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Abstract: An increasing number of real-time applications like aircraft control and medical 
electronics systems require high quality of security to assure confidentiality, authenticity 
and integrity of information. However, most existing algorithms for scheduling independent 
tasks in real-time systems do not adequately consider security requirements of real-time 
tasks. In recognition of this problem we propose a novel dynamic scheduling algorithm 
with security awareness, which is capable of achieving high security for real-time tasks 
while improving resource utilization. We conducted extensive simulation experiments to 
quantitatively evaluate the performance of our approach. Experimental results based on 
synthetic and real world traces show that compared with three baseline algorithms, the 
proposed algorithm can consistently improve overall system performance in terms of 
quality of security and guarantee ratio under a wide range of workload characteristics.  
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1 INTRODUCTION 
Various dynamic real-time scheduling algorithms like 
Earliest Deadline First (EDF) (Liu and Layland, 1973) and 
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Spring scheduling algorithm (Ramamritham and Stankovic, 
1984; Zhao et al, 1987) been developed for systems that 
have no complete knowledge of task sets or timing 
constraints. For example, new created tasks may arrive at a 
unknown time. Although existing dynamic real-time 
scheduling algorithms are effective in enhancing the 
performance of real-time systems, security requirements 
posed by scheduled tasks have not been factored in. This 
critical problem becomes more pronounced when all the 
scheduled real-time tasks require a certain level of security 
guarantee provided by the system. Security requirement 
bearing with real-time tasks is an extremely critical issue 
and, therefore, have to be taken into account by dynamic 
real-time scheduling algorithms. To tackle this important 
problem, we proposed four security-aware dynamic real-
time scheduling algorithms, namely, EDF_MINS, 
EDF_MAXS, EDF_RNDS, and EDF_OPTS. The first three 
algorithms are variants of the earliest deadline first (EDF) 
scheduling algorithms with security awareness. These three 
algorithms intentionally choose minimal, maximal, and 
random security level specified by each incoming tasks, 
respectively. Unlike these three algorithms, the EDF_OPTS 
algorithm is an optimized security-aware EDF scheduling 
algorithm. EDF_OPTS is able to improve the quality of 
security of tasks admitted to a real-time system while 
maintaining a reasonably high level of guarantee ratio 
defined as the ratio of the number of tasks guaranteed to 
meet their specified deadlines to the total number of 
submitted tasks. To the best of our knowledge, our 
algorithms are the first algorithms for scheduling dynamic 
tasks with security requirements in a real-time environment. 
The basic idea behind our algorithms is to incorporate a 
security-aware scheme into the Earliest Deadline First 
algorithm, or EDF, to construct the four security-aware EDF 
scheduling algorithms. A compelling advantage of our 
approach is that real-time systems with high-security 
demands can make use of the proposed algorithms to 
flexibly provide the most appropriate level of security for 
each task arrived in the systems. Most existing dynamic 
scheduling algorithms for real-time systems are not 
security-aware and, thus, unable to be employed in security 
demanding real-time environments.  

In a real-time system with high security demands like a 
real-time stock quote update and trading system (Donoho, 
2004), each incoming request or task submitted from a 
business partner and each outgoing response from an 
enterprise’s back-end application (the terms request and task 
are used interchangeably throughout this paper) has a 
deadline and a range of security level requirements which 
must be met by the server located between the business 
partners and enterprise back-end applications. In this case, 
the server performs security operations on behalf of all its 
clients. Each task submitted by a large group of clients 
explicitly specifies a range of security levels in addition to 
its deadline. The server facilitates required security 
mechanisms on top of a request or a response in an out-of-
the-box integration manner. In general the server system 

performs the following security operations on behalf of its 
clients (VeriSign, 2003):   

• Establishes secure connections with business   
partners and back-end applications 

• Applies and verifies digital signatures 
• Authorizes access based on digital certificates 
• Validates credentials in real time using public 

key infrastructure 
• Encrypts and decrypts requests and responses 

Furthermore, the server can judiciously select a suitable 
security level from the range of security levels specified by 
each task. A security level is a predefined combination of 
transport and message security mechanisms. Some typical 
security levels in a real-time quote and trading systems are 
(VeriSign, 2003):  

• Routing only 
• Routing + message security 
• Routing + SSL 
• Routing + SSL + message security 
• Routing + SSL + client authentication 
• Routing + SSL + message security + client 

authentication 
Different security levels impose different extra system 

overheads including CPU and memory usage.  While a real-
time system can automatically provide high quality of 
security for some tasks by increasing security levels at the 
cost of high overheads, the system can intentionally reduce 
the quality of security for other tasks to improve guarantee 
ratios. In our scheduling model, each task has a range of 
security requirement levels denoted by [SLmin, SLmax]. The 
goal for our security-aware scheduling algorithms for real-
time tasks is to enable real-time systems to meet the 
deadlines of a large fraction of submitted tasks while 
providing a high level of system security. Unfortunately, 
current state-of-the-art real-time scheduling algorithms are 
not security-aware and thus cannot be directly deployed to 
security-sensitive computing environments. In addition, 
some straightforward security-aware real-time scheduling 
algorithms, including EDF_MINS, EDF_MAXS, and 
EDF_RNDS can not achieve the goal either. The 
EDF_MINS algorithm is intended to choose the minimal 
security level from the range of security levels specified by 
a task. Although EDF_MINS can inherently achieve a high 
guarantee ratio, it tends to present real-time tasks with the 
minimal level of security, making the lowest security 
performance of the real-time system. On the contrary, 
EDF_MAXS obtains the highest security performance by 
choosing the maximal security level for each admitted task. 
The disadvantage to the EDF_MAXS algorithm is that the 
likelihood of a task being rejected by the system is 
unreasonably high if the system relatively overloaded, 
resulting in a low guarantee ratio. The EDF_RNDS 
algorithm, an alternative to EDF_MINS and EDF_MAXS, 
randomly configures the security level for each real-time 
task admitted to the system. As a result, the performance of 
EDF_RNDS in terms of guarantee ratio and quality of 
security is in the range between that of EDF_MINS and 
EDF_MAXS. 
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The main contribution of this paper is to propose a novel 
security-aware real-time scheduling algorithm referred to as 
EDF_OPTS, which can be successfully applied to security 
demanding real-time systems such as real-time stock quote 
update and trading systems. The captivating characteristic of 
our scheme is to adaptively pick the most suitable security 
levels from tasks’ security requirement ranges in a way to 
obtain high overall security performance while maximizing 
guarantee ratios. Experimental results show that the 
EDF_OPTS algorithm outperforms all three heuristic 
baseline security-aware EDF scheduling algorithms in terms 
of overall system performance in all cases. Furthermore, 
EDF_OPTS consistently improves the performance of 
EDF_MAXS and EDF_RNDS with respect to guarantee 
ratio and is only slightly inferior to EDF_MINS. In 
particular, EDF_OPTS achieves performance improvement 
in security over EDF_MINS by 94.41% with the marginal 
guarantee ratio decreasing (< 5%). 

The rest of this paper is organized as follows. Related 
work is discussed in Section 2. Section 3 describes the 
design of our scheduling algorithm with security awareness. 
Section 4 evaluates the proposed algorithm. Section 5 
concludes the paper with some comments on the future 
work. 

2 RELATED WORK 

Scheduling algorithms play an important role in achieving 
high performance for real-time systems. While a scheduling 
algorithm maps real-time tasks to processors in a system 
such that deadlines and response time requirements are met 
(Stankovic et al, 1998), the system has to guarantee its 
functional and timing correctness even in the presence of 
hardware and software faults (Qin and Jiang, 2001; Qin et 
al, 2002).  

Many scheduling algorithms, which can be classified into 
two categories: static (Palencia et al, 1998; Abdelzaher and 
Shin, 1999; Kwok et al, 1996) and dynamic (Palis, 2002; 
Thomadakis and Liu, 1999; Kalogeraki et al, 2000; 
Manimaran et al, 1998), have been proposed in the literature 
to provide high performance for real-time systems. Palis 
proposed a task-scheduling algorithm that provides quality 
of service guarantees in the context of reservation-based 
real-time systems (Palis, 2002). While real-time tasks in 
Palis’s scheduling framework are preemptive (Palis, 2002), 
it is assumed in our study that real-time tasks are non-
preemptive. 

Abdelzaher and Shin proposed a communication sub-
system architecture for Quality of Service (QoS) adaptive 
real-time applications such as streaming stored video on 
end-hosts (Abdelzaher and Shin, 1998). They developed a 
dynamic QoS-optimization mechanism, where flexible QoS 
contracts specify multiple acceptable levels of service (or 
QoS levels for short) and their corresponding rewards for 
each client. The goal of their algorithm is to adjust each 
accepted task’s QoS levels in a way that the system’s total 
reward under resource constraints can be maximized. Our 
task model assumes that each task has multiple acceptable 

security levels, which is similar to the concept of QoS level 
introduced by Abdelzaher and Shin (Abdelzaher and Shin, 
1998). However, their scheduling algorithms do not rely on 
QoS levels. More importantly, our study differs from that of 
Abdelzaher and Shin in that the goal of our algorithms is to 
maximize the overall quality of security (measured by 
security value) and guarantee ratio by dynamically changing 
each accepted tasks’ security levels. 

Azzedin and Maheswaran examined the integration of the 
notion of “trust” into resource management of a large-scale 
wide-area system like the Grid (Azzedin and Maheswaran, 
2002). They argued that there is a “trust relationship” 
between a resource provider and a resource consumer. The 
hypothesis is that if a resource manager is aware of the 
security requirements of the resources and tasks, the 
resource manager can perform allocations such that security 
overhead can be minimized. It is worth noting that the 
allocation algorithm proposed by Azzedin and Maheswaran  
is developed in the context of non-real-time computing 
environments, and it is not suitable for real-time systems 
where tasks’ deadlines have to be factored in (Azzedin and 
Maheswaran, 2002). 

Previous research has applied control theory to dynamic 
real-time scheduling algorithms (Lu et al, 1999; Stankovic 
et al, 2001). The basic idea behind the feedback control 
EDF scheduling system is to construct a feedback loop 
where the system periodically compares controlled variables 
to a set point to determine errors and changes the values of 
the manipulated variables to control the system (Lu et al, 
1999). Stankovic et al. successfully built a theoretical model 
to analyze the stability of distributed real-time systems, 
thereby demonstrating that their scheduling algorithm with 
feedback control is stable and superior to other algorithms. 
Furthermore, Marbini and Sacks proposed a closed-loop 
dynamic scheduling algorithm that performs better than its 
open-loop counterparts (Marbini and Sacks, 2002). Our 
scheduling approach differs from the above scheduling 
techniques in that ours is a security-aware scheduling 
scheme to which a Security Level controller is integrated. 

3 SECURITY-AWARE REAL-TIME SCHEDULING  

3.1 Architecture of EDF_OPTS  

First, we introduce the architecture of the security-aware 
scheduling algorithms. Second, basic ideas behind the 
security-aware EDF scheduling algorithms are given. 
Lastly, we concentrate on the definitions of the performance 
metrics that we pursued. 

The EDF_OPTS scheduling architecture is mainly 
composed of a security level controller, an admission 
controller (AC) and an EDF scheduler, as depicted in Figure 
1. This architecture is applied to one server (or CPU) node, 
meaning that there is only one computer system handling all 
incoming real-time tasks and the EDF_OPTS scheduler is 
running on this node. 
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Figure 1   System architecture

All the tasks are independently submitted from n sources 
and their arrival times abide by Poisson distribution. The 
function of the admission controller is to determine if an 
incoming task can be accepted, or rejected otherwise. The 
security level controller is intended to maximize the security 
levels of current tasks residing in an accepted queue. The 
EDF scheduler makes use of the Earliest Deadline First 
policy to schedule admitted tasks, where security levels are 
optimized by the security level controller. The following 
steps depict the procedures of the EDF_OPTS scheduler 
where the security quality of a real-time system is 
improved: 

Step One: Initialize the scheduler. Overall security value 
and number of rejected task are set to zero. Wait for any 
incoming tasks. 

Step Two: If a task i arrives and it is the only task available, 
execute the task immediately using its highest security level. 
The starting time STi (actually STi is its arrival time in this 
case) and completion time CTi of task i are calculated. The 
security value is increased by the security level of task i, 
which, in this case, is SLi_max. 

Step Three: All the tasks arriving in the system during the 
time period [STi, CTi] are stored into a waiting queue in the 
non-decreasing order of their deadlines. The starting time of 
the next task STi+1 is set to CTi. 

Step Four:  Admission controller is responsible of deciding 
whether a task in the waiting queue can be accepted by 
considering (1) the security overhead (extra execution time) 
imposed by the task’s lowest security requirement, and (2) 
the deadline of this task. If the system can meet the task’s 
deadline while fulfilling the security requirement, the task 
will be forwarded into the accepted queue for further 
processing. Otherwise, it will be rejected by being put into 
the rejected queue, and the number of rejected task is 
increased by one. 

Step Five:  SLC promotes the security levels of all the tasks 
in the accepted queue as high as possible, subjecting to two 
constraints:  (1) Raising of an accepted task’s security level 
should still guarantee its deadline. (2) Increasing security 

levels should not result in any rejection of currently 
accepted tasks. The rationale of the above policy is that 
guarantee ratio, a fundamental performance metric for real-
time systems, has to be given the highest priority. Security 
level promotion can be performed only when such an 
adjustment leads to no rejection of any accepted tasks 
residing in the accepted queue. Note that the deadlines of 
tasks in the accepted queue can be guaranteed, although the 
adjustment of security levels might affect the schedulability 
of future coming tasks. We will demonstrate how the 
security level controller improves security levels shortly in 
section 3.3. 

Step Six:  At this point, the security level SLi+1 of the next 
starting task’s can be optimized. Increase security value by 
SLi+1. Its completion time CTi+1 is calculated. Therefore, we 
obtain a new time slot [STi+1, CTi+1] for the task. Steps 3-6 
are repeatedly executed until all the arrival tasks are 
processed in one run. 

Now we are in a position to briefly outline the ideas of the 
three alternative EDF security-aware scheduling algorithms 
that are envisioned as baseline algorithms. 

EDF_MINS:  The admission controller intentionally selects 
the lowest security level of each coming task. Therefore, the 
guarantee ratio is improved at the cost of reducing overall 
security value of the system. 

EDF_MAXS: The admission controller chooses the highest 
security level for each accepted task. As a result, security 
values are increased while decreasing guarantee ratios.  

EDF_RNDS: Unlike EDF_MINS and EDF_MAXS, 
EDF_RNDS randomly picks a value within the range of 
security levels specified by each arrival task. Hence, 
security values and guarantee ratios of the system are 
unlikely to be pushed to extremes, meaning that the 
performance of EDF_RNDS is somewhere between that of 
the above two algorithms. 

3.2 Task model 

Like many existing real-time task models presented in the 
literature (Lu et al, 1999; Palis, 2002; Palencia et al, 1998; 
Thomadakis and Liu, 1999), our task model assumes that all 
tasks have soft deadlines and all tasks are independent of 
one another. In our system model, there exists a single 
server handling tasks from n sources. Each task has a range 
of security level requirement where the server is allowed to 
choose a value under particular constraints. For synthetic 
workload conditions, it is assumed that tasks arrive at the 
system according to a Poisson process. Task Ti is 
represented as a tuple (ATi, ETi, SLi, Di), where ATi and ETi 
denote the arrival time and the worst case execution time of 
task i. SLi and Di represent the security level and soft 
deadline of task i. Note that given task i, ETi and Di of are 
known to the scheduler in advance. Without loss of 
generality, we assume that the worst case execution time ETi 
is the execution time of task i without having its security 
overhead in place. In addition, in the task model each task is 
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assigned a quality of security measured as a security level 
SLi that is in the range [1, 2, …, R], where 1 and R are the 
lowest and highest levels of security, and R is set to 10 in 
our experiments. 

To simplify the security overhead model without loss of 
generality, we make use of Equation (1) to model the 
security overhead envisioned as the extra execution time 
experienced by task i. The rationale behind the overhead 
model is based on our observation that the security overhead 
of a particular application tends to be proportional to the 
execution time of the application. Importantly, the overhead 
model captures the essence of applications with security 
demands to provide reasonable estimates of security 
overheads based on particular security levels. Very recently, 
a sophisticated security overhead model was constructed by 
Xie et al. (Xie et al, 2005). This comprehensive model can 
be easily integrated into our scheduling architecture. 

 
          SO                              (1) )/(* RSLET

Y

N 

End 

Its security level is fixed and 
record it as a handled task 

N 

Cause rejection of  
any other tasks? 

All tasks 
processed?

Lower its 
security 

level

Y 

Find the shortest execution time of 
unhandled task in the Accepted Queue  

Raise its security level as high as possible under   
conditions of its deadline and its max security level 

iii =

iiiii +=+=

 
where SOi is the security overhead of task i; and SLi is the 
security level provided to task i.  Thus, the total execution 
time of task i can be expressed as Equation (2). 

 
   WL              (2) )/1(* RSLETSOET

  

 
Figure 2    Workflow of security lever controller

3.3 Security Level Controller 

The ultimate goal of this study is to maximize overall 
system performance (See Equation 3), which reflects both 
guarantee ratio and security performance (See Equation 4 

and 5). To achieve the goal, we designed an optimized EDF 
scheduling algorithm with security awareness, or 
EDF_OPTS, which is capable of maintaining high guarantee 
ratios while maximizing security values. In particular, the 
EDF_OPTS algorithm strives to achieve the best trade-off 
between the guarantee ration and security value. It can be 
accomplished by applying a security level controller to our 
EDF_OPTS algorithm. Figure 2 shows the flow chart of the 
controller that adjusts security levels. 

The controller is intended to assign the highest security 
level to an admitted task in the accepted queue while 
making the task schedulable under the following two 
constraints. First, the increase of the task’s security level 
cannot violate its deadline constraint. Second, the security 
level promotion for the task has to result in no potential 
rejection of subsequent accepted tasks. In an effort to 
maximize the overall security value, we propose a strategy 
to give accepted tasks with short execution time (security 
overhead is not incorporated) a higher priority and make the 
best effort to boost their security levels. The reason for 
doing so is that tasks with short execution times impose low 
security overheads compared with tasks with long execution 
times. Consequently, the EDF_OPTS algorithm is efficient 
in obtaining a high overall security value by judiciously 
adjusting security levels for the accepted tasks under this 
approach. 

 Since this research is focused on dynamic real-time 
environments, the EDF_OPTS algorithm can maximize 
security values for tasks residing in the accepted queue, 
providing locally optimized security performance. The 
experimental results reported in the following section show 
that this local optimization yield an appealing overall 
security value.  

4 SIMULATION RESULTS AND DISCUSSIONS   

4.1 Performance metrics and parameters  

For the sake of simplicity, throughout this section 
EDF_OPTS is referred to as OPTS. Similarly, the baseline 
algorithms are referred to as MINS, MAXS, and RNDS, 
respectively.  

In order to evaluate the effectiveness of our approach, it is 
useful to compare the OPTS algorithm against three 
baseline algorithms, namely, MINS, MAXS, and RNDS. 
The following three important performance metrics for 
highly secure real-time systems will be used to 
quantitatively evaluate the proposed algorithm. Overall 
system performance (OSP) is measured as a product of 
Security Value (SV) and Guarantee Ratio (GR) 

 
                  .                               (3) GRSVOSP *=

The security value and guarantee ratio of a system are 
defined as follows. 

                               ,                                    (4) ∑
=

=
N

j
jSLSV

1

where N is the number of accepted tasks in one run. 
                     ,                                  (5) MNGR /=
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where M is the total number submitted tasks in one run. 
Task arrival rate λ and execution time range (ETR) are 

two workload parameters. We evaluate our algorithm 
performance under a wide range of system workload 
conditions by varying λ and ETR.  

In addition to synthetic simulations, we also tested the 
four algorithms using a real world trace. We modified the 
trace used in (Harchol-Balter and Downey, 1997; Zhang et 
al, 2000) by adding deadlines for all tasks in the trace, 
which was collected from one workstation in the third time 
interval. There are totally 572 tasks in the trace. The 
assignment of deadlines is controlled by the deadline base 
denoted as β, which sets an upper bound on tasks’ slack 
times. We use Equation (6) to generate task i’s deadline di. 
 

                    (6) β+++= max
iSOieiaid

 
where ai and ei are the arrival and execution times obtained 
from the real-world trace. is the maximal security 
overhead (measured in second), which is computed by 
Equation (1) using the highest security level of task i.  

max
iSO

4.2 Experiments design 

There are two types of simulations conducted in this work. 
In Section 4.3, we designed four groups of experiments to 
measure the performance metrics under four workload 
situations using synthetic workload. Each curve in the 
figures is composed of 30 points, each of which is an 
average value computed from 30 runs. In the first three 
group experiments, we measure the security value, 
guarantee ratio, and overall system performance of the 
simulated real-time system when the task arrival rate is 

increased from 0.1 to 3.0 with the increment of 0.1. The 
ETR in these experiments is set to be [1, 50], [1,100] and 
[1,200] respectively. In the fourth group experiment, we 
stressed the security workload by keeping the guarantee 
ratio as high as 100%. This workload reflects a scenario 
where the deadlines of real-time tasks are not tight.  In 
Section 4.4, we tested the four algorithms using the trace 
data with five different deadline bases varying from 100 
seconds to 2000 seconds. 

4.3 Experimental results using synthetic data  

Below are figures that we obtained from the experiments 
designed above. Figures 3-6 depict the security values and 
guarantee ratios as functions of the task arrival rate λ. 

As we can see from Figure 3, OPTS does not show its 
strength when ETR is [1, 50] if we consider SV and GR 
separately. It takes the second place among four scheduling 
algorithms in terms of security value and guarantee ratio. 
On average, the security value of OPTS is 7.25% lower than 
that of MAXS (please refer to Table 1) because MAXS 
attempts to accept real-time tasks using the highest security 
levels. Under this workload where the arrival tasks are more 
homogeneous in terms of execution times, security levels 
specified by the tasks vary slightly. 

As we mentioned before, if a fixed security level is 
maintained, long execution times result in high security 
overheads, which in turn give rise to the potential rejection 
of submitted tasks due to the high system load.  In cases 
where arrival tasks have similar short execution times, the 
security overhead of the lowest security level is very close 
to that of the highest security level. The implication is that 
assigning the highest security level for each accepted task is 

Figure 3 Performance of four algorithms when ETR=[1, 50]

Figure 4 Performance of four algorithms when ETR=[1, 100] 
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Figure 5 Performance of four algorithms when ETR=[1, 200]

unlikely to incur potential rejections of forthcoming tasks. 
Therefore, in this scenario, which largely depends on the 
nature of arrival tasks, MAXS has the best performance in 
security value. 

Under the same workload condition the guarantee ratio of 
MINS is 6% higher than that of OPTS (please refer to table 
1). The reason is self-explanatory since MINS always picks 
the lowest security level for an acceptable task and thus it 
can accept more tasks than OPTS whose security level 
optimization may cause rejection of later deadline tasks. 
However, OPTS is in the first place in overall system 
performance, which is computed by Equation (3). Figure 3 
(c) demonstrates that OPTS achieved the highest 
performance if security value and guarantee ratio are 
considered equally important and simultaneously. 

Figure 4 plots security value and guarantee ratio of the 
four scheduling algorithms when the arrival tasks’ execution 
time range is within [1,100]. This experimental setting 
reflects a system workload, where some tasks arriving in the 
system have relatively long execution times. 

In general OPTS outperforms all the other three 
algorithms in security performance. The interesting results 
indicate that OPTS even can achieve higher security quality 
than MAXS, which was expected to deliver the highest 
security value in under various workloads. We attribute this 
result to the fact that the MAXS algorithm does not 
incorporate a security level controller and, therefore, MAXS 
tends to accept some tasks with long execution times, 
making a high likelihood to reject submitted real-time tasks. 
On the contrary, OPTS makes the best effort to elevate the 
security levels of tasks with short execution times, thereby 
resulting in low rejection rate for real-time tasks arrived in 
the system. Although MAXS is intended to select the 
highest security levels for accepted tasks, it inherently tends 
to reject tasks due to high system load induced by the 
highest security levels of accepted tasks with long execution 
times. In particular, the proposed OPTS improves the 
security value over MINS by 94.41% (See table 1), and the 
guarantee ratio of OPTS in this case is almost the same as 
that of MINS (only 5% less than the guarantee ratio of 
MINS). It is desirable to achieve an improvement in the 
quality of security by 94.41% for real-time systems with 
security demands at the cost of a marginal guarantee ratio 
loss. As for overall system performance, OPTS noticeably 
outperforms all the other three algorithms (Figure 4).  

We observe from Figures 5 that OPTS is in the leading 
position in term of security performance when the execution 
time range is set to [1, 200]. This result is consistent with 
that observed from the previous experiments. More 
importantly, the distance between OPTS and MAXS even 
becomes larger (OPTS’s security value is 16.6% higher than 
that of MAXS). Meanwhile, the discrepancy of guarantee 
ratio between OPTS and MINS becomes narrow which is 
only 3% less than MINS. However, OPTS’s security value 
is still 85.27% higher than that of MINS. Like the two 
experiments mentioned above, OPTS is still in the first 
place in terms of overall system performance (Figure 5 c). 
We also test OPTS in an extreme case when system 
workload is very light. In this case, the guarantee ratio of all 
four algorithms is 100%.  

    Figure 6  Security value, ETR [1, 10], λ[0.05, 0.35] 

 
Figure 6 plots the security values under the scenarios 

where the guarantee ratios are set to 100%. Figure 6 plainly 
shows that OPTS achieves significant performance 
improvements in security values over MINS and RNDS, 
and ties with MAXS in security performance. 

 
Table 1 Summary of guarantee ratios and security values. 

(ETR – Execution Time Range,  
GR - Guarantee Ratio, SV – Security Value)  

 

ETR[1,50] ETR[1,100] ETR[1,200]   
EDF_ GR SV GR SV GR SV 
MINS 0.39 116.13 0.26 73.57 0.16 45.77 
MAXS 0.25 250.77 0.15 138.53 0.08 72.70 
RNDS 0.31 197.43 0.20 116.77 0.12 67.17 
OPTS 0.33 233.83 0.21 143.03 0.13 84.80 
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Table 2 Summary of overall system performance improvements  

OSP [1,50] [1,100] [1,200] Gain(%) 

MINS 45.29 19.13 7.32 65.29 

MAXS 62.69 20.78 5.78 32.86 

RNDS 61.20 23.35 8.06 28.04 

OPTS 77.16 30.04 11.02  

 
Table 1 and 2 summarize the overall performance 

improvements of our OPTS over the other baseline 
scheduling algorithms. A major observation made from 
Table 2 is that OPTS is constantly the best algorithm with 
respect to overall system performance among all tested 
alternatives. This is because the overall system performance 
by definition is a product of guarantee ratio and security 
value, and the OPTS approach strives to simultaneously 
maximize both guarantee ratio and security value by 
achieving the best trade-off between the two performance 
metrics.  In particular, OPTS improves the overall system 
performance over the MINS algorithm by an average of 
65.29%. Similarly, compared with MAXS and RNDS, the 
proposed OPTS algorithm delivers improvements in the 
overall system performance by averages of 32.86% and 
28.04%, respectively. 

4.4 Trace-driven simulation  

To validate the results from the synthetic experiments 
described in Section 4.3, we used a real world trace to drive 
the simulations of our OPTS algorithm. The trace was 
sampled from a workstation during a certain period of time 
(Harchol-Balter and Downey, 1997; Zhang et al, 2000). 
Since there were no deadlines for tasks in the original trace, 
we generated a deadline for each task based on Equation 
(6). In addition, we tested five scenarios where the deadline 
base varies from 100 seconds to 2000 seconds. 

Figure 7 shows the experimental results for these four 
algorithms. We observe from Figure 7 (a) that OPTS and 
MINS exhibit similar performance in terms of guarantee 
ratio, whereas the OPTS noticeably outperforms the MAXS 
and RNDS algorithms. We attribute the performance 
improvement of OPTS over MAXS and RNDS to the fact 

tasks under the condition that the deadlines of the tasks are 
guaranteed, thereby maintaining relatively high guarantee 
ratios. Unlike OPTS, the MAXS and RNDS policies 
improve quality of security at the cost of missing deadlines. 
Figure 7 (a) illustrates that the guarantee ratios of four 

that OPTS judiciously boosts the security levels of accepted 

provements achieved 
b

ond observation made from figure 7 (c) is that the 
O

OPTS can maintain similar guarantee ratios as those of 

algorithms increase with the increasing value of the deadline 
base. This is because the large deadline base leads to long 
slack times, which in term tend to make the deadlines more 
likely to be guaranteed. Figure 7 (b) plots security values of 
the four algorithms when the deadline base is increased 
from 100 to 2000 seconds. A 100 second deadline base 
implies a very tight deadline setting because the average 
task execution time in the trace is 9454 seconds. Similarly, a 
2000 second deadline base hints a relatively loose deadline 
for each task. It reveals that OPTS consistently performs 
better, with respect to quality of security, than all the other 
three approaches. When the deadlines are tight, the security 
values of OPTS are very close to those of MAXS. However, 
OPTS significantly outperforms MAXS when the deadline 
base becomes large. This is because that OPTS can accept 
more tasks than MAXS. Interestingly, when the deadlines 
become loose, the performance improvements of OPTS over 
the three competitor algorithms are more pronounced. The 
results clearly indicate that we can gain more performance 
benefits from OPTS approach under the circumstance that 
real-time tasks have loose deadlines. 

The overall system performance im
y OPTS are plotted in Figure 7 (c). The first observation 

deduced from Figure 7 (c) is that the value of overall system 
performance increases with the deadline base. This is 
mainly because the overall system performance is a product 
of security value and guarantee ratio, which become higher 
when the deadlines are loose due to the high deadline base 
value.  

A sec
PTS algorithm significantly outperforms all the other three 

alternatives. This can be explained by the fact that although 
the guarantee ratios of OPTS and MINS are similar, OPTS 
considerably improves security values over the other 
algorithms, while achieving higher guarantee ratio than 
MAXS and RNDS. This result suggests that if quality of 
security is the sole objective in scheduling, OPTS is more 
suitable for real-time tasks than the other alternatives. In 
contrast, if schedulability is the only performance objective, 

(a)                                                                 (b)                                                            (c) 
Figure 7 Performance impact of deadline base 
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MINS, whose security performance is the worst among the 
four algorithms.  

Last but not least, Figure 7 (c) indicates that the overall 
performance improvement of OPTS over the other three 
al

5 CONCLUSIONS 

gorithms becomes more pronounced when the deadlines 
are looser, implying that more performance benefits can be 
obtained by OPTS for real-time tasks with large slack times. 
This is because the OPTS approach is more sensitive to the 
change in deadlines than the other schemes. 

In real-time systems with
not only are required t

 high security demands, schedulers 
o achieve high guarantee ratios to 

ly schedule 
ta

s roughly 4.5% worse than that 
o

elevate system throughput and utilization, but also need to 
provide high quality of security for real-time applications 
running on the systems. To develop high security real-time 
systems where the above requirements are fulfilled, we 
proposed in this paper an optimized dynamic real-time 
scheduler with security–awareness (referred to as 
EDF_OPTS) in addition to three basic security-aware 
scheduling algorithms. The EDF_OPTS is designed in a 
way that makes it possible to achieve the best trade off 
between guarantee ratio and security performance. In 
particular, our EDF_OPTS algorithm leverages an 
intelligent security level controller to dynamically and 
adaptively boost the security levels of accepted tasks while 
maintaining a reasonably high guarantee ratio.  

To the best of our knowledge, our algorithm is the first 
non-trivial algorithm designed to dynamical

sks in real-time systems with security constraints. Our 
approach is proven to deliver significant improvements in 
overall system performance under a wide range of workload 
patterns. Specifically, our approach can provide overall 
performance improvement by up to 65.29%, which indicate 
that the EDF_OPTS algorithm is capable of simultaneously 
maximizing security service level and system guarantee 
ratio, two equally important metrics for high security real-
time systems such as a real-time stock quote and trading 
system. More importantly, EDF_OPTS outperforms 
EDF_MAXS with respect to quality of security in most 
cases.   

The drawback of our approach is that the guarantee ratio 
performance of EDF_OPTS i

f EDF_MINS when the execution time range varies from 
[1, 50] to [1, 200]. Although this performance degradation 
mainly depends on the inherent nature of the algorithms, we 
are able to further improve the performance by applying a 
feedback control mechanism. Future studies include: (1) the 
design of the feedback control mechanism used to 
dynamically monitor and adjust guarantee ratios, (2) 
improving quality of security for networks by integrating 
EDF_OPTS into our communication-aware load balancing 
scheme (Qin and Jiang, 2005), and (3) incorporating 
EDF_OPTS into our task duplication management system 
(Qin 2005).  
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