

 Multi-Layer Prefetching for Hybrid Storage Systems:
Algorithms, Models, and Evaluations

Mais Nijim1, Ziliang Zong2, Xiao Qin3, Yousef Nijim4

1. Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville. TX, USA.
2. Department of Mathematics and Computer Science, South Dakota School of Mines & Technology, Rapid City, SD, USA.
3. Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA.
4. IEEE Senior Member, Cox Communications, Atlanta, GA, USA.

Abstract: Parallel storage systems have been highly scalable

and widely used in support of data-intensive applications. In
future systems with the nature of massive data processing and
storing, hybrid storage systems opt for a solution to fulfill a
variety of demands such as large storage capacity, high I/O
performance and low cost. Hybrid storage systems (HSS) contain
both high-end storage components (e.g. solid-state disks and hard
disk drives) to guarantee performance, and low-end storage
components (e.g. tapes) to reduce cost. In HSS, transferring data
back and forth among solid-state disks (SSDs), hard disk drives
(HDDs), and tapes plays a critical role in achieving high I/O
performance. Prefetching is a promising solution to reduce the
latency of data transferring in HSS. However, prefetching in the
context of HSS is technically challenging due to an interesting
dilemma: aggressive prefetching is required to efficiently reduce
I/O latency, whereas overaggressive prefetching may waste I/O
bandwidth by transferring useless data from HDDs to SSDs or
from tapes to HDDs. To address this problem, we propose a
multi-layer prefetching algorithm that can judiciously prefetch
data from tapes to HDDs and from HDDs to SSDs. To evaluate
our algorithm, we develop an analytical model and the
experimental results reveal that our prefetching algorithm
improves the performance in hybrid storage systems.

Keywords: hybrid storage systems; solid-state disks; tape
storage systems; pre-fetching

I. INTRODUCTION
 A recent study shows that new data is growing annually at

the rate of 30% and five exabytes (5×260) of new information
were generated in 2002 [6]. Major corporations,
supercomputing centers and rich media organizations,
including Lawrence Livermore National Laboratories, Oak
Ridge National Laboratory, NASA Ames, Google, Boeing, and
CNN rely on large-scale storage systems to meet demanding
requirements of large data capacity with high performance and
reliability [7]. Large-scale storage systems have to be
developed to fulfill rapidly increasing demands on both large
storage capacity and high I/O performance [8][9]. Traditionally,
the storage capacity and I/O performance of a system are
scaled up by simply employing more HDDs [10][11]. However,
I/O performance and capacity improvements through the
increased number of HDDs are an expensive solution due to
huge expenses on new storage equipments and the increased
maintenance fee. Hybrid storage systems (HSS) – containing
SSDs, HDDs, and tapes subsystems – can provide an ideal data

storage solution to significantly improve storage capacity and
I/O performance at low cost.

Large-scale hybrid storage systems will become
increasingly popular in the next few years for the following
two reasons. First, HSS will keep its high performance by
prefetching and caching highly accessed storage objects in
high-speed storage components such as SSD or HDD. Second,
hybrid storage systems are cost-effective, because inexpensive
tapes help in increasing storage capacities at very low cost.
Therefore, it is believed that hybrid storage systems, which
have high performance, long archive life, and low cost, are
ideal data storage platforms for a wide variety of data-intensive
applications from human genome analysis [1] to remote-
sensing applications [3]; from long running scientific
simulations [4] to biological sequence analysis [2]. Hybrid
storage systems are practically feasible because SSDs, as one
of the newly developed storage components, can be easily
connected to any other types of storage devices [5].

Highly efficient data transfer between tapes, HDDs and
SSDs is important to hybrid storage systems. For a wide range
of data-intensive applications, critical data are required to
periodically or continuously backed up to tapes so that data
restoration is possible in case of system crash or data loss. It is
imperative to minimize data restore time in order to improve
data I/O performance, which largely depends on high data
transfer rate between disks and tapes. Thus, transferring data
back and forth among SSDs, HDDs, and tapes plays a critical
role in achieving high I/O performance.

Prefetching is a promising solution to reduce the latency of
data transferring among SSDs, HDDs, and tapes. Prefetching is
a process that aims at reducing the number of requests issued
to HDDs or tapes by caching popular data in SSDs. Prefetching
can be used to prevent I/O bandwidth underutilization by fully
exploiting idle times of storage components to hide I/O latency.
Prefetching in the context of hybrid storage systems is
technically challenging due to an interesting dilemma:
aggressive prefetching is needed to efficiently reduce I/O
latency, whereas overaggressive prefetching may waste I/O
bandwidth by transferring useless data from HDDs to SSDs or
from tapes to HDDs. To overcome these technical obstacles,
we investigate a multilayer prefetching algorithm (PreHySys)
to enhance I/O performance of hybrid storage systems.

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.18

49

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.18

44

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the
architecture of the hybrid storage system. In section 4, we
present the multi-layer prefetching module. Section 5 describes
the analytical model of the multi-layer prefetching. The
conclusion of the paper is discussed in section 6.

II. RELATED WORK
Integrating Hard Disks with Tapes: Tape-based storage

systems are essential archival storage components required by
high-performance computing communities. In the past two
decades, magnetic tapes have been considered the most cost
effective and reliable way to archive and backup data for a
long period of time. Although tape storage systems offer high
capacity at low cost, tapes have a performance drawback –
high I/O latencies and lower bandwidth due to sequential data
accesses. Conventionally, the performance of tape-based
storage systems can be improved by integrating hard disks with
tapes [27]. Hard disks (e.g, RAID – redundant array of
independent disks) can be employed in tape storage systems to
store frequently used backup data. To reduce data transfer time
between disks and tapes, data striping ideas are applied to
increase I/O throughput and reduce response time [12].

Solid-State Disks: Solid State Disks are made of
semiconductor memory devices. Currently, there are two types
of SSDs: flash memory based SSDs and DRAM based SSDs.
Both flash memory based and DRAM based SSDs can be
integrated with HDDs and tapes to increase I/O performance of
large-scale hybrid storage systems. Recently, flash memory
based SSDs are becoming very popular for data-intensive
computing because of the advantages inherited from flash
memory such as high density and low power properties. There
has been some work on applying caches to boosting
performance of parallel disk systems. Kotz and Ellis
investigated cache management techniques used in parallel file
systems to close the gap between processor and disk speeds
[15]. Karedla et al. examined the use of caching to reduce
system response times and to improve data throughput [16]. It
is believed that if the caches are separately treated, it is easy to
control cache miss sequences. Each partition for a disk will be
managed separately using the conventional LRU (Least
Recently Used) replacement algorithm. We developed a cache
partitioning mechanism for cluster storage system for
achieving high security for data-intensive applications running
on clusters [17]. More to the point, a number of cache
partitioning methods have been proposed with different
optimization objectives include performance [18], fairness
[19], and quality of service [20]. On the other hand, SSDs can
provide more advantages than the ones provided by the built-in
cache because the built-in storage cache can only be used with
that specific storage system while SSDs can be connected to
any storage devices [21].

Hardware-Based Prefetching. Potential factors degrading
I/O performance of storage systems include heavy load, low
bandwidth, bandwidth underutilization, long seek time, and
disk rotational delay. A promising approach to boosting I/O

performance is to increase I/O bandwidth by prefetching data
sets at various places, including storage servers, clients, and
proxies. Prefetching techniques found in the literature take
either software-based or hardware-based approaches [22]

.

Software-based prefetching schemes depend on software to
detect regular data access patterns, whereas hardware-based

approaches rely on hardware to reduce data access penalty
[23][24]. Hardware-based prefetching approaches can be
classified into two groups: Spatial schemes where data access
to the current block is the basis for making prefetching
decisions, and temporal schemes where blocks to be prefetched
is based on values of speculated data rather than data locality.

Software-Based Prefetching. Existing software-based
prefetching solutions can be generally categorized into two
camps: informed prefetching [25] and predictive prefetching
[30]. Informed prefetching algorithms rely on user-disclose
information about future requests to bring data into buffers.
Predictive prefetching techniques utilize data access history to
predict future data requests. There exist two types of predictive
prefetching approaches: dependency-graph-based predictive
prefetching (DGP) and partialmatching-based predictive
prefetching (PMP). DGP algorithms use dependency graphs to
model access patterns, whereas PMP algorithms maintain
Markov predictors to calculate probabilities of future requests.
These existing prefetching solutions have several defects: First,
informed prefetching is inapplicable in scenarios that data
intensive applications are unable to provide a priori
information about which data blocks are likely to be accessed.
Second, DGP algorithms predict forthcoming requests using
previously accessed data with only considering first order
dependencies. Third, PMP algorithms do not address the issue
of how to choose a constant value for maximum order. Last,
none of these existing prefetching algorithms considers
bringing popular data sets from hard disks into solid-state disks. III. THE HYBRID STORAGE SYSTEM ARCHITECTURE

 LAN

SAN

FTP server
with solid
state disks

Web

Lower level
prefetching
tapes to SAN Data miss

Upper level
prefetching
SAN to FTP

Data miss

Fig.1 The Hybrid Storage System Architecture with Prefetching

5045

Fig.1 depicts the architecture of a typical hybrid storage
system. It consists of FTP servers with SSDs, storage area
network (SAN) with HDDs, and a tape subsystem. The solid-
state disks are designed to keep the most highly accessed files.
Files with less priority or less access frequency are stored in
HDDs of the SAN subsystem and all other files are stored in
the tapes. The SSDs and HDDs are considered as high-end
storage components while the tapes are classified as low-end
storage components.

A prefetching scheme is designed to bring data into HDDs
of SAN and optimally, into the SSDs before it is requested.
Our multi-layer prefetching algorithm consists of two parts, the
upper level prefetching and the lower level prefetching. The
upper level prefetching transfer the data from the HDDS to the
SSDs and the lower level prefetching transport the data from
the tapes to the HDDs. A miss command will be issued when
requested files cannot be found in SSDs and the missing files
will be fetched to the SSDs from the HDDs. If the requested
files are not located in the HDDs, the algorithm will issue next-
level miss command and place the missing files from the tapes
to the HDDs and finally to the SSDs.

IV. PREFETCHING ALGORITHMS

A. Prefetching from Tapes to Hard Disks
In this section, we propose an approach to quickly move

data from parallel tape storage system to hard disks to achieve
high I/O performance. Parallel tapes libraries can intuitively
increase the aggregate bandwidth between the disk storage and
the tape storage and reduce the tape switch time by introducing
parallel load/unload operation. This prefetching mechanism
needs to schedule read requests in a way that the highest
priority data blocks will be fetched first. To support the data
transfer parallelism, a striping and data placement techniques
for the hybrid storage system are used.

Striping is a well-known technique for improving the
effective I/O bandwidth for storage systems. We consider data
striping to access tape-resident data sets in parallel. Data sets
will be divided into uniform chunks to be prefetched and stored
to disks simultaneously. The data striping scheme is
completely transparent to the PreHySys prefetching
mechanism. To determine an optimal striping width, we
consider both data size and I/O workload.

The striping technique can support data transfer
parallelisms, thereby shortening I/O response times. However,
striping causes a large number of small I/O calls, which in turn
increase switch time of tape drives [28]. Considering the big
penalty associated with tape switches and the long transfer
time associated with the huge object size, we propose a data
placement scheme to leverage object access probabilities and
the relationship between objects. This scheme can improve
tape switch parallelism and synchronize data seek with high
probability, and thus increase the parallelism of the object
transfer. The main goal of our data placement algorithm is to
reduce the tape switches within the tape library, increase tape
switch parallelism among tape libraries, and increase the data

transfer parallelism among tape drives. To achieve these goals,
we propose a data clustering mechanism that clusters objects
with high probability to be requested together.

Our data clustering idea is based on an assumption that
related data requests are highly to be requested together. Data
blocks with a high probability to be requested together will be
grouped in one cluster. The tape subsystem will be composed
of n tape libraries. Each tape library has d identical tape drives,
s switch drives, and t tapes. The basic idea is to divide each
tape library into two groups. The first group contains tapes that
are mounted all the time and contains high emergency data.
The number of tapes that are mounted all the time is d-s. The
second and later clusters contain s tapes for each tape library,
which is mounted during startup time and will swapped out if
the requested stripe can not be found within the mounted tapes.
Fig.2 is an illustrated example of object clustering mechanism
in the tape storage. Assume there are three tape libraries where
each tape library contains seven tapes, five tape drives, and two
switch drives. The first batch for each library contains three
tapes, and the second and later batches contain two tapes each.

 a)

 b)

c)

O41

O31

O21

O11

Tape Library
1

O42

O32

O22

O12

Tape Library
2

O43

O33

O23

O13

Tape Library
3

Index 1 2 3

Reference O1 O2 O3

Priority 4 3 2

Step 1 3 2 4

Disk 1 O11 O31 O13 O33

Disk 2 O12 O32 O21

Updated priority - 3 - 1 - 2

LRU Eviction Either
O11,O12 or O13

 - -

Fig. 2 The data structure of the PRE-TD Algorithm.
Fig. 2(a) is an access pattern known in advance. Fig. 2(b)
shows the striping units of I/O requests distributed
among tape libraries. Fig. 2(c) shows a prefetching
schedule and updated priorities.

5146

We develop a prefetching algorithm called PRE_TD for
tape resident data. When the requested data sets are not located
in the SAN subsystem, PRE-TD will fetch the data set from the
tapes to the HDDs in SAN. PRE-TD does not prefetch data
blocks if a higher priority data block must be evicted from the
disks. We assume that the user’s access pattern is known in
advance. Each I/O request in the access patterns is assigned a
priority level depending on data access history. It is worth
noting that the priorities of striping units are equal to the
priority of the corresponding I/O requests. Moreover, the
priority of a data block in a disk is derived from the priority of
the next reference to the data block. If there is no reference to
the data block in the access pattern, the block’s priority will be
i-Max, where i is the index of the most recent reference in the
data block, and Max is a large positive integer that is greater
than the length of the access pattern. If data blocks residing in
the disk subsystem are not appeared in access reference lists,
then the blocks will be assigned the lowest priority. Data
blocks will be migrated to tapes based on the least recent used
policy. When PRE-TD is invoked, the striping units of an I/O
request will be mapped to the disk subsystem using the round-
robin mapping strategy. PRE-TD will construct a list of
prefetched requests in accordance with their priorities. PRE-
TD will have all the I/O requests in the list processed by disk
drives after the requests are assigned to the disks. The PRE-TD
algorithm is described in fig.3a.

B. Prefetching from Hard Disks to Solid State Disks
The performance of large-scale storage systems will be
substantially improved by employing a number of solid-state
disks that can help in reducing the number of hard disk
accesses. We develop a parallel data transfer algorithm called
PRE-DS that prefetches data set from the disk system to the
solid state disks. The first component in PRE-DS is a SSD
partitioning algorithm (or PaSSD for short), which dynamically
partitions an array of SSDs among HDDs in such a way to

maximize I/O performance. The basic idea of PaSSD is
motivated by the observation that I/O workload is not
uniformly distributed among parallel hard disks. The solid-
state disks will be allocated dynamically depending on the
popularity, size of content, and access patterns. Taking these
factors into consideration, two approaches are implemented in
PaSSD to assign weights for contents and associate a solid-
state drive to each content. The first approach is called
Content-Popularity-Based Weight Assignment, in which the
weight of a new content is assigned based on its popularity of
other relevant contents that already have measured popularities.
If a large number of users have requesting content regularly,
the content should be fetched and cached on a solid-state drive
based on the measured weight. Weights will be adjusted
dynamically and regularly to reflect any changes on the fly.
The second approach is called Collaborative-Popularity-Based
Weight Assignment. In this approach, we specify popularity
weights by considering correlations among requested contents.
For example, if user u1 requested content c1 and c2, and user
u2 requested content c2, then c2 will receive a higher weight
because there is a strong likelihood that both u1 and u2 will
request c2. PaSSD will keep assessing contents and estimating
the weights on a regular basis in a dynamic environment. After
popularity weights are assigned using the above two
approaches, PRE-DS will decide to forward requests to either
SSDs or HDDs.

Furthermore, PRE-DS will be used to transfer data from
HDDs to SSDs if requested popular data blocks are not
available in the solid-state drives, and if transferring that data
block does not cause a data block with higher priority to be
evicted from the solid-state disks. To improve I/O performance,
PRE-DS strive to fetch as many popular data blocks as possible
from all hard disks and store these popular data in the high-
speed solid-state disks. Fig.3b describes the PRE-DS algorithm.

 b) The Prefetching Algorithm for Disk System (PRE-DS)

a) The Prefetching Algorithm from Tapes to HDDs (PRE-TD)

Input
 The look-ahead reference is denoted by the sequence of references),...,,(1 jii rrrR

 P(r) : is the priority of request r
 Tape-library(r): is the tape library where tape(r) is located
 Tape(r): is the tape from which reference r needs to be fetched

PRE-TD:

 If the requested data is located in the disk system
o No Prefetching is necessary

 If the requested data is not located in the disk system
o Fetch the requested data from as many tape libraries as possible

 Use round robin mapping technique to map the striping unit to the corresponding disk
 Use the data placement algorithm to place the requests in the tapes
 If the disk is full

o Use the LRU eviction policy to migrate request from disk back to tape

5247

 VI.CONCLUSIONS
The use of large scale parallel disk systems continues to rise

as the demands for data-intensive applications with large
capacities grow. Traditional storage systems scale up storage
capacity by employing more hard disk drives, which tends to
be an expensive solution due to ever increasing cost for HDDs.
With the new evolutionary technology on storage components
like solid-state disks, hybrid storage systems, which contain
both high-end storage components (SSDs and HDDs) and low-
cost storage components (tapes), will be an ideal solution for
next generation of data-intensive applications at petascale or
extrascale level.

In hybrid storage systems, judiciously transferring data back
and forth among SSDs, HDDS, and tapes is critical for I/O
performance. We propose a multi-layer prefetching algorithm
(PreHySys) that can reduce missing rate of high-end storage
components thereby reducing the average response time for
data requests in hybrid storage systems. To validate PreHySys,
we also build an analytical model that can mathematically
evaluate the performance improvement (i.e. the average access
time improvement) when prefetching is carried out.

The contributions of this research are two folds. First, to the
best of our knowledge, this is the first time multi-layer
prefetching techniques are proposed in the context of hybrid
storage systems. Second, we present the first mathematical
model to evaluate the prefetching algorithms for hybrid storage
systems. For future work, we will further improve our
PreHySys algorithms and analytical model by applying them to
real world hybrid storage systems with data-intensive
applications.

ACKNOWLEDGMENT

The work reported in this paper was supported by the US
National Science Foundation under Grants CCF-0845257
(CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR),
CNS-0915762 (CSR), CCF-0742187 (CPA), CNS-0831502
(CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM),
DUE-0837341 (CCLI), and DUE-0830831 (SFS).

REFERENCES
[1] M. Shenalon, R Heller, A Chai, P O Brown, and R W Davis,

“Parallel human genome analysis: microarray-based expression
monitoring of 1000 genes,” Proc. Nat Acad Sci U S A., vol. 93,
no. 20, pp. 10614–10619, Oct. 1996

[2] J.Hawkins and M. Boden, M., “The applicability of recurrent
neural networks for biological sequence analysis,” IEEE/ACM
Trans. Computational Biology and Bioinformatics, vol. 2, no. 3,
pp. 243 – 253, July-Sept. 2005.

[3] D.B. Trizna, “Microwave and HF multi-frequency radars for
dual-use coastal remote sensing applications,” Proc. MTS/IEEE
OCEANS, pp. 532 - 537, Sept. 2005.

[4] H. Eom and J.K. Hollingsworth, “Speed vs. accuracy in
simulation for I/O-intensive applications,” Proc. Int’l Symp.
Parallel and Distributed Processing Symposium, pp. 315 –322,
May 2000.

[5] W.W. Hutsell, A. Martz, “Caching is solid with disk option:
solid-state, disk-based cache can improve the performance of
sluggish networks-Storage”, Communication News, Dec.2003.

[6] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang
and Z. Song, “PRO: A Popularity-based Multi-threaded
Reconstruction Optimization for RAID-Structured Storage
Systems,” Proc. 5th USENIX conference on File and Storage
Technologies (FAST’07),San Jose, CA, February, 2007.

Input:
 The lookahead reference is denoted by the sequence of references),...,,(1 jii rrrR

 P(r) : is the priority of request r
 Block(r): is the block where request r is located
 Disk(r): is the disk where block(r) is located

PRE-DS:

 If the requested data is located in the solid-state disks
o No Prefetching is necessary

 If the requested data is not located in the solid-state disks
o Apply PaSSD mechanism to partition solid-state disks among disks
o Fetch a request from as many disks as possible in the same I/O step

 If the solid-state disks is full
o Use the LRU eviction policy to migrate requests from solid-state disks

back to hard disk drives based on their popularity

b) The Prefetching Algorithm for HDDs to SSDs (PRE-TD)

Fig.3. The Multi-Layer Prefetching Algorithm (PreHySys)

5348

[7] S.H. Baek et al., “Reliability and performance of hierarchical
RAID with multiple controllers,”Proc. twentieth annual ACM
symposium on principles of distributed computing, pp. 246 –254,
2001.

[8] G.R. Ganger, B.L. Worthington, R.Y. Hou and Y.N. Patt, “Disk
arrays: high-performance,high-reliability storage subsystems,”
IEEE Computer, Volume 27 , Issue 3, pp. 30-36, March 1994.

[9] T.Gerstel, “Streams and standards: delivering mobile video,”
ACM Queue, Vol. 3, Issue 4, pp. 48-53, May 2005.

[10] R. Hou, J. Menon, and Y. Patt, “Balancing I/O Response Time
and Disk Rebuild Time in a RAID5 Disk Array,” Proc. the
Hawaii Int’l Conf. on Systems Sciences, pages 70-79, 1993.

[11] G.F. Hughes and J.F. Murray, “Reliability and security of RAID
storage systems and D2D archives using SATA disk drives,”
ACM Transactions on Storage, Vol. 1, Issue 1, pp. 95 – 107,
February 2005.

[12] A.A. Drapeau and R.H. Katz, “Striped tape arrays,” Proc. 12th
IEEE Symposium on Mass Storage Systems, 1993.

[13] C. Georgiadis, P. Triantafillou, C. Faloutsos, “Fundamental of
Scheduling and Performance of Video Tape Libraries,”
Multimedia Tools and Applications, pp. 137-158, 2002.

[14] J. Li and S. Prabhakar, “Data Placement for tertiary storage,”
Proc. 19th IEEE Symposium on Mass Storage Systems, pp. 193-
207, April 2002.

[15] D. Kotz, D and C.S. Ellis, “Caching and writeback policies in
parallel file systems,” Proc. the third IEEE Symposium on
Parallel and Distributed Processing, 1991.

[16] R. Karedla, J. Spencer Love, and B. Wherry, “Caching Strategies
to Improve Disk System Performance,” IEEE Computer, vol. 27,
no. 3, pp. 38-46, March 1994.

[17] M.Nijim, Z. Zong, X. Qin, “Security-Aware Cache Management
for Cluster Storage Systems”, In Proc. ICCCN, 2008.

[18] J.Chang and G.S. Sohi,”cooperative cache partitioning for chip
multiprocessors, In Proc. ICS’07, 2007.

[19] S.Kim, D. Chandra, and Y.Solihin,”Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture, In Proc.
PACT’04, 2004.

[20] R.Lyer,”QoS: A framework for enabling qos in shared caches
cmp platforms”, In Proc.ICS’04, pp.257-266, 2004.

[21] WOODY Hutsell, Aaron Martz,”Caching is solid with disk
option: solid-state, disk-based cache can improve the
performance of sluggish networks-Storage”, Communication
News, Dec. 2003.

[22] R.R.M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-
F. Wong, “Compiler Prefetching via Speculation and Prediction”,
Proc. of the 11th International Conference on Architectural
support for programming languages and operating system, 2004.

[23] J.-L, Baer and T.-F. Chen, “An effective on-chip preloading
scheme to reduce data access penalty,” Proc. Supercomputing, pp.
176-186, 1991.

[24] Y.Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp,”Exploring
Parallel I/O Concurrency with Speculative Prefetching”, Proc.
37th International Conference on Parallel Processing, 2008.

[25] K.MK.M. Curewitz, P. Krishnan, and J.S. Vitter, “Practical
Prefetching via Data Compression,”Proc. ACM Conf.

Management of Data (SIGMOD’93), pp.257-266, June 1993.
[26] J. Griffioen and R. Appleton, “Reducing File System Latency

Using a Predictive Approach,” Proc. USENIX Ann. Technical
Conf. (USENIX’95), pp. 197-207, Jan. 1995.

[27] U.U. Hann, W. Dilling, D. Kaletta, “Improved adaptive
replacement algorithm for disk caches in HSM systems”, Proc.
16th IEEE Symposium on Mass Storage Systems, pp128-140,
1999.

[28] X..-B. Zhang, D.-S. He, D. Du, and Y.-P. Lu, “Object Placement
in Parallel Tape Storage, ICPP 2006.

[29] Z. Jiang and L. Kleinrock, “An Adaptive Network Prefetch
scheme”, IEEE Journal on Selected Areas in Communications,
pp. 358-368, 1998.

[30] L. Kleinrock, “Queuing Systems” Vol. 2: Computer Applications,
Wiley, 1975.

5449

