
Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3, 2004 43

Dynamic Task Scheduling with
Security Awareness in Real-Time
Systems
Tao Xie, Xiao Qin, Andrew Sung
Department of Computer Science,
New Mexico Institute of Mining and Technology, Socorro, USA
E-mail: {xietao, xqin, sung@cs.nmt.edu}

Lin Man, Laurence Yang
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, B2G 2W5, Canada
{mlin, lyang@stfx.ca}

Abstract: An increasing number of real-time applications like aircraft control and medical
electronics systems require high quality of security to assure confidentiality, authenticity
and integrity of information. However, most existing algorithms for scheduling independent
tasks in real-time systems do not adequately consider security requirements of real-time
tasks. In recognition of this problem we propose a novel dynamic scheduling algorithm
with security awareness, which is capable of achieving high security for real-time tasks
while improving resource utilization. We conducted extensive simulation experiments to
quantitatively evaluate the performance of our approach. Experimental results based on
synthetic and real world traces show that compared with three baseline algorithms, the
proposed algorithm can consistently improve overall system performance in terms of
quality of security and guarantee ratio under a wide range of workload characteristics.

Keywords: security-aware scheduling; real-time; overall system performance; security
value; guarantee ratio.

Reference to this paper should be made as follows: Xie, T.; Qin, X.; Sung, A.; Lin, M.; and
Yang, L. (2006) ‘Dynamic Task Scheduling with Security Awareness in Real-Time
Systems’, Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3, pp.43–
54.

Biographical notes: T. Xie is currently a Ph.D. Candidate at the Department of Computer
Science, New Mexico Institute of Mining and Technology, New Mexico, USA. His current
research interests include High Performance Computing, Cluster and Grid Computing,
Distributed Systems, Parallel Processing, Real-time/Embedded Systems, Information
Security, and Performance Evaluation

X. Qin is an Assistant Professor of Computer Science at the New Mexico Institute of
Mining and Technology, New Mexico, USA. He received the Ph.D. degree in Computer
Science from the University of Nebraska-Lincoln. His current research focuses on parallel
and distributed systems, storage systems, real-time computing, performance evaluation, and
fault-tolerance.

A. Sung is currently Professor and Chairman of the Computer Science Department of New
Mexico Institute of Mining and Technology. He received his Ph.D. in Computer Science
from the State University of New York at Stony Brook in 1984. His current research
interests are computational intelligence, soft computing, and information security.

1 INTRODUCTION
Various dynamic real-time scheduling algorithms like
Earliest Deadline First (EDF) (Liu and Layland, 1973) and

Copyright © 2004 Inderscience Enterprises Ltd.

44 T. XIE, X. QIN, A. SUNG, M. LIN AND L. YANG

Spring scheduling algorithm (Ramamritham and Stankovic,
1984; Zhao et al, 1987) been developed for systems that
have no complete knowledge of task sets or timing
constraints. For example, new created tasks may arrive at a
unknown time. Although existing dynamic real-time
scheduling algorithms are effective in enhancing the
performance of real-time systems, security requirements
posed by scheduled tasks have not been factored in. This
critical problem becomes more pronounced when all the
scheduled real-time tasks require a certain level of security
guarantee provided by the system. Security requirement
bearing with real-time tasks is an extremely critical issue
and, therefore, have to be taken into account by dynamic
real-time scheduling algorithms. To tackle this important
problem, we proposed four security-aware dynamic real-
time scheduling algorithms, namely, EDF_MINS,
EDF_MAXS, EDF_RNDS, and EDF_OPTS. The first three
algorithms are variants of the earliest deadline first (EDF)
scheduling algorithms with security awareness. These three
algorithms intentionally choose minimal, maximal, and
random security level specified by each incoming tasks,
respectively. Unlike these three algorithms, the EDF_OPTS
algorithm is an optimized security-aware EDF scheduling
algorithm. EDF_OPTS is able to improve the quality of
security of tasks admitted to a real-time system while
maintaining a reasonably high level of guarantee ratio
defined as the ratio of the number of tasks guaranteed to
meet their specified deadlines to the total number of
submitted tasks. To the best of our knowledge, our
algorithms are the first algorithms for scheduling dynamic
tasks with security requirements in a real-time environment.
The basic idea behind our algorithms is to incorporate a
security-aware scheme into the Earliest Deadline First
algorithm, or EDF, to construct the four security-aware EDF
scheduling algorithms. A compelling advantage of our
approach is that real-time systems with high-security
demands can make use of the proposed algorithms to
flexibly provide the most appropriate level of security for
each task arrived in the systems. Most existing dynamic
scheduling algorithms for real-time systems are not
security-aware and, thus, unable to be employed in security
demanding real-time environments.

In a real-time system with high security demands like a
real-time stock quote update and trading system (Donoho,
2004), each incoming request or task submitted from a
business partner and each outgoing response from an
enterprise’s back-end application (the terms request and task
are used interchangeably throughout this paper) has a
deadline and a range of security level requirements which
must be met by the server located between the business
partners and enterprise back-end applications. In this case,
the server performs security operations on behalf of all its
clients. Each task submitted by a large group of clients
explicitly specifies a range of security levels in addition to
its deadline. The server facilitates required security
mechanisms on top of a request or a response in an out-of-
the-box integration manner. In general the server system

performs the following security operations on behalf of its
clients (VeriSign, 2003):

• Establishes secure connections with business
partners and back-end applications

• Applies and verifies digital signatures
• Authorizes access based on digital certificates
• Validates credentials in real time using public

key infrastructure
• Encrypts and decrypts requests and responses

Furthermore, the server can judiciously select a suitable
security level from the range of security levels specified by
each task. A security level is a predefined combination of
transport and message security mechanisms. Some typical
security levels in a real-time quote and trading systems are
(VeriSign, 2003):

• Routing only
• Routing + message security
• Routing + SSL
• Routing + SSL + message security
• Routing + SSL + client authentication
• Routing + SSL + message security + client

authentication
Different security levels impose different extra system

overheads including CPU and memory usage. While a real-
time system can automatically provide high quality of
security for some tasks by increasing security levels at the
cost of high overheads, the system can intentionally reduce
the quality of security for other tasks to improve guarantee
ratios. In our scheduling model, each task has a range of
security requirement levels denoted by [SLmin, SLmax]. The
goal for our security-aware scheduling algorithms for real-
time tasks is to enable real-time systems to meet the
deadlines of a large fraction of submitted tasks while
providing a high level of system security. Unfortunately,
current state-of-the-art real-time scheduling algorithms are
not security-aware and thus cannot be directly deployed to
security-sensitive computing environments. In addition,
some straightforward security-aware real-time scheduling
algorithms, including EDF_MINS, EDF_MAXS, and
EDF_RNDS can not achieve the goal either. The
EDF_MINS algorithm is intended to choose the minimal
security level from the range of security levels specified by
a task. Although EDF_MINS can inherently achieve a high
guarantee ratio, it tends to present real-time tasks with the
minimal level of security, making the lowest security
performance of the real-time system. On the contrary,
EDF_MAXS obtains the highest security performance by
choosing the maximal security level for each admitted task.
The disadvantage to the EDF_MAXS algorithm is that the
likelihood of a task being rejected by the system is
unreasonably high if the system relatively overloaded,
resulting in a low guarantee ratio. The EDF_RNDS
algorithm, an alternative to EDF_MINS and EDF_MAXS,
randomly configures the security level for each real-time
task admitted to the system. As a result, the performance of
EDF_RNDS in terms of guarantee ratio and quality of
security is in the range between that of EDF_MINS and
EDF_MAXS.

DYNAMIC TASK SCHEDULING WITH SECURITY AWARENESS IN REAL-TIME SYSTEMS 45

The main contribution of this paper is to propose a novel
security-aware real-time scheduling algorithm referred to as
EDF_OPTS, which can be successfully applied to security
demanding real-time systems such as real-time stock quote
update and trading systems. The captivating characteristic of
our scheme is to adaptively pick the most suitable security
levels from tasks’ security requirement ranges in a way to
obtain high overall security performance while maximizing
guarantee ratios. Experimental results show that the
EDF_OPTS algorithm outperforms all three heuristic
baseline security-aware EDF scheduling algorithms in terms
of overall system performance in all cases. Furthermore,
EDF_OPTS consistently improves the performance of
EDF_MAXS and EDF_RNDS with respect to guarantee
ratio and is only slightly inferior to EDF_MINS. In
particular, EDF_OPTS achieves performance improvement
in security over EDF_MINS by 94.41% with the marginal
guarantee ratio decreasing (< 5%).

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 describes the
design of our scheduling algorithm with security awareness.
Section 4 evaluates the proposed algorithm. Section 5
concludes the paper with some comments on the future
work.

2 RELATED WORK

Scheduling algorithms play an important role in achieving
high performance for real-time systems. While a scheduling
algorithm maps real-time tasks to processors in a system
such that deadlines and response time requirements are met
(Stankovic et al, 1998), the system has to guarantee its
functional and timing correctness even in the presence of
hardware and software faults (Qin and Jiang, 2001; Qin et
al, 2002).

Many scheduling algorithms, which can be classified into
two categories: static (Palencia et al, 1998; Abdelzaher and
Shin, 1999; Kwok et al, 1996) and dynamic (Palis, 2002;
Thomadakis and Liu, 1999; Kalogeraki et al, 2000;
Manimaran et al, 1998), have been proposed in the literature
to provide high performance for real-time systems. Palis
proposed a task-scheduling algorithm that provides quality
of service guarantees in the context of reservation-based
real-time systems (Palis, 2002). While real-time tasks in
Palis’s scheduling framework are preemptive (Palis, 2002),
it is assumed in our study that real-time tasks are non-
preemptive.

Abdelzaher and Shin proposed a communication sub-
system architecture for Quality of Service (QoS) adaptive
real-time applications such as streaming stored video on
end-hosts (Abdelzaher and Shin, 1998). They developed a
dynamic QoS-optimization mechanism, where flexible QoS
contracts specify multiple acceptable levels of service (or
QoS levels for short) and their corresponding rewards for
each client. The goal of their algorithm is to adjust each
accepted task’s QoS levels in a way that the system’s total
reward under resource constraints can be maximized. Our
task model assumes that each task has multiple acceptable

security levels, which is similar to the concept of QoS level
introduced by Abdelzaher and Shin (Abdelzaher and Shin,
1998). However, their scheduling algorithms do not rely on
QoS levels. More importantly, our study differs from that of
Abdelzaher and Shin in that the goal of our algorithms is to
maximize the overall quality of security (measured by
security value) and guarantee ratio by dynamically changing
each accepted tasks’ security levels.

Azzedin and Maheswaran examined the integration of the
notion of “trust” into resource management of a large-scale
wide-area system like the Grid (Azzedin and Maheswaran,
2002). They argued that there is a “trust relationship”
between a resource provider and a resource consumer. The
hypothesis is that if a resource manager is aware of the
security requirements of the resources and tasks, the
resource manager can perform allocations such that security
overhead can be minimized. It is worth noting that the
allocation algorithm proposed by Azzedin and Maheswaran
is developed in the context of non-real-time computing
environments, and it is not suitable for real-time systems
where tasks’ deadlines have to be factored in (Azzedin and
Maheswaran, 2002).

Previous research has applied control theory to dynamic
real-time scheduling algorithms (Lu et al, 1999; Stankovic
et al, 2001). The basic idea behind the feedback control
EDF scheduling system is to construct a feedback loop
where the system periodically compares controlled variables
to a set point to determine errors and changes the values of
the manipulated variables to control the system (Lu et al,
1999). Stankovic et al. successfully built a theoretical model
to analyze the stability of distributed real-time systems,
thereby demonstrating that their scheduling algorithm with
feedback control is stable and superior to other algorithms.
Furthermore, Marbini and Sacks proposed a closed-loop
dynamic scheduling algorithm that performs better than its
open-loop counterparts (Marbini and Sacks, 2002). Our
scheduling approach differs from the above scheduling
techniques in that ours is a security-aware scheduling
scheme to which a Security Level controller is integrated.

3 SECURITY-AWARE REAL-TIME SCHEDULING

3.1 Architecture of EDF_OPTS

First, we introduce the architecture of the security-aware
scheduling algorithms. Second, basic ideas behind the
security-aware EDF scheduling algorithms are given.
Lastly, we concentrate on the definitions of the performance
metrics that we pursued.

The EDF_OPTS scheduling architecture is mainly
composed of a security level controller, an admission
controller (AC) and an EDF scheduler, as depicted in Figure
1. This architecture is applied to one server (or CPU) node,
meaning that there is only one computer system handling all
incoming real-time tasks and the EDF_OPTS scheduler is
running on this node.

46 T. XIE, X. QIN, A. SUNG, M. LIN AND L. YANG

Source n

Source 2

Source 1

Admission
Controller

Accepted
Queue

 EDF

Security Level
Controller

Terminated
Tasks

Rejected
Tasks

CPU

Figure 1 System architecture

All the tasks are independently submitted from n sources
and their arrival times abide by Poisson distribution. The
function of the admission controller is to determine if an
incoming task can be accepted, or rejected otherwise. The
security level controller is intended to maximize the security
levels of current tasks residing in an accepted queue. The
EDF scheduler makes use of the Earliest Deadline First
policy to schedule admitted tasks, where security levels are
optimized by the security level controller. The following
steps depict the procedures of the EDF_OPTS scheduler
where the security quality of a real-time system is
improved:

Step One: Initialize the scheduler. Overall security value
and number of rejected task are set to zero. Wait for any
incoming tasks.

Step Two: If a task i arrives and it is the only task available,
execute the task immediately using its highest security level.
The starting time STi (actually STi is its arrival time in this
case) and completion time CTi of task i are calculated. The
security value is increased by the security level of task i,
which, in this case, is SLi_max.

Step Three: All the tasks arriving in the system during the
time period [STi, CTi] are stored into a waiting queue in the
non-decreasing order of their deadlines. The starting time of
the next task STi+1 is set to CTi.

Step Four: Admission controller is responsible of deciding
whether a task in the waiting queue can be accepted by
considering (1) the security overhead (extra execution time)
imposed by the task’s lowest security requirement, and (2)
the deadline of this task. If the system can meet the task’s
deadline while fulfilling the security requirement, the task
will be forwarded into the accepted queue for further
processing. Otherwise, it will be rejected by being put into
the rejected queue, and the number of rejected task is
increased by one.

Step Five: SLC promotes the security levels of all the tasks
in the accepted queue as high as possible, subjecting to two
constraints: (1) Raising of an accepted task’s security level
should still guarantee its deadline. (2) Increasing security

levels should not result in any rejection of currently
accepted tasks. The rationale of the above policy is that
guarantee ratio, a fundamental performance metric for real-
time systems, has to be given the highest priority. Security
level promotion can be performed only when such an
adjustment leads to no rejection of any accepted tasks
residing in the accepted queue. Note that the deadlines of
tasks in the accepted queue can be guaranteed, although the
adjustment of security levels might affect the schedulability
of future coming tasks. We will demonstrate how the
security level controller improves security levels shortly in
section 3.3.

Step Six: At this point, the security level SLi+1 of the next
starting task’s can be optimized. Increase security value by
SLi+1. Its completion time CTi+1 is calculated. Therefore, we
obtain a new time slot [STi+1, CTi+1] for the task. Steps 3-6
are repeatedly executed until all the arrival tasks are
processed in one run.

Now we are in a position to briefly outline the ideas of the
three alternative EDF security-aware scheduling algorithms
that are envisioned as baseline algorithms.

EDF_MINS: The admission controller intentionally selects
the lowest security level of each coming task. Therefore, the
guarantee ratio is improved at the cost of reducing overall
security value of the system.

EDF_MAXS: The admission controller chooses the highest
security level for each accepted task. As a result, security
values are increased while decreasing guarantee ratios.

EDF_RNDS: Unlike EDF_MINS and EDF_MAXS,
EDF_RNDS randomly picks a value within the range of
security levels specified by each arrival task. Hence,
security values and guarantee ratios of the system are
unlikely to be pushed to extremes, meaning that the
performance of EDF_RNDS is somewhere between that of
the above two algorithms.

3.2 Task model

Like many existing real-time task models presented in the
literature (Lu et al, 1999; Palis, 2002; Palencia et al, 1998;
Thomadakis and Liu, 1999), our task model assumes that all
tasks have soft deadlines and all tasks are independent of
one another. In our system model, there exists a single
server handling tasks from n sources. Each task has a range
of security level requirement where the server is allowed to
choose a value under particular constraints. For synthetic
workload conditions, it is assumed that tasks arrive at the
system according to a Poisson process. Task Ti is
represented as a tuple (ATi, ETi, SLi, Di), where ATi and ETi
denote the arrival time and the worst case execution time of
task i. SLi and Di represent the security level and soft
deadline of task i. Note that given task i, ETi and Di of are
known to the scheduler in advance. Without loss of
generality, we assume that the worst case execution time ETi
is the execution time of task i without having its security
overhead in place. In addition, in the task model each task is

DYNAMIC TASK SCHEDULING WITH SECURITY AWARENESS IN REAL-TIME SYSTEMS 47

assigned a quality of security measured as a security level
SLi that is in the range [1, 2, …, R], where 1 and R are the
lowest and highest levels of security, and R is set to 10 in
our experiments.

To simplify the security overhead model without loss of
generality, we make use of Equation (1) to model the
security overhead envisioned as the extra execution time
experienced by task i. The rationale behind the overhead
model is based on our observation that the security overhead
of a particular application tends to be proportional to the
execution time of the application. Importantly, the overhead
model captures the essence of applications with security
demands to provide reasonable estimates of security
overheads based on particular security levels. Very recently,
a sophisticated security overhead model was constructed by
Xie et al. (Xie et al, 2005). This comprehensive model can
be easily integrated into our scheduling architecture.

 SO (1))/(* RSLET

Y

N

End

Its security level is fixed and
record it as a handled task

N

Cause rejection of
any other tasks?

All tasks
processed?

Lower its
security

level

Y

Find the shortest execution time of
unhandled task in the Accepted Queue

Raise its security level as high as possible under
conditions of its deadline and its max security level

iii =

iiiii +=+=

where SOi is the security overhead of task i; and SLi is the
security level provided to task i. Thus, the total execution
time of task i can be expressed as Equation (2).

 WL (2))/1(* RSLETSOET

Figure 2 Workflow of security lever controller

3.3 Security Level Controller

The ultimate goal of this study is to maximize overall
system performance (See Equation 3), which reflects both
guarantee ratio and security performance (See Equation 4

and 5). To achieve the goal, we designed an optimized EDF
scheduling algorithm with security awareness, or
EDF_OPTS, which is capable of maintaining high guarantee
ratios while maximizing security values. In particular, the
EDF_OPTS algorithm strives to achieve the best trade-off
between the guarantee ration and security value. It can be
accomplished by applying a security level controller to our
EDF_OPTS algorithm. Figure 2 shows the flow chart of the
controller that adjusts security levels.

The controller is intended to assign the highest security
level to an admitted task in the accepted queue while
making the task schedulable under the following two
constraints. First, the increase of the task’s security level
cannot violate its deadline constraint. Second, the security
level promotion for the task has to result in no potential
rejection of subsequent accepted tasks. In an effort to
maximize the overall security value, we propose a strategy
to give accepted tasks with short execution time (security
overhead is not incorporated) a higher priority and make the
best effort to boost their security levels. The reason for
doing so is that tasks with short execution times impose low
security overheads compared with tasks with long execution
times. Consequently, the EDF_OPTS algorithm is efficient
in obtaining a high overall security value by judiciously
adjusting security levels for the accepted tasks under this
approach.

 Since this research is focused on dynamic real-time
environments, the EDF_OPTS algorithm can maximize
security values for tasks residing in the accepted queue,
providing locally optimized security performance. The
experimental results reported in the following section show
that this local optimization yield an appealing overall
security value.

4 SIMULATION RESULTS AND DISCUSSIONS

4.1 Performance metrics and parameters

For the sake of simplicity, throughout this section
EDF_OPTS is referred to as OPTS. Similarly, the baseline
algorithms are referred to as MINS, MAXS, and RNDS,
respectively.

In order to evaluate the effectiveness of our approach, it is
useful to compare the OPTS algorithm against three
baseline algorithms, namely, MINS, MAXS, and RNDS.
The following three important performance metrics for
highly secure real-time systems will be used to
quantitatively evaluate the proposed algorithm. Overall
system performance (OSP) is measured as a product of
Security Value (SV) and Guarantee Ratio (GR)

 . (3) GRSVOSP *=

The security value and guarantee ratio of a system are
defined as follows.

 , (4) ∑
=

=
N

j
jSLSV

1

where N is the number of accepted tasks in one run.
 , (5) MNGR /=

48 T. XIE, X. QIN, A. SUNG, M. LIN AND L. YANG

where M is the total number submitted tasks in one run.
Task arrival rate λ and execution time range (ETR) are

two workload parameters. We evaluate our algorithm
performance under a wide range of system workload
conditions by varying λ and ETR.

In addition to synthetic simulations, we also tested the
four algorithms using a real world trace. We modified the
trace used in (Harchol-Balter and Downey, 1997; Zhang et
al, 2000) by adding deadlines for all tasks in the trace,
which was collected from one workstation in the third time
interval. There are totally 572 tasks in the trace. The
assignment of deadlines is controlled by the deadline base
denoted as β, which sets an upper bound on tasks’ slack
times. We use Equation (6) to generate task i’s deadline di.

 (6) β+++= max
iSOieiaid

where ai and ei are the arrival and execution times obtained
from the real-world trace. is the maximal security
overhead (measured in second), which is computed by
Equation (1) using the highest security level of task i.

max
iSO

4.2 Experiments design

There are two types of simulations conducted in this work.
In Section 4.3, we designed four groups of experiments to
measure the performance metrics under four workload
situations using synthetic workload. Each curve in the
figures is composed of 30 points, each of which is an
average value computed from 30 runs. In the first three
group experiments, we measure the security value,
guarantee ratio, and overall system performance of the
simulated real-time system when the task arrival rate is

increased from 0.1 to 3.0 with the increment of 0.1. The
ETR in these experiments is set to be [1, 50], [1,100] and
[1,200] respectively. In the fourth group experiment, we
stressed the security workload by keeping the guarantee
ratio as high as 100%. This workload reflects a scenario
where the deadlines of real-time tasks are not tight. In
Section 4.4, we tested the four algorithms using the trace
data with five different deadline bases varying from 100
seconds to 2000 seconds.

4.3 Experimental results using synthetic data

Below are figures that we obtained from the experiments
designed above. Figures 3-6 depict the security values and
guarantee ratios as functions of the task arrival rate λ.

As we can see from Figure 3, OPTS does not show its
strength when ETR is [1, 50] if we consider SV and GR
separately. It takes the second place among four scheduling
algorithms in terms of security value and guarantee ratio.
On average, the security value of OPTS is 7.25% lower than
that of MAXS (please refer to Table 1) because MAXS
attempts to accept real-time tasks using the highest security
levels. Under this workload where the arrival tasks are more
homogeneous in terms of execution times, security levels
specified by the tasks vary slightly.

As we mentioned before, if a fixed security level is
maintained, long execution times result in high security
overheads, which in turn give rise to the potential rejection
of submitted tasks due to the high system load. In cases
where arrival tasks have similar short execution times, the
security overhead of the lowest security level is very close
to that of the highest security level. The implication is that
assigning the highest security level for each accepted task is

Figure 3 Performance of four algorithms when ETR=[1, 50]

Figure 4 Performance of four algorithms when ETR=[1, 100]

DYNAMIC TASK SCHEDULING WITH SECURITY AWARENESS IN REAL-TIME SYSTEMS 49

Figure 5 Performance of four algorithms when ETR=[1, 200]

unlikely to incur potential rejections of forthcoming tasks.
Therefore, in this scenario, which largely depends on the
nature of arrival tasks, MAXS has the best performance in
security value.

Under the same workload condition the guarantee ratio of
MINS is 6% higher than that of OPTS (please refer to table
1). The reason is self-explanatory since MINS always picks
the lowest security level for an acceptable task and thus it
can accept more tasks than OPTS whose security level
optimization may cause rejection of later deadline tasks.
However, OPTS is in the first place in overall system
performance, which is computed by Equation (3). Figure 3
(c) demonstrates that OPTS achieved the highest
performance if security value and guarantee ratio are
considered equally important and simultaneously.

Figure 4 plots security value and guarantee ratio of the
four scheduling algorithms when the arrival tasks’ execution
time range is within [1,100]. This experimental setting
reflects a system workload, where some tasks arriving in the
system have relatively long execution times.

In general OPTS outperforms all the other three
algorithms in security performance. The interesting results
indicate that OPTS even can achieve higher security quality
than MAXS, which was expected to deliver the highest
security value in under various workloads. We attribute this
result to the fact that the MAXS algorithm does not
incorporate a security level controller and, therefore, MAXS
tends to accept some tasks with long execution times,
making a high likelihood to reject submitted real-time tasks.
On the contrary, OPTS makes the best effort to elevate the
security levels of tasks with short execution times, thereby
resulting in low rejection rate for real-time tasks arrived in
the system. Although MAXS is intended to select the
highest security levels for accepted tasks, it inherently tends
to reject tasks due to high system load induced by the
highest security levels of accepted tasks with long execution
times. In particular, the proposed OPTS improves the
security value over MINS by 94.41% (See table 1), and the
guarantee ratio of OPTS in this case is almost the same as
that of MINS (only 5% less than the guarantee ratio of
MINS). It is desirable to achieve an improvement in the
quality of security by 94.41% for real-time systems with
security demands at the cost of a marginal guarantee ratio
loss. As for overall system performance, OPTS noticeably
outperforms all the other three algorithms (Figure 4).

We observe from Figures 5 that OPTS is in the leading
position in term of security performance when the execution
time range is set to [1, 200]. This result is consistent with
that observed from the previous experiments. More
importantly, the distance between OPTS and MAXS even
becomes larger (OPTS’s security value is 16.6% higher than
that of MAXS). Meanwhile, the discrepancy of guarantee
ratio between OPTS and MINS becomes narrow which is
only 3% less than MINS. However, OPTS’s security value
is still 85.27% higher than that of MINS. Like the two
experiments mentioned above, OPTS is still in the first
place in terms of overall system performance (Figure 5 c).
We also test OPTS in an extreme case when system
workload is very light. In this case, the guarantee ratio of all
four algorithms is 100%.

 Figure 6 Security value, ETR [1, 10], λ[0.05, 0.35]

Figure 6 plots the security values under the scenarios

where the guarantee ratios are set to 100%. Figure 6 plainly
shows that OPTS achieves significant performance
improvements in security values over MINS and RNDS,
and ties with MAXS in security performance.

Table 1 Summary of guarantee ratios and security values.

(ETR – Execution Time Range,
GR - Guarantee Ratio, SV – Security Value)

ETR[1,50] ETR[1,100] ETR[1,200]
EDF_ GR SV GR SV GR SV
MINS 0.39 116.13 0.26 73.57 0.16 45.77
MAXS 0.25 250.77 0.15 138.53 0.08 72.70
RNDS 0.31 197.43 0.20 116.77 0.12 67.17
OPTS 0.33 233.83 0.21 143.03 0.13 84.80

50 T. XIE, X. QIN, A. SUNG, M. LIN AND L. YANG

Table 2 Summary of overall system performance improvements

OSP [1,50] [1,100] [1,200] Gain(%)

MINS 45.29 19.13 7.32 65.29

MAXS 62.69 20.78 5.78 32.86

RNDS 61.20 23.35 8.06 28.04

OPTS 77.16 30.04 11.02

Table 1 and 2 summarize the overall performance

improvements of our OPTS over the other baseline
scheduling algorithms. A major observation made from
Table 2 is that OPTS is constantly the best algorithm with
respect to overall system performance among all tested
alternatives. This is because the overall system performance
by definition is a product of guarantee ratio and security
value, and the OPTS approach strives to simultaneously
maximize both guarantee ratio and security value by
achieving the best trade-off between the two performance
metrics. In particular, OPTS improves the overall system
performance over the MINS algorithm by an average of
65.29%. Similarly, compared with MAXS and RNDS, the
proposed OPTS algorithm delivers improvements in the
overall system performance by averages of 32.86% and
28.04%, respectively.

4.4 Trace-driven simulation

To validate the results from the synthetic experiments
described in Section 4.3, we used a real world trace to drive
the simulations of our OPTS algorithm. The trace was
sampled from a workstation during a certain period of time
(Harchol-Balter and Downey, 1997; Zhang et al, 2000).
Since there were no deadlines for tasks in the original trace,
we generated a deadline for each task based on Equation
(6). In addition, we tested five scenarios where the deadline
base varies from 100 seconds to 2000 seconds.

Figure 7 shows the experimental results for these four
algorithms. We observe from Figure 7 (a) that OPTS and
MINS exhibit similar performance in terms of guarantee
ratio, whereas the OPTS noticeably outperforms the MAXS
and RNDS algorithms. We attribute the performance
improvement of OPTS over MAXS and RNDS to the fact

tasks under the condition that the deadlines of the tasks are
guaranteed, thereby maintaining relatively high guarantee
ratios. Unlike OPTS, the MAXS and RNDS policies
improve quality of security at the cost of missing deadlines.
Figure 7 (a) illustrates that the guarantee ratios of four

that OPTS judiciously boosts the security levels of accepted

provements achieved
b

ond observation made from figure 7 (c) is that the
O

OPTS can maintain similar guarantee ratios as those of

algorithms increase with the increasing value of the deadline
base. This is because the large deadline base leads to long
slack times, which in term tend to make the deadlines more
likely to be guaranteed. Figure 7 (b) plots security values of
the four algorithms when the deadline base is increased
from 100 to 2000 seconds. A 100 second deadline base
implies a very tight deadline setting because the average
task execution time in the trace is 9454 seconds. Similarly, a
2000 second deadline base hints a relatively loose deadline
for each task. It reveals that OPTS consistently performs
better, with respect to quality of security, than all the other
three approaches. When the deadlines are tight, the security
values of OPTS are very close to those of MAXS. However,
OPTS significantly outperforms MAXS when the deadline
base becomes large. This is because that OPTS can accept
more tasks than MAXS. Interestingly, when the deadlines
become loose, the performance improvements of OPTS over
the three competitor algorithms are more pronounced. The
results clearly indicate that we can gain more performance
benefits from OPTS approach under the circumstance that
real-time tasks have loose deadlines.

The overall system performance im
y OPTS are plotted in Figure 7 (c). The first observation

deduced from Figure 7 (c) is that the value of overall system
performance increases with the deadline base. This is
mainly because the overall system performance is a product
of security value and guarantee ratio, which become higher
when the deadlines are loose due to the high deadline base
value.

A sec
PTS algorithm significantly outperforms all the other three

alternatives. This can be explained by the fact that although
the guarantee ratios of OPTS and MINS are similar, OPTS
considerably improves security values over the other
algorithms, while achieving higher guarantee ratio than
MAXS and RNDS. This result suggests that if quality of
security is the sole objective in scheduling, OPTS is more
suitable for real-time tasks than the other alternatives. In
contrast, if schedulability is the only performance objective,

(a) (b) (c)
Figure 7 Performance impact of deadline base

DYNAMIC TASK SCHEDULING WITH SECURITY AWARENESS IN REAL-TIME SYSTEMS 51

MINS, whose security performance is the worst among the
four algorithms.

Last but not least, Figure 7 (c) indicates that the overall
performance improvement of OPTS over the other three
al

5 CONCLUSIONS

gorithms becomes more pronounced when the deadlines
are looser, implying that more performance benefits can be
obtained by OPTS for real-time tasks with large slack times.
This is because the OPTS approach is more sensitive to the
change in deadlines than the other schemes.

In real-time systems with
not only are required t

 high security demands, schedulers
o achieve high guarantee ratios to

ly schedule
ta

s roughly 4.5% worse than that
o

elevate system throughput and utilization, but also need to
provide high quality of security for real-time applications
running on the systems. To develop high security real-time
systems where the above requirements are fulfilled, we
proposed in this paper an optimized dynamic real-time
scheduler with security–awareness (referred to as
EDF_OPTS) in addition to three basic security-aware
scheduling algorithms. The EDF_OPTS is designed in a
way that makes it possible to achieve the best trade off
between guarantee ratio and security performance. In
particular, our EDF_OPTS algorithm leverages an
intelligent security level controller to dynamically and
adaptively boost the security levels of accepted tasks while
maintaining a reasonably high guarantee ratio.

To the best of our knowledge, our algorithm is the first
non-trivial algorithm designed to dynamical

sks in real-time systems with security constraints. Our
approach is proven to deliver significant improvements in
overall system performance under a wide range of workload
patterns. Specifically, our approach can provide overall
performance improvement by up to 65.29%, which indicate
that the EDF_OPTS algorithm is capable of simultaneously
maximizing security service level and system guarantee
ratio, two equally important metrics for high security real-
time systems such as a real-time stock quote and trading
system. More importantly, EDF_OPTS outperforms
EDF_MAXS with respect to quality of security in most
cases.

The drawback of our approach is that the guarantee ratio
performance of EDF_OPTS i

f EDF_MINS when the execution time range varies from
[1, 50] to [1, 200]. Although this performance degradation
mainly depends on the inherent nature of the algorithms, we
are able to further improve the performance by applying a
feedback control mechanism. Future studies include: (1) the
design of the feedback control mechanism used to
dynamically monitor and adjust guarantee ratios, (2)
improving quality of security for networks by integrating
EDF_OPTS into our communication-aware load balancing
scheme (Qin and Jiang, 2005), and (3) incorporating
EDF_OPTS into our task duplication management system
(Qin 2005).

ACKNOWLEDGEMENT

This work was partially supported by a start-up research
fund (103295) from the research and economic development
office of the New Mexico Tech and a DoD IASP Capacity
Building grant.

REFERENCES

Abdelzaher, T.F. and Shin, K.G. (1999) ‘Combined Task and
Message Scheduling in Distributed Real-Time Systems’, IEEE
Trans. Parallel and Distributed Systems, Vol. 10, No. 11,
November.

Abdelzaher, T.F. and Shin, K.G. (1998) ‘End-host Architecture for
QoS-Adaptive Communication’, Proceedings of IEEE Real-
Time Technology and Applications Symposium, pp. 121, June.

Azzedin, F. and Maheswaran, M. (2002) ‘Towards Trust-Aware
Resource Management in Grid Computing Systems’,
Proceedings of the 2nd IEEE/ACM Int’l Symposium on Cluster
Computing and the Grid, Berlin, Germany, May.

Donoho, G. (2004) ‘Building a Web Service to Provide Real-Time
Stock Quotes,’ MCAD.Net, February

Harchol-Balter, M. and Downey, A. (1997) ‘Exploiting Process
Lifetime Distributions for Load Balancing’, ACM transaction
on Computer Systems, Vol. 3, No. 31, March.

Kalogeraki, V., Melliar-Smith, P.M. and Moser, L.E. (2000)
‘Dynamic scheduling for soft real-time distributed object
systems’, Proceedings of IEEE Int’l Symposium on Object-
Oriented Real-Time Distributed Computing, pp.114-121.

Kwok, Y.K., Ahmad, I. and Gu, J. (1996) ‘FAST: A Low-
Complexity Algorithm for Efficient Scheduling of DAGs on
Parallel Machines’, Proceedings of the 25th Int’l Conference
on Parallel Processing, pp. II:150-157.

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment’,
Journal of the ACM, Vol. 20, No. 1, pp. 46-61,

Lu, C.Y., Stankovic, J.A., Tao, G. and Son, S.H. (1999) ‘Design
and Evaluation of a Feedback Control EDF Scheduling
Algorithm’, Proceedings of IEEE Real-Time Systems
Symposium, Phoenix, Arizona, December.

Marbini, A.D. and Sacks, L. (2002) ‘Considering Control Theory
in Resource Management Scenarios’, Proceedings of London
Communications Symposium, London, England.

Manimaran, G. and Murthy, C.S.R (1998) ‘An Efficient Dynamic
Scheduling Algorithm for Multimachine Real-Time Systems’,
IEEE Transaction on Parallel and Distributed Systems, Vol. 9,
No. 3, pp. 312-319.

Palencia, J.C. and Gonzalez, H.M. (1998) ‘Schedulability analysis
for tasks with static and dynamic offsets’, Proceedings of the
19th IEEE Real-Time Systems Symposium, pp.26-37.

Palis, M.A. (2002) ‘Online Real-Time Job Scheduling with Rate of
Progress Guarantees’, Proceedings of the 6th Int’l Symposium
on Parallel Architectures, Algorithms, and Networks, pp. 65-
70.

Qin, X. and Jiang, H. (2005) ‘Improving Effective Bandwidth of
Networks on Clusters using Load Balancing for
Communication-Intensive Applications’, Proceedings of the
24th IEEE Int’l Performance, Computing, and
Communications Conf. (IPCCC 2005), Phoenix, Arizona,
April.

Qin, X. (2005) ‘Improving Network Performance through Task
Duplication for Parallel Applications on Clusters’, Proc. the
24th IEEE Int’l Performance, Computing, and
Communications Conference, Phoenix, Arizona, April.

Qin, X. and Jiang, H. (2001) ‘Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous

52 T. XIE, X. QIN, A. SUNG, M. LIN AND L. YANG

Systems’, Proc. Int’l Conf. Parallel Processing, Valencia,
Spain, pp.113-122.

Qin, X., Jiang, H. D. and Swanson, R. (2002) ‘An Efficient Fault-
tolerant Scheduling Algorithm for Real-time Tasks with
Precedence Constraints in Heterogeneous Systems’, Proc. Int’l
Conf. Parallel Processing, British Columbia, Canada, pp.360-
368, August.

Ramamritham, K. and Stankovic, J. A. (1984) ‘Dynamic task
scheduling in distributed hard real-time system’, IEEE
Software, Vol. 1, No. 3, July.

Stankovic, J.A., He, T. and Abdelzaher, T. et al, (2001) ‘Feedback
Control Scheduling in Distributed Real-Time System,” Proc.
the 22nd IEEE Real-Time Systems Symposium, London,
England, December.

Stankovic, J., Spuri, M., Ramamritham, K. and Buttazzo, G.C.
(1998) ‘Deadline Scheduling for Real-time systems: EDF and
Related Algorithms’, Kluwer Academic Publishers.

Thomadakis, M.E. and Liu, J.C. (1999) ‘On the efficient
scheduling of non-periodic tasks in hard real-time systems’,
Proc. IEEE Real-Time Systems Symposium. pp.148-151.

VeriSign Corp., (2003) ‘Simplifying Application and Web
Services Security - VeriSign Trust Gateway,’

Xie, T., Qin, X., and Sung, A. (2005) ‘SAREC: A Security-Aware
Scheduling Strategy for Real-Time Applications on Clusters’,
Proc. of the 34th Int’l Conf. Parallel Processing, pp.5-12,
Norway.

Zhang, X., Qu Y. and Xiao, L. (2000) ‘Improving Distributed
Workload Performance by Sharing both CPU and Memory
Resources,” Proc. 20th Int’l Conf. Distributed Computing
Systems (ICDCS), April.

Zhao, W., Ramamritham, K. and Stankovic, J.A. (1987)
‘Preemptive Scheduling Under Time and Resource
Constraints’, IEEE Transactions on Computers, pp. 36-38.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

