O access rate is 0.01 No./ms.

and disks. Interestingly, Figure 3 shows that a small percentage of parallel
jobs in most cases makes the memory-based policy outperform the CPU-based
policy. This is mainly because when I/O and memory demands are higher than
that of CPU demands, the CPU-based scheme is unable to significantly reduce
the mean slowdown of the cluster. In contrast, Figure 4 indicates that in case
of a large percentage of parallel jobs, the CPU-based policy is superior to or at
least as good as the memory-based policy. We attribute this trend to increased
CPU demands caused by a high percentage of parallel jobs, which result in long
waiting time on CPU resources.

We now turn our attention to memory-intensive workloads. The mean I/O ac-
cess rate is fixed at a low value of 0.01 No./ms. In practice, the page fault rates
of applications range from 1 to 10 [Zhang et al. 2000]. Figures 5 and 6 show
that when page fault rate is high and I/O rate is very low, IOCM-RE gracefully
degrades to the memory-based load-balancing scheme. Furthermore, IOCM-RE
and MEM are superior to the CPU-based and NLB schemes considerably under
memory-intensive workload conditions. The reason is twofold. First, IOCM-RE
and MEM balance implicit I/O loads, which make the most significant contri-
bution to the overall system loads when page fault rate is high. Second, the
CPU-based scheme improves the utilization of CPU, ignoring implicit I/O loads
resulting from page faults.
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Fig. 6. Mean slowdown as a function of page fault rate on the traces with 60% parallel jobs. Mean
1/0 access rate is 0.01 No./ms.

We also conducted a set of experiments under CPU-intensive workloads,
where most jobs are either CPU-intensive or memory-intensive (but in-core).
Experimental results show that both the IOCM-RE and MEM schemes grace-
fully degrade to the CPU-based scheme. We do not present these results here
due to the space limitations.

3.3.2 Evaluation of the IOCM-PM Scheme. We compare IOCM-PM with
NLB, CPU, MEM, and IOCM-RE under 20 synthetic I/O-intensive traces, which
use the same configurations given in the previous section. It is observed from
Figures 7 and 8 that IOCM-PM consistently performs the best among all the
schemes. These results indicate that load-balancing schemes with preemptive
migrations outperform those scheme without using preemptive migrations un-
der I/O-intensive workloads. In addition, the slowdowns of the CPU-based,
memory-based, and IOCM-RE are more sensitive to I/O access rate than IOCM-
PM. The performance improvement gained by IOCM-PM can be explained by
the following reasons. First, [OCM-RE only considers newly arriving jobs for
migrations, completely ignoring running tasks that might take advantages of
migrations. In the non-preemptive schemes if a task with high I/O demand
misses the opportunity to migrate, it will never have a second chance. Second,
I/0O demand of tasks in a newly arriving job may not be high enough to offset
migration overhead. Third, IOCM-PM provides better migratory opportunities
by considering all running tasks on a node, in addition to newly arriving tasks.
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Fig. 7. Mean slowdown as a function of I/O access rate on the traces with 30% parallel jobs. Page
fault rate is 0.5 No./ms.
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Fig. 8. Mean slowdown as a function of I/O access rate on the traces with 60% parallel jobs. Page
fault rate is 0.5 No./ms.
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Table II. Descriptions of Real I/O-Intensive Applications

Application Description

Data mining (Dmine) This application extracts association
rules from retail data [Mueller 1995].

Parallel text search (Pgrep)  This application is used for partial match
and approximate searches, and it is a
modified parallel version of the agrep
program from the University of Arizona
[Wu and Manber 1992].

Titan This is a parallel scientific database for
remote-sensing data [Chang et al. 1997].
DB2 This is a parallel relational database

management system from IBM [1995].
Due to long run times, only a part of the
traces were executed.

LU decomposition (LU) This application tries to compute the
dense LU decomposition of an out-of-core
matrix [Hendrickson and Womble 1994].

Sparse Cholesky (Cholesky) This application is capable of computing
Cholesky decomposition for sparse,
symmetric positive-definite matrices
[Acharya et al. 1996].

3.3.3 Real I/O-Intensive Parallel Applications. To validate the results
based on the synthetic I/O workloads, we simulate a number of real I/O-
intensive parallel applications using six sets of I/O traces collected from the
University of Maryland [Uysal et al. 1997]. These sets of traces reflect both
non-scientific and scientific applications (see Table II) with diverse disk I/O
demands. We generate six job traces where the arrival patterns of jobs are ex-
trapolated based on the job traces collected from the University of California
at Berkeley [Harchol-Balter and Downey 1996]. We measure the impact of the
I/O-aware load balancing schemes on a variety of real applications; thus, each
job trace consists of one type of I/O-intensive parallel application described
above. A 64-node cluster is simulated to run the applications with different I/O
demands in each trace.

Figure 9 shows the mean slowdowns of the six job traces under the four
load-balancing policies. We make three observations. First, the I/O-aware load
balancing schemes benefit all I/O intensive applications, and offer a 23.6-88.0%
performance improvement in mean slowdown over the non-I/O-aware policies.
The performance gain is partially attributed to the low migration cost by virtue
of duplicating read-only data. Note that these applications present a very small
I/0 demand for writes, and the I/O request rates for writes are uniformly low.

Second, IOCM-RE and IOCM-PM have approximately identical perfor-
mance. This is because all jobs running on the cluster belong to the same
application and have nearly identical CPU and I/O requirements, tasks of a
newly arriving parallel job are most likely to become the most suitable tasks
for migrations because of low migration costs. Thus, IOCM-RE and IOCM-PM
attempt to migrate the tasks of newly arriving jobs when a local node is over-
loaded; therefore, IOCM-PM reduces to IOCM-RE when the variance in CPU
and I/0 demand is minimum.
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Fig. 9. Mean slowdowns of four policies on six applications.

Third, the LU application exhibits a larger mean slowdown than the other
five applications. The slowdowns of the applications depend partially on ap-
plications’ total execution time, which in turn is affected by the CPU and I/O
execution times of jobs running on a cluster. Figure 10 plots the total exe-
cution time of the six applications. Figure 10 shows that the total execution
time of LU is considerably longer than the other applications, indicating that
LU is expected to spend more time-sharing resources with other running jobs.
Consequently, there is a strong likelihood that each LU job experience higher
slowdowns.

Before comparing the performance improvement of our approaches in slow-
down, we illustrate the contribution of CPU and I/O execution time to the total
execution time of the real-world applications in a dedicated computing envi-
ronment. Figure 11 shows that the total execution time of LU is dominated by
I/O processing, which gives rise to a low utilization of CPU resources. Unlike
the LU applications, the workload with the other five applications sustains a
reasonably high utilization of CPU and disk I/O. This is because for these five
applications, neither CPU time nor I/O time dominates total execution times.
Hence, LU has the highest slowdown value among all application traces for the
four load-balancing policies (see Figure 11).

Figure 12 shows the performance improvement of the I/O-aware policies over
non-I/O-aware policies. It is observed that all the six applications benefit from
I/0-aware load balancing that dynamically distributes I/O load among all nodes

ACM Transactions on Storage, Vol. 5, No. 3, Article 9, Publication date: November 2009.



Total Execution Time(Sec)

Percentage of the Total Execution Time

Dynamic Load Balancing for 1/O-Intensive Applications on Clusters .

4

10°F

9:19

Dmine

Pgrep

Titan

DB2

LU

Cholesky

Fig. 10. The total execution times of six applications on a dedicated cluster.

100

90

80

70

60

50

40

30

20

T
I CPU time
[ J1/Otime

Dmine

Pgrep

Titan

DB2

LU

Cholesky

Fig. 11. CPU and I/O times as the components of total execution times.

ACM Transactions on Storage, Vol. 5, No. 3, Article 9, Publication date: November 2009.



9:20 o X. Qin et al.

100 T T T T T T

Percentage improvement in mean slow down

Dmine Pgrep Titan DB2 LU Cholesky

Fig. 12. Comparison of performance improvement in mean slowdown on six traces.

in the cluster. The benefits are pronounced for Cholesky, Titan, Pgrep, DB2,
and Dmine; the performance improvements for these applications are more
than 53%. In contrast, the proposed approaches only improve performance in
slowdown by 23.6% for the LU application, because most of the running LU
jobs compete for disk I/O resources.

In what follows, we measure the impact of the I/O-aware load-balancing poli-
cies using traces, which comprise sequential jobs and a combination of the six
I/O-intensive parallel jobs used in the previous experiment. The I/O demands
of parallel jobs are accurately determined by the I/O traces of real applications,
whereas the I/O access rates of sequential jobs are randomly generated based
on a uniform distribution. Figures 13 and 14 plot slowdown as a function of the
mean I/O access rate of sequential jobs when 30 and 60 percent of the jobs in
each trace are parallel. To keep slowdown values in a realistic range, we increase
the number of nodes in the cluster from 32 to 512. We make the following three
observations from Figures 13 and 14. First, a high percentage of I/O-intensive
parallel jobs leads to a high slowdown due to high I/O intensity. Second, the
mean slowdowns of the five policies increase with the I/O load. This result in-
dicates that even when the I/O demands of parallel I/O-intensive applications
remain unchanged, the performance depends hugely on the I/O intensity of the
workload, which in turn is partially affected by both parallel and sequential
jobs. Third, the IOCM-PM scheme is substantially better than the other poli-
cies. For most cases, the IOCM-RE scheme is the second best load-balancing
policy. Interestingly, when the I/O access rate is as low as 0.3 No./ms for the
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workload where 30 percent of jobs are parallel, the performance of IOCM-RE
is slightly worse than that of CPU-based and memory-based schemes. The per-
formance deterioration of IOCM-RE comes from the inaccurate estimation of
remote execution cost when I/O intensity is relatively low. In general, the I/O-
aware load-balancing schemes are less sensitive to I/O intensity than the other
policies.

3.4 Summary

In this part of study, we proposed two I/O-aware load-balancing policies, re-
ferred to as IOCM-RE (with remote execution) and IOCM-PM (with preemptive
migration). IOCM-RE employs remote execution facilities to improve system
performance, whereas IOCM-PM utilizes a preemptive migration strategy to
boost the performance. In addition to CPU and memory utilization, both IOCM-
RE and IOCM-PM consider both explicit and implicit I/O load, leading to a
performance improvement over the existing CPU- and Memory-based policies
under I/O-intensive workload. Using five real I/O-intensive parallel applica-
tions in addition to a set of synthetic parallel jobs with a wide variety of I/O
demands, we have demonstrated that applying IOCM-RE and IOCM-PM to
clusters for I/0-intensive workload is not only necessary but also highly ef-
fective. Our proposed schemes offer 23.6—88.0% performance improvements in
mean slowdown for I/O-intensive applications. In case that I/O load is low or
well balanced, our schemes can maintain the same level of performance as that
of the existing non-I/O-aware schemes.

4. BALANCING LOAD ON HETEROGENEOUS CLUSTERS

In the previous section, we have developed two load balancing schemes for
homogeneous clusters, which comprise a set of nodes with a given set of perfor-
mance characteristics in computing power, memory capacity, and disk speed.
It is common that a new and stand-alone cluster system is homogeneous in
nature, whereas upgraded clusters or networked clusters are likely to be het-
erogeneous in practice. In other words, heterogeneities of a variety of resources
like CPU, memory, and disk I/O may exist in cluster systems. The heterogene-
ity of disks, compared to that in other resources, results in more significant
performance degradation when coupled with imbalanced load of memory and
I/O resources. To solve this problem, we develop a load-balancing scheme that
is able to sustain high performance for a wide spectrum of workload conditions
on clusters with heterogeneous resources.

4.1 Heterogeneity Level

In this part of study, it is imperative to introduce an efficient way to quan-
titatively estimate the heterogeneity level of each resource, since the hetero-
geneity of resources is expected to have a noticeable impact on the system
performance. The nodes may have a wide variety of operating systems, net-
work interfaces, and internal architectures. However, we only address hetero-
geneity with respect to a diverse set of disks, CPUs, and memories. Specif-
ically, we characterize each node N; by its CPU speed C;, memory capacity
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M;, and disk performance D;. Let BidiSk, S;, and R; denote the disk band-
width, average seek time, and average rotation time of the disk in node i,
then the disk performance can be approximately measured as the following
equation: D; = 1AS; + R; +d /Bldis"’) B, where d is the average data size of
I/O requests. The weight of a disk performance W@ is defined as a ratio be-
tween its performance and that of the fastest disk in the cluster. Thus, we have
Wi‘iiSk = D; /MAX;L- _1(D;). The disk heterogeneity level, referred to as Hp, can be
quantitatively measured by the standard deviation of disk weights. Formally,

Hp is expressed as Hp = /1 Y7 (Wdisk — Wdisk)2 where W%k is the average
p n i=1 avg 12 avg

disk weight. Likewise, the CPU and memory heterogeneity levels are defined
as follows: He = \/1 370, (WEPU — WEPUR, Hyy = \[L S0 (Waem — Wremp2,

avg avg

where WiCP Uand W/mem are the CPU and memory weights, and W(S)ZU and W™
are the average weights of CPU and memory resources [Xiao et al. 2000].

4.2 10-Aware Load Balancing in Heterogeneous Clusters

We now turn our attention to a heterogeneity-aware load balancing policy for
I/0O-intensive workload conditions. We refer to this policy as IO-RE, which is
heuristic and greedy in nature. The key objective of IO-RE is to achieve a well-
balanced I/O load under an I/O-intensive workload. Instead of using CPU and
memory load indices, the IO-RE policy relies heavily on the I/O load index (see
Equation (1)) to measure system workload and distribute I/O load accordingly.
An I/0O threshold, thresholdjo(i), is introduced to identify whether node i’s I/0
resource is overloaded. Node i’s I/O resource is considered overloaded, if the load
index loado(i) is higher than threshol d;o(i). Specifically, t hreshol djo(i), which
reflects the I/O processing capability of node i, is expressed by the following
equation:

thresholdo(i) = (Z L,o(j)> x (Di ZDJ), (16)
j=1

j=1

where the term in the first parenthesis gives the accumulative I/0 load imposed
by the running tasks in the heterogenesou cluster, and the term in the second
parenthesis corresponds to the fraction of the total I/O processing power on node
i. The I/O threshold associated with node i can be calculated using Equations (1)
and (16) to substitute for the terms in the first and second parentheses. Recall
that a parallel job comprises a number of tasks, which are either dependent
or independent of one another. For a task j of the given job arriving at a local
node i, the IO-RE scheme attempts to balance I/O resources in the following
four main steps. First, the I/O load of node i is updated by adding task j's
explicit and implicit I/O load. Second, the I/O threshold of node i is computed
based on Equation (17). Third, if node i’s I/O load is less than the I/O threshold,
the I/O resource of node i is considered under-loaded. Consequently, task j will
be executed locally on node i. Otherwise, the node is overloaded with respect to
I/0 resources and, thus, IO-RE judiciously chooses a remote node % as task j's
destination node, subject to the following two conditions: (1) The I/O resource
is not overloaded. (2) The I/O load discrepancy between node i and % is greater
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Table III. Characteristics of System Parameters. CPU speed and page fault rate are measured by
Millions Instruction Per Second (MIPS) and No./ms, respectively.

Parameter Values assumed Parameter Values assumed
CPU Speed 100-400 MIPS | Mean page fault rate 0.01No./ms
RAM Size 32-256 Mbytes | Time slice of CPU time sharing 10 ms
Buffer Size 64 Mbytes Context switch time 0.1 ms
Network Bandwidth 100 Mbps Data re-access rate, r 5

Page fault service time 8.1 ms CPU Threshold 4

Table IV. Characteristics of Disk Systems

Age Avg. Seek Avg. Rotation Bandwidth Age  Avg. Seek Avg. Rotation Bandwidth
(years) Time (ms) Time (ms) (MB/s) (years) Time (ms) Time (ms) (MB/s)

1 5.3 3 20 4 7.29 4.11 7.29
2 5.89 3.33 14.3 5 5.21 4.56 5.21
3 6.54 3.69 10.2 6 3.72 5.07 3.72

than the I/O load induced by task j, to avoid useless migrations. If such a remote
node is not available, task j has to be executed locally on node i. Otherwise
and finally, task j is transferred to the remote node %, and the I/O load of
nodes i and % is updated in accordance with j’s load. Since the main target
of the IO-RE policy is exclusively I/O-intensive workload, IO-RE is unable to
maintain a high performance when the workload tends to be CPU- or memory-
intensive. To overcome this limitation of IO-RE and develop a load-balancing
scheme for a broad range of applications, IOCM-RE, which is similar to the one
presented in Section 2.2, is studied to achieve the effective usage of CPU and
memory in addition to that of I/O resources in heterogeneous clusters. More
precisely, IOCM-RE leverages the I/O-RE policy as an efficient means to make
load-balancing decisions in the presence of explicit I/O load in a node. If the
node exhibits implicit I/O load due to page faults, load-balancing decisions are
made by the memory-based policy. Otherwise, the CPU-based policy is used
when the node is able to fulfill the accumulative memory requirements of all
tasks running on it.

4.3 Performance Evaluation

In this section, we experimentally compare IOCM-RE and IO-RE with the other
schemes including the CPU-RE [Eager et al. 1986], MEM-RE [Zhang et al.
2000], and NLB policies.

4.3.1 Simulation Parameters. In this part of study, we simulated a cluster
that comprises sixty nodes with the configuration parameters listed in Table III.
The parameters resemble some workstations like Sun SPARC-20 and Sun Ultra
10. The configuration of disks used in our simulated environment is based on
the assumption of device aging and performance-fault injection. Specifically,
we chose IBM 9LZX as a base disk whose performance is aged over years to
generate a variety of disk characteristics [Forney et al. 2002] shown in Table IV.

We use the same method delineated in Section 3.3.1 to generate a set of traces.
To evaluate the performance of our approach under a diversity of workloads,
we used the following four traces (see Table V) with a mix of CPU-, memory-,
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Table V. Characteristics of Traces

I/O-intensive I/O-intensive I/O-intensive Memory-intensive

Trace Type Trace 1 Trace 2 Trace 3 Trace 4
Mean I/O request size 256 Kbyte 256 Kbyte 1 Mbyte 64 Kbyte
I/O request size distribution Gamma Gamma Gamma Uniform
Mean I/O access rate 2.0 No./ms 2.0 No./ms 2.0 No./ms 0.01 No./ms
I/0O request distribution Exponential Exponential Exponential Uniform
Mean initial data size 50 Mbyte 0 Kbyte 0 Kbyte 100 KByte

Table VI. Characteristics of Five Heterogeneous Clusters. CPU and memory are measured by
MIPS and MByte. Disk bandwidth is measured in MByte/S. HL-Heterogeneity Level

System A System B System C System D System E

Node [Cpu|Mem |Disk|Cpu|Mem |Disk |Cpu|Mem |Disk | Cpu |Mem | Disk | Cpu | Mem | Disk
1-10| 100 | 480 | 20 | 100 | 480 | 20 | 100 | 480 |10.2| 50| 320 |10.2| 50| 320 | 5.21
11-20|100| 480 | 20 |[150| 640 | 20 |150| 640 | 20 | 200 | 800 | 20 |200 | 800 [14.3
21-30|100 | 480 | 20 | 150 | 640 | 20 |150| 640 | 20 | 200 | 800 | 20 | 200 | 800 |20

31-40| 100 | 480 | 20 | 50| 320 | 20 | 50| 320 [10.2| 50| 320 [14.3| 50| 320 | 5.21
41-50|100 | 480 | 20 | 100 | 480 | 20 [100| 480 | 20| 50| 320 |14.3| 50| 320 | 7.29
51-60|100| 480 | 20 | 50| 320 | 20 | 50| 320 |10.2| 50| 320 [10.2| 50| 320 | 3.72
HL 0 0 0 |0.27| 0.2 0 [0.27| 0.2 |0.25|0.35[ 0.28 | 0.2 |0.35] 0.28 | 0.3

and I/O-intensive jobs. 10% jobs in Traces 1-3 are either CPU-intensive or
memory-intensive, whereas 10% jobs in Trace 4 are I/O-intensive in nature.
Data sizes in Traces 1-3 reflect typical data characteristics for many data-
intensive applications, where the vast majority of I/O requests are small [Kotz
and Nieuwejaar 1994; Pasquale and Polyzos 1994].

4.3.2 Impact of Heterogeneity on the Performance of Load-Balancing Poli-
cies. First, we evaluate the performance improvement of the proposed load-
balancing policies over the existing schemes while understanding the sensitiv-
ity of the policies to heterogeneity levels. The configurations of five clusters are
summarized in Table VI. For comparison purpose, system A is homogenous, and
system B is homogenous in terms of disk I/O. Figure 15 reveals that IO-RE and
IOCM-RE significantly outperform the other three policies. Specifically, IO-RE
and IOCM-RE improves the performance over CPU-RE and MEM-RE by up to a
factor of 5 and 3, respectively. Figure 15 shows that for all the policies, the mean
slowdowns of increase consistently as the system heterogeneity increases.

Interestingly, the mean slowdowns of IO-RE and IOCM-RE are more sensi-
tive to changes in CPU and memory heterogeneity than the other three poli-
cies. Recall that system B’s CPU and memory heterogeneities are higher than
those of system A, and both systems A and B are homogeneous with respect
to disk performance. Comparing systems A and B, we realize that the mean
slowdowns of IO-RE and IOCM-RE are increased by 196.4%, whereas the slow-
downs of CPU-RE and MEM-RE are increased by 34.7% and 47.9%. The results
are reasonable because the I/O-aware policies ignore the heterogeneity in CPU
resources. Furthermore, when the heterogeneities of CPU and memory remain
unchanged, the performance of IO-RE and IOCM-RE is less sensitive to the
change in disk I/O heterogeneity than the other three policies. For example,
let us compare the slowdowns of systems D and E. We observe that the mean
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Fig. 15. Mean slowdown when trace 1 is used on five heterogeneous systems.

slowdowns of IO-RE and IOCM-RE increase by approximately 3%, the slow-
down of MEM-RE increases by around 5%, and the slowdowns of CPU-RE and
NLB increase by nearly 9%. This is because both IO-RE and IOCM-RE address
the issue of disk heterogeneity in addition to the effective usage of I/O resources.

4.3.3 Effect of Data Replications. Now, we investigate the effects of data
replications on the performance of heterogeneous clusters. Data replication
strategies greatly affect initial data sizes, which in turn determine migration
overheads. Figure 16 plots the mean slowdowns of CPU-RE, MEM-RE, and
IOCM-RE for Traces 1 and 2, as the heterogeneity levels are increased. Trace 1
represents a workload where the initial data of each remotely executed task is
not available at the remote node (i.e., no data replication is provided), whereas
Trace 2 illustrates a scenario where migration overheads are considerably re-
duced by replicating initial data across all the nodes. The experimental data for
NLB and IO-RE is omitted from Figure 16 because the slowdowns of NLB and
IO-RE are similar to those of CPU-RE and IOCM-RE. Figure 16 shows that
IOCM-RE consistently improves the performance of the CPU-RE and MEM-
RE policies. These results are consistent with those reported in Section 3.3.
Moreover, Figure 16 indicates that the slowdowns of the CPU-RE policy for two
traces are roughly identical, implying that the sensitivity of CPU-RE to ini-
tial data size is not noticeable under I/O-intensive workloads. This is because
CPU-RE makes no effort to balance disk resources; thus, very few remote ex-
ecutions occur when workloads are I/O-intensive. We observe from Figure 16
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Fig. 16. Mean slowdown when trace 1 and 2 are used on five heterogeneous systems.

that for MEM-RE and IOCM-RE, the slowdowns of Trace 2 are noticeably lower
than those of Trace 1. These results suggest that the system performance im-
proves dramatically as the initial data size is decreased, and the reason can
be explained as follows. The initial data of a remotely executed task has to
be available in the corresponding remote node. Hence, if the required initial
data is not initially provided by the remote node, the overhead of moving initial
data offsets the benefits gained from the load-balancing schemes. Thus, small
amount of migrated data results in low remote execution overheads, which in
turn help to alleviate network burdens. The indication of these results is that
our approach can achieve additional performance improvements by reducing
data migration overheads.

4.3.4 SensitivitytoI/O Demands. Figure 17 plots the performance of CPU-
RE, MEM-RE, and IOCM-RE for Traces 2 and 3. Figure 17 shows that for all
policies on each cluster, the mean slowdown of Trace 2 is significantly lower than
that of Trace 3. This is because the average data size of Trace 3(1MByte/Sec) is
four times as large as that of Trace 2 (256KByte/Sec), and the larger average
data size leads to lower buffer hit rate and longer waiting times on I/O process-
ing. Figure 18 shows the sensitivity of the CPU-RE, MEM-RE, and IOCM-RE
polices to I/O access rate on system A under a modified Trace 2. The work-
load parameters of the modified trace are identical to those of Trace 2, except
that the average I/0 access rate is gradually increased. Figure 19 reveals that
slowdowns of the three policies increase with the increasing I/O access rate,
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Fig. 17. Mean slowdown when trace 2 and 3 are used on five heterogeneous systems.
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Fig. 18. Mean slowdown under a modified trace 2 on System A.
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Fig. 19. Buffer hit ratios of five systems when trace 2 and trace 3 are used.

because high I/0 access rate leads to heavy disk I/O loads, which in turn give
rise to long I/O waiting times. The slowdowns of CPU-RE and MEM-RE increase
more quickly than that of IOCM when the I/O access rate is increased, indi-
cating that CPU-RE and MEM-RE are more sensitive to changes in I/O access
rate than IOCM-RE under I/O-intensive workload conditions. The explanation
is that IOCM-RE achieves a highly effective usage of global disk I/O resources,
which dominate the overall performance under I/O-intensive workloads.

4.3.5 Effectiveness of Improving I/ O Buffer Hit Rate. The IOCM-RE policy
is capable of boosting the utilization of I/O buffers, which decreases I/O access
frequencies. Figure 19 depicts the I/O buffer hit rates for Traces 2 and 3 us-
ing CPU-RE, MEM-RE, and IOCM-RE. Three observations can be made from
Figure 19. First, the buffer hit rate of IOCM-RE is consistently higher than
those of CPU-RE and MEM-RE. For example, when Trace 3 is evaluated on
System B, IOCM-RE improves the buffer hit rate over CPU-RE and MEM-
RE by 28% and 7%, respectively. The improvements in turn enable the overall
performance to be increased by 93.4% and 33.2% (see Figure 17), respectively.
The overall performance gains can be attributed to the high buffer hit rates
that help reduce both paging times and I/O processing times. Second, increas-
ing the system heterogeneity results in a slight reduction in the buffer hit ra-
tio, thereby worsening the overall performance in terms of slowdowns. Third,
Figure 19 shows that the average data size of I/O request significantly affects
the I/O buffer hit rate. The larger the average I/0O request size, the lower the
I/0 buffer hit rate.
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Fig. 20. Mean slowdowns of five systems under memory-intensive workload. Trace 4 is used.

4.3.6 Memory-Intensive Workloads. Figure 20 shows that IOCM-RE grace-
fully degrades to the MEM-RE scheme under memory-intensive workloads. A
second interesting observation from Figure 20 is that MEM-RE and IOCM-
RE are less sensitive to the heterogeneity levels than the other three policies.
For example, the slowdown of CPU-RE in System E is more than 223 times
higher than that of CPU-RE in System A, whereas the IOCM-RE’s slowdown
for System E is only 29 times higher than that for System A. The reason for
these results is that MEM-RE and IOCM-RE can mask heterogeneity effects by
migrating tasks with high memory demands to the nodes with adequate free
memory resources in the clusters.

4.3.7 Real 1/0O-Intensive Applications. We now use the same method
described in Section 3.3.3 to simulate six traces with real I/O-intensive
applications. In this set of experiments disks are configured such that five nodes
possess fast disks that are one year old, and a sixth node has a slower disk as-
sumed an age ranging from 1 to 6 years. The x-axis in Figure 21 denotes the age
of the slow disk in the cluster, whereas the y-axis represents the mean slowdown
of the real-world applications. Figure 22 shows that IOCM-RE achieves perfor-
mance improvements over CPU-RE and MEM-RE ranging from 40% to 129%.
For all the six applications the mean slowdowns increase as the slow disk ages,
because aging a disk results in a higher level of disk I/O heterogeneity, which
makes long I/O processing times. Figure 21 illustrates that the performance
of IOCM-RE is less sensitive to the change in the age of the slow disk than
CPU-RE and MEM-RE. For example, when the trace with DB2 applications
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Fig. 21. Mean slowdowns as a function of the age of a single disk.

is evaluated, the slowdowns of CPU-RE and MEM-RE increase by 70% as
the slow disk is aged from 1 to 5 years old; whereas the slowdown of IOCM-
RE merely increase by approximately 26%. This results shows that IOCM-RE
delivers better performance by hiding disk heterogeneity as well as the effective
usage of I/O resources.

More interestingly, the traces with Dmine, DB2, and LU are more sensitive
to the age of the slow disk than the traces with pgrep, Titan, and Cholesky. The
sensitivity to disk heterogeneity levels partially depends on the ratio of a job’s
I/O processing time to its total execution time, which can be used to quantify
I/O-intensive levels of applications. Recall that for Dmine, DB2, and LU the per-
centages of total execution time spent in performing I/O operations are 74%,
82%, and 99%, respectively (see Figure 12). In contrast, such percentages for
the other three applications are as relatively low as 36%, 24%, and 40%, respec-
tively. Thus, Dmine, DB2, and LU are more I/O-intensive than the other three
applications, meaning that Dmine, DB2, and LU are expected to spend more
time in sharing disk I/O resources with other running jobs. Consequently, the
traces with Dmine, DB2, and LU are more sensitive to disk heterogeneity levels.

4.4 Summary

In the second part of the study, we addressed the issue of balancing load un-
der I/O- and memory-intensive workload for heterogeneous clusters. In par-
ticular, we developed two I/O-aware load balancing policies, namely I0-RE
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(I/0O-based policy) and IOCM-RE (load balancing for I/0, CPU, and Memory).
We observed from our experimental results that for almost all the policies,
slowdowns increase consistently with system heterogeneity. The slowdowns of
IO-RE and IOCM-RE are more sensitive to changes in CPU and memory het-
erogeneity than the other three policies, whereas IO-RE and IOCM-RE are less
sensitive to changes in disk I/O heterogeneity than non I/O-aware load balanc-
ing policies.

5. IMPLEMENTATION CONSIDERATIONS
5.1 Measuring I/0O Load

To implement our proposed I/O-aware load balancing schemes, we have to mea-
sure the implicit and explicit I/O load for each running task. In our load balanc-
ing mechanism, the memory space requested by task j is specified by applica-
tion developers. The mechanism keep track of the available memory space (i.e.,
M;) on node i. When M; can not satisfy the accumulative memory requirements
of running tasks, the node encounters page faults, leading to implicit I/O load,
which depends on three factors: the available user memory space, the page fault
rate, and the memory space requested by running tasks. Similar measurement
for implicit I/O load can be readily found in the literature (see, for example,
Xiao et al. [2000] and Zhang et al. [2000]). In a typical real-world setting, it
may be challenging to accurately estimate a task’s memory needs. However,
the implicit I/O load of a job can be explicitly measured by monitoring its auxil-
iary memory traffic. This argument is supported by previous results from Carr
and Hennessy [1981]. Explicit I/O loads can be efficiently measured using disk
throughput data [Vazhkudai and Schopf 2002]. Reasonable estimations for ex-
plicit I/O loads can be obtained by profiling the cluster (see, for example, Chow
and Kwok [2002]). In our implementation, we measure explicit I/O load using
I/O access patterns and buffer hit rates, which are monitored on-the-fly (see
Varman and Verma [1999] for an analysis of buffer management). The access
pattern of tasks can be characterized by I/O access rates and data sizes.

5.2 Reducing Remote Execution Cost

The remote execution cost of a task depends on a fixed cost of migrating the job
and its initial data that is measured by a profiling tool or by a code analysis
tool. Similar ways of measuring remote execution cost can be found in the lit-
erature (see, for example, Harchol-Balter and Downey [1996] and Zhang et al.
[2000]). In practice, data migration overhead can be measured by a performance
monitor [Agarwala et al. 2003; Basney and Livny 2000], which stores the most
recent values of the disk and network workload. For read-intensive applica-
tions, there is unnecessary to migrate all initial data sets, since only popular
data sets that are frequently accessed need to be migrated. Popular data sets
can be identified by either profiling or by analyzing the codes of read-intensive
applications. To reduce remote execution and migration overheads, we can dy-
namically predict and replicate popular data sets. Thus, the performance of
the I/0-aware load balancing schemes can be improved if the amount of initial
data that must be migrated can be accurately predicted and replicated at run
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time. For write-intensive applications, remote execution cost does not dominate
the performance of applications because most files in write-intensive applica-
tions are write once. When it comes to read-intensive applications, existing
caching/buffering techniques (e.g., active buffering and storage-aware caching
mechanisms) can efficiently reduce remote execution and migration costs by
migrating a smaller amount of initial data.

5.3 Predicting Response Time

The response time of a job is utilized to decide if the job’s remote execution can
improve the performance. Therefore, a response time predictor must be imple-
mented in the I/O-aware load balancing mechanism. The response time predict-
ing module is developed based on experimental and theoretical considerations.
For example, we consider the round-robin scheme (time-sharing) employed as
the CPU scheduling policy. We characterize each disk as a single M/G/1 queue.
Similar approximations for CPU and I/O processing times can be found in the
literature (see, for example, Lee et al. [2000], Brown [1979], and Kim [1986]).
I/O operations in real systems can be either synchronous or asynchronous. It
is assumed in our mechanism that all I/O operations are synchronous, because
many I/O-intensive parallel applications issue synchronous read/write opera-
tions [Surdeanu et al. 2002; Uysal et al. 1997]. This assumption is conservative
in the sense that it underestimates load balancing benefits (i.e., this assumption
causes a number of undesired migrations with negative impact). To implement
the IOCM-PM scheme that judiciously selects an eligible task in EM (see Sec-
tion 3.1.2) from the overloaded node to migrate, we extend the response time
predicting module to estimate the expected response time of a candidate mi-
grant. In doing so, IOCM-PM can ensure that the expected response time of
an eligible migrant on the source node is greater than the sum of its expected
response time on the destination node and the migration cost.

5.4 Measuring Migration Cost

The migration cost for preemptive migration includes the fixed cost and the
time spent on transmitting migrated data over the network and on accessing
source and destination disks. Note that migrated data sets are obtained by
a performance monitor in a typical real-world setting [Agarwala et al. 2003;
Basney and Livny 2000]. In some write-intensive applications like long running
simulations, a large number of snapshots and checking points are spawned by
write-only operations. Since snapshots and checking points are unlikely to be
frequently retrieved again by the same job, there is no need to move such write-
only data when the job is migrated. Therefore, migration overhead for such I/O-
intensive applications is usually very low. To maximize the migration benefit
gained by our I/O-aware load-balancing scheme, we implement an objective
function called migration cost-effectiveness, which measures the amount of I/O
load migrated per unit migration cost. The best task to be migrated is the one
with the maximum migration cost-effectiveness value.

ACM Transactions on Storage, Vol. 5, No. 3, Article 9, Publication date: November 2009.



9:34 o X. Qin et al.

5.5 Implementing Load Managers

When a job is submitted to its home node, a load manager assigns the job to
a node (for the sequential job) or a group of nodes (for the parallel job) with
the least load. The load manager continues to receive reasonably up-to-date
global load information from the head node, which monitors resource utiliza-
tion of the cluster and periodically broadcasts global load information to other
nodes of the cluster. If the load manager detects that the local node is heav-
ily loaded, a migration will be carried out to transfer an eligible process to a
node with the lightest load. Each parallel job consists of a number of tasks, the
tasks of a parallel job are assumed to synchronize with one another [Dusseau
et al. 1996]. Specifically, each task of a parallel job serially computes for some
period of time, then a barrier is performed so that each task starts exchanging
messages with other processes of the parallel job. Each task is described by its
requirements for CPU, memory, and I/O, measured, respectively, by the total
time spent on CPU, Mbytes, and number of disk accesses per ms. It is worth not-
ing that the resource requirements of tasks can be estimated by code profiling
and statistical prediction [Braun et al. 1999]. Each node serves several tasks
in a time-sharing fashion so that the tasks can dynamically share the cluster
resources.

5.6 Integration with MPI and File Systems

We need to decide which MPI (Message Passing Interface) implementation to
use in our proposed load balancing mechanism. The MPI management not only
has to support efficient process migration but also has facilities for monitor-
ing CPU, Memory, and I/O usage of individual nodes to make load balancing
feasible. We chose the LAM/MPI implementation because it met our require-
ments. There has been research on how to extend LAM/MPI base capabilities to
support efficient process migration [Cao et al. 2005; Singh and Graham 2008].
Our work is heavily dependent on the home node concept, which assumes the
node where a process is executed on also has the data the process requires.
MapReduction is a technique that improves the performance of parallel appli-
cations and leverages the home node assumption [Dean and Ghemawat 2008].
In addition, LAM/MPI was designed with the assumption that there would be
heterogeneous nodes in the cluster computer and this matches our assumption
of our load balancing schemes working on either homogenous or heterogeneous
cluster computing systems. LAM/MPI also has the additional benefit of being
run in user space, which should allow easy integration with existing cluster
computers. Another major decision we had to make was the choice of the file
system we would be integrated in our load balancing mechanism for parallel
clusters. An ideal file system supporting our mechanism has to be designed
for parallel applications. The ideal file system also needs to be implemented in
user space to allow the easy integration with our load balancing mechanism.
The Google file system seemed like a good choice because it was designed for
parallel applications and was written in user space [Ghemawat et al. 2003]. A
main problem of using the Google file system in our case is that it was writ-
ten with particular constraints that may not be necessary for various cluster
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computing systems. Therefore we decided that PVFS would be a better choice
for the file system for the cluster system that would support our research. It
has been demonstrated that PVFS can be used for load balancing for certain
applications and PVF'S is also written in user space [Vydyanathan et al. 2004].
To implement our I/O-aware load balancing mechanism in a cluster computing
system, we must integrate CPU, Memory, and I/O usage of nodes into a sched-
uler for the cluster system. The open source nature of LAM/MPI and PVFS
allows for modifications to LAM/MPI that can support our proposed load bal-
ancer. Load balancing has been implemented using monitors in the LAM/MPI
platform [Deng et al. 2005]. The I/O monitor integrated with LAM/MPI allows
for the tuning of PVF'S to support process migration and load balancing in an
efficient manner.

6. CONCLUSIONS

In this article, we have addressed the issue of balancing the load for I/O- and/or
memory-intensive applications running on clusters. In the first part of the study,
we investigate our schemes on a homogeneous cluster that consists of a group
of identical nodes. The proposed schemes achieve a significant performance
improvement over the existing CPU- and Memory-based policies by considering
both explicit and implicit I/O load. The empirical results show that the proposed
schemes are more general than the existing approaches in the sense that ours
can maintain high performance under a wide variety of workload conditions
including: CPU-, memory-, and I/O-intensive workload.

To fit the needs of a large fraction of clusters that are heterogeneous in prac-
tice, we develop two load balancing schemes for heterogeneous clusters where
computational nodes have different performance characteristics in computing
power, memory capacity, and disk speed. We develop analytic models to study
mean slowdowns, task arrival, and transfer processes in system levels. Using
a group of job traces with both synthetic and real application I/O demands, we
show that, compared with the existing load balancing approaches, ours are not
only effective in improving performance, but also less sensitive to changes in
heterogeneity level.

The proposed approaches can be considered complementary to the previous
techniques such as active buffering, storage-aware caching, date replication
algorithms and a feedback control mechanism. In other words, by combining
the above techniques, more intelligent load-balancing decisions can be made to
provide additional performance improvement.

Due to long runtimes, we have studied the performance of a cluster with 6
and 32 nodes, respectively. Therefore, future research will deal with a rigorous
testing experiment where the performance of a cluster with more than 1000
nodes will be evaluated. Since conducting this experiment largely depends on
the simulator, we will make an effort to develop a parallel simulator to efficiently
investigate the performance of the I/O-aware load balancing schemes for large-
scale clusters.

The corresponding source code for the simulator used in this work can be
found at http://www.eng.auburn.edu/ xqin/software/ioBalanceSim/.
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