
Energy Efficient Prefetching with Buffer Disks for

Cluster File Systems

Adam Manzanares, Xiaojun Ruan, Shu Yin, Jiong Xie,

Zhiyang Ding, Yun Tian, James Majors, and Xiao Qin

Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849-5347

Email: {acm0008, xzr0001, szy0004, jzx0009, dingzhi, tianyun, majorjh, xqin}@auburn.edu,

http://www.eng.auburn.edu/∼xqin

Abstract—Energy efficient computing is becoming increasingly
important as the scale of parallel computing systems is expanding.
As the processing power of parallel computing systems has been
incremented there has been an increased demand for large scale
storage systems to store the output of these parallel computing
systems. Data centers are growing at an enormous pace and it
is important to investigate a means of managing the energy-
efficiency of large scale parallel storage systems. To address
these issues we introduce EEVFS (Energy Efficient Virtual File
System), which is able to manage data placement and disk states
to help improve the energy efficiency of a parallel disk system.
EEVFS places data on the storage disks in an energy efficient
layout and attempts to predict when each disk will be idle
for a large period of time, facilitating a state transition into
the standby state. EEVFS should also maintain relatively high
performance, so we have built a load balancing policy into the
data partitioning of EEVFS. The implementation architecture
and measured results are presented to demonstrate the energy-
efficiency and performance characteristics of EEVFS.

I. INTRODUCTION

Large-scale cluster storage systems are becoming ubiq-

uitous because of the large amount of data required for

search engines, multimedia websites, and data-intensive high-

performance computing [1] [2]. These large-scale cluster

storage systems typically are extremely inefficient concerning

energy consumption. With data centers quickly growing in

scale, it is important to develop energy-efficient tools to keep

the cost of operating cluster storage systems down. Improving

the energy efficiency of cluster storage systems is important

because storage systems can account for 27% of the total cost

to operate a data center [3]. The demands for increased per-

formance and storage capacities of large-scale storage systems

exacerbate the high energy consumption problems associated

with cluster storage systems.

A handful of novel techniques developed to conserve en-

ergy in storage systems include dynamic power management

schemes [4][5], power-aware cache management strategies [6],

power-aware prefetching schemes [7], software-directed power

management techniques [8], redundancy techniques [9] and

multi-speed settings [10][11]. These energy-saving techniques

can significantly enhance the energy efficiency of disk drives

under workload conditions where idle periods between groups

of disk accesses are substantial.

One fundamental drawback of cluster storage systems is

that large data sets are partitioned and distributed across

multiple storage nodes in a cluster; it is difficult for the storage

nodes to energy-efficiently coordinate and handle parallel data

management. A promising approach to improving the energy

efficiency of cluster storage systems is to implement energy-

saving techniques in file systems. In the absence of an energy-

efficient cluster file system, energy conservation is commonly

achieved in individual storage nodes in a non-collaborative

manner. Relying on low-power storage components to save

energy in clusters not only limits I/O performance, but also

loses opportunities to conserve energy by considering file

accesses across multiple storage nodes.

The goal of our research is to develop an energy-efficient

virtual file system - called EEVFS - for large computing

clusters. EEVFS is a cluster file system that energy-efficiently

processes file accesses across multiple storage nodes in a

computing cluster. The salient features of EEVFS lie in its

high energy efficiency, fast I/O processing, and scalability

potential. In other words, EEVFS can provide significant

energy savings for cluster storage systems while achieving

high I/O performance.

EEVFS achieves high energy efficiency through a BUD disk

architecture [12][13]. In the BUD architecture, each storage

node contains m buffer disks and n data disks. We choose to

use log disks as buffer disks in each storage node, because

data can be written onto the log disks in a sequential manner

to improve performance of the buffer disk. In most cases, the

number of buffer disks m is smaller than the number of data

disks n.

To fully utilize buffer disks, we have investigated an energy-

aware prefetching strategy (see [12] for details on the prefetch-

ing algorithm called PRE-BUD) to dynamically fetch the most

popular data into buffer disks, thereby making data disks stay

in the standby mode for long period of time to conserve

energy. We evaluated the impact the PRE-BUD algorithm on

the overall energy efficiency of parallel disks within a storage

node. The research on PRE-BUD has led us to discover that

file access patterns, data size, inter-arrival delays, and disk

drive energy parameters combine to produce opportunities to

transition hard drives into lower energy consuming states.
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There is energy, performance, and reliability penalties asso-

ciated with transitioning disks into the various power states

and; therefore, it is imperative to investigate techniques that

are able to offset these penalties. It is desirable to minimize

the amount of state transitions to provide a balance between

the energy efficiency, performance, and reliability of parallel

disks.

In our previous studies on PRE-BUD, we have conducted

extensive simulations to estimate performance and energy-

efficiency of our prefetching schemes. Simulation results show

that PRE-BUD is conducive to conserving energy in parallel

disks. These findings motivate us to build the EEVFS file

system, in which an energy-efficient prefetching mechanism is

implemented for cluster storage systems. EEVFS keeps track

of file locations and disk states of all the storage nodes in

the file system. The system architecture for the EEVFS file

system contains two different components - storage servers

and storage nodes. The EEVFS architecture details are further

outlined in Section III-A.

Apart from high energy efficiency, EEVFS has high scal-

ability. This extreme scalability is possible, because EEVFS

coordinates a large number of storage nodes, each of which is

managing an array of disk drives (see Fig. 1). The EEVFS file

system is running on storage nodes connected over a switching

fabric. EEVFS is responsible for balancing the I/O load across

storage nodes. The I/O load of individual disks within a storage

node is balanced by storage node component of EEVFS.

The rest of the paper is organized as follows: Section II

gives an overview of related work in the area energy-efficient

storage systems, and then presents the motivation of this

research. We discuss in Section III the design issues of

EEVFS. Section IV discusses the implementation decisions

of EEVFS. Before discussing the performance evaluation,

we present in Section V a testbed, metrics, and important

parameters. Then, Section VI shows experimental results.

Finally, Section VII concludes the paper and presents our

future research directions.

II. RELATED WORK AND OBSERVATIONS

A. Strengths/Limitations of Related Work

Almost all energy efficient strategies rely on the dynamic

power management techniques or DPM [14]. The DPM tech-

niques assume a disk has several power states. Lower power

states have lower performance, so the goal is to place a disk

in a lower power state if there are large idle times. There are

several different approaches to generating larger idle times for

individual disks which include prefetching or caching a subset

of the data or by placing data strategically on disks [15] [16].

Memory cache techniques. Energy-aware prefetching can

effectively improve the energy efficiency of disk systems,

although many existing techniques have focused on low

power disks. For example, energy-efficient prefetching was

explored by Papathanasiou and Scott [16]. Their techniques

relied on changing prefetching and caching strategies within

the Linux kernel. Zhu et al. developed PB-LRU - another

energy efficient cache management strategy [17]. The PB-

LRU strategy focused on providing more opportunities for

underlying disk power strategies to save energy. Flash drives

have been proposed for use as buffers for disk systems (see,

for example, [18]), because flash drives are small, light-

weight, energy efficient, noiseless, and shock resistant. Shen

et al. have studied the issues of energy-efficient caching and

prefetching in the context of mobile distributed systems [19].

The aforementioned research projects were focused on mobile

disk systems, whereas we focus on large-scale parallel disk

systems. All the previously mentioned techniques are limited

in the fact that caches, memory, and flash disk capacities

are typically much smaller than disk capacities. We propose

strategies that use a disk - rather than main memory or flash

drives - as a cache to prefetch data in a parallel file system.

The break-even times of disk drives are usually very high and

prefetch data accuracy and size become a critical factor in

energy conservation in this study.

Multi-speed/low power disks. Many researchers have rec-

ognized the fact that large break-even times limit the effective-

ness of energy efficient power management strategies in hard

drives. One successful approach to overcoming large break-

even times is to use multi-speed disks [7]. Another way to

reduce energy dissipation in storage systems is to replace

high-performance disks with new energy-efficient disks [20].

Mobile computing systems have been recognized as platforms

where disk energy should be conserved [21]. The mobile

computing platforms commonly use low power disks with

small break-even times. The weakness of using multi-speed

disks is that there are few commercial multi-speed disks

currently available on the market. Low power disk systems

are an ideal candidate for energy savings, but they may not

always be a feasible alternative. The goal of this study is to

develop an energy-efficient file system for existing disk arrays

without requiring any changes in the storage system hardware.

Disk as cache. The MAID (Massive Arrays of Idle Disks)

system was proposed by Colarelli and Grunwald to use a

subset of disk drives as cache for a larger disk system [4].

MAID was designed to conserve energy of mass storage

systems with the performance goal of matching tape-drive

systems. The main difference between our EEVFS and MAID

is two-fold. First, the caching policies implemented in EEVFS

are significantly different from that in MAID (see Section IV-A

for details on the caching policies). For example, MAID

caches blocks that are stored in a LRU order. Our strategy

attempts to analyze requests look-ahead window and prefetch

any file blocks that will be capable of reducing the total energy

consumption of the disk system. Second, the energy-efficient

prefetching mechanism is implemented at the file-system level

EEVFS; the prefetching mechanism in MAID is implemented

at the storage-system level.

Pinheiro and Bianchini developed the PDC technique to

migrate sets of data to different disk locations [15]. The goal

of PDC is to load the first disk with the most popular data, the

second disk with the second most popular data, and continue

this process for the remaining disks. PDC is a migratory
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strategy that can cause large energy overheads when a large

amount of data must be moved within a disk system. PDC

also requires the overhead of managing metadata for all of the

blocks in the disk system, whereas our strategy implemented

in EEVFS only needs to manage metadata for the file blocks

in buffer disks.

Parallel file systems Large scale parallel storage systems

are an important research topic as I/O has typically been

one of the neglected areas of cluster systems. Lustre is a

popular production file system that is widely used to support

high-performance computing systems [22]. PVFS - a virtual

file system that is used for large scale clusters - is also

widely used [23]. These two large-scale file systems are

both performance oriented whereas our goal is to develop an

energy-efficient cluster file system. The Blue File System, or

BlueFS, developed at the University of Michigan is an energy

efficient distributed file system that is targeted at mobile

devices [24]. BlueFS can significantly reduce energy usage

of mobile devices. Unlike BlueFS, EEVFS aims at improving

energy efficiency of cluster storage systems.

B. Observations

With the previously mentioned limitations of energy effi-

cient research and cluster file systems we propose an energy-

efficient file system in which the centerpiece is a novel

prefetching strategy that can improve the energy efficiency of

cluster storage systems. Our research differs from the previous

research on the following key points.

• We developed an Energy Efficient Virtual file system

(EEVFS), which is capable of producing energy ef-

ficiency gains in large scale storage systems. EEVFS

is a distributed virtual file system that manages data

placement and disk states to conserve energy.

• We develop a prefetching mechanism - a centerpiece of

EEVFS - that tries to move popular data into a set of

buffer disks without affecting the data layout of any of

the data disks.

• We developed a prototype implementation of our strategy

and provide implementation details and a response time

analysis. In addition, we tested our implementation using

the web file access pattern from the Berkeley File System

Workloads technical report [25].

• The prefetching mechanism in EEVFS has the added

benefit of not requiring any changes to be made to the

overall architecture of an existing cluster storage systems.

Previous work has focused on redesigning a data storage

system or replacing existing disks to produce energy

savings. In EEVFS, one can either add extra disks or use

the current disks to produce energy savings for cluster

storage systems under certain conditions.

III. DESIGN

We outline in this section the design issues of the Energy-

Efficient Virtual File System (EEVFS). In this study, we paid

particular attention to the implementation of energy-efficient

prefetching with buffer disks in EEVFS.

A. System Architecture

Like PVFS, EEVFS was designed to improve the perfor-

mance of cost-effective cluster storage systems. In addition to

achieving high performance, reducing energy consumption in

cluster storage systems is a primary design goal of EEVFS.

Network Interconnect

Storage Server Client Nodes

Storage Nodes

Data Disks

Fig. 1: Architecture of EEVFS. The storage server manages

metadata (e.g., data location and file size).Each storage node

manages multiple disks, which are separated into two

groups: buffer disks and data disks.Client nodes can directly

access storage servers through the network interconnect.

Fig. 1 illustrates the architecture of EEVFS, where nodes

are divided into three main groups - compute nodes (clients),

storage nodes, and a storage server. The storage server is

responsible for handling incoming file requests for data reads

or writes from the compute nodes. The storage server needs

to determine the storage node that contains the data that is

requested by a client. When the number of storage nodes scales

up, the storage server might become a performance bottleneck,

we address this issue by simplifying the functionality of the

storage server. Thus, the storage server only has to manage

metadata such as data location and file size. To achieve high

scalability of cluster storage systems, we allow each storage

node to manage (1) multiple data disks (see Section III-B

below) and (2) metadata for the multiple local disks (see

Section IV-D).

B. Data Placement

If the storage server is given previous knowledge about the

popularity and access patterns of the data blocks, the server

distributes the data blocks to storage nodes in a round-robin

fashion based on file popularity. After the storage server has

distributed the data across the storage nodes, it splits the file

access patterns based on the data distribution. The server then

forwards the corresponding access patterns to each storage

node.
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A storage node manages the states of multiple hard drives

and also performs load balancing based on the file popularities

determined by the storage server. As data is placed on each

storage node by the storage server, the storage node places

the data on its N disks in a round-robin order. Since the first

data placement request contains the most popular data, the

second request contains the second most popular data, and

so forth, the storage node load balances the data placement

request on its local data disks. The storage node receives file

access pattern information from the storage server about each

file that is stored within the storage node.

C. Power Management

The storage node uses the file access pattern to predict

periods when each of its data disks will be idle for long periods

of time. If there are any periods of time larger than a threshold

value, the storage node will transition a data disk into the

standby period. The storage node uses an energy prediction

model that takes into account the number of files to prefetch

and the file access pattern. If there are consecutive requests for

data in the predicted prefetch area then the storage node marks

points in time when the data disks should be transitioned to

the standby state to conserve energy.

Within each storage node the disks are separated into two

groups, namely, buffer disks and data disks. The buffer disks

are responsible for holding copies of popular data from the

data disks. Our goal is to keep the buffer disk active and

keep the data disks as lightly loaded as possible, thereby

allowing EEVFS to transition data disks into the standby state

to produce energy savings. The buffer disk used in the current

incarnation of EEVFS relies on the local file system to manage

buffers residing on the buffer disk. The buffer disk, of course,

must constantly be available for the Linux operating system

running in the storage node. It is worth noting that placing the

buffer disk into the standby state is not feasible under heavy

loads, because power state transitions in the buffer disk can

adversely affect the performance of the storage node. If the

buffer disk has any available space, the free space should be

used as a write buffer area for the other data disks contained

in the storage node.

IV. IMPLEMENTATION

We implemented a prototype of EEVFS on a cluster stor-

age system. The implementation uses an append-only log of

requests to keep track of file access patterns, which assists the

storage server in determining the needs for prefetching popular

files or data blocks from data disks to buffer disks. This section

discusses several important implementation issues.

A. Process Flow

The process flow of EEVFS is presented in Fig. 2. The first

step of the process is the initialization phase, which consists of

the storage server connecting to all of the storage nodes in the

system. The server creates a separate thread for each storage

node and then establishes a TCP/IP connection to each storage

node. The second step is that the storage server gets popularity

information from a log of file access patterns. The prototype

implementation uses a trace to replay file access patterns and

bases the file popularity on information gathered from traces.

In step 3 files are created on the storage nodes and the

server informs the storage nodes if they should perform

prefetching, which is explained further in IV-B. The storage

server attempts to load balance the files among the storage

nodes based on the popularity information gained from step

2. The most popular data is placed on storage node 1 and the

second most popular data is placed on storage node 2 and

so on. The storage node also tries to load balance among the

attached data disks. This is achieved because the first create file

request a storage node sees contains a file that is guaranteed

to be more popular than the file contained in the second file

create request. The first file a storage node creates is then

placed on the first storage disk and the second file a storage

node creates is placed on the second storage disk. In step 4

the server passes application hints to the storage nodes which

is elaborated on in IV-C.

In step 5 the client requests information from a file and

sends a request to the storage server node. The client can

not access any of the content in the storage node without

first going through the storage server node. The storage server

node contains the storage node location of a file, but does not

know which data disk the file is located on or if the file has

been prefetched. The storage node passes information about

the client to the storage node that contains the file and the

storage node then establishes a connection with the client and

passes the data to the client which is outlined in step 6.

B. Prefetching

Prefetching is an important part of the EEVFS architecture

because it allows the data disk an opportunity to see large

idle windows. If a buffer disk can server a disk request then

the corresponding data disk sees an idle window increase as

opposed to the disk serving the request and resetting the idle

window timer that each disk keeps. Our current version of

prefetching is based on file access patterns and we derive a

popularity based on the number of accesses over a given period

of time. This information is passed to storage nodes and if they

are instructed to prefetch then they will place a copy of popular

data into the buffer disk. The current version of EEVFS uses

the hard drive that also runs the operating system as the buffer

disk, which allows us to use an existing disk as the buffer

disk. If this is not possible due to space limitations it may be

possible to add another extra disk to be used as the buffer disk,

but our experiments and previous simulation results indicate

you would need many data disks to amortize the energy cost

of adding an extra disk.

C. Application Hints

Assuming that the programmer of an application using

EEVFS or the creator of files in the EEVFS system can

pass information about the application that is going to be run

on EEVFS we can further improve the energy efficiency of

EEVFS. The application hints are used to predict idle windows
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Fig. 2: EEVFS Process Flow Chart. Step 1: initialization phase; step 2: storage server generates file popularity; Step 3:

prefetch popular files from data disks to a buffer disk; Step 4: applications provide access hints; Step 5: applications submit

file requests; Step 6: storage nodes return data to applications running on compute nodes (i.e., clients)

to increase the energy efficiency of EEVFS while providing

minimal delays to response time. The application hints can be

extremely useful because they allow us to predict if their are

any opportunities to save energy and if their are none then

EEVFS will not place disks into the standby state. It allows

EEVFS to operate in a more conservative manner as opposed

to not knowing application hints and relying solely on the idle

window timers. EEVFS can operate without the application

hints, but their may be situations where a request comes

in immediately after the idle window threshold is reached,

causing a negative impact to energy savings and response time.

D. Distributed Metadata Management

To alleviate the metadata management burden of the storage

server, we effectively distribute metadata across storage nodes

in a cluster. The storage server simply manages metadata that

provides hints as to which storage nodes contain files that

can handle requests submitted from clients. Each storage node

maintains metadata that can locate files on local disks in the

node to respond requests forwarded from the storage server.

The goal of the distributed metadata management is to

balance the metadata management load among the storage

nodes. The storage server is unaware of the individual disks

in each storage node, primarily acting as a load balancer

and access point for all of the storage nodes. The storage

server does not need to know any information about the

exact disk location of the data within each storage node. The

implementation of our metadata management subsystem can

be further improved in our future studies. For example, Miller

et al. developed a scalable metadata management strategy

for large-scale file systems [26]. We plan to integrate their

dynamic metadata management scheme in our energy-efficient

cluster storage system.

V. EVALUATION METHODOLOGY

A. Testbed

We built a cluster storage system serving as a testbed to

evaluate the energy efficiency and performance of the energy-

efficient prefetching mechanism implemented in EEVFS. This

cluster storage system was configured as follows at the time

when we conducted the experiments (see Table I for details on

the configuration of the testbed). In our storage cluster system,

there is one server node and eight storage nodes. The server

node has a 2.0 GHz Pentium 4 processor, 2 Gbytes of RAM, a

1 Gbits/sec Intel EtherExpress Pro Fast-Ethernet network card,

and a 120 GB SATA disk. There are two types of storage nodes

in the cluster system. Each Type 1 storage node has a 3.2 GHz

Pentium 4 processor, 1 Gbytes of RAM, a 1 Gbits/sec Fast-

Ethernet network card, and a 80 GB ATA/133 disk. Each Type

2 storage node contains a 2.4 GHz Pentium 4 processor, 512

Gbytes of RAM, a 100 Mbits/sec Fast-Ethernet network card,

and an 80 GB ATA/133 disk. All the nodes were running Linux

2.4.20 rather than Linux 2.6, because we experienced disk

transition inconsistencies running recent Linux 2.6 kernels.

B. System and Workload Parameters

For the collection of our experimental results we have

focused on varying five key system and workload parameters

(see Table II) that noticeably affect both energy efficiency

and performance of the EEVFS system. These five important

parameters are: (1) average data size, (2) file access popularity

(i.e., the MU value), (3) inter-arrival delays (i.e., arrival rate),

(4) number of files to be fetched, and (5) disk idle threshold.

In what follows, let us describe these parameters summarized

in Table II.
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Parameter Storage Server Node Storage Node Type 1 Storage Node Type 2

CPU Type and Clock Speed P4 2.0 GHz P4 3.2 GHz P4 2.4 GHz
Memory (MB) 2000 1000 512
Network Interconnect (Mb/s) 1000 1000 100
Disk Type SATA ATA/133 ATA/133
Disk Capacity 120 Gbyes 80 Gbyes 80 Gbyes
Disk Bandwidth 100 Mbytes/sec 58 Mbytes/sec 34 Mbytes/sec

TABLE I: Configuration of the Testbed - a Cluster Storage System with Multiple Types of Storage Nodes.

• Data Size. We conducted extensive experiments using

both real-world traces (see Section VI-D) and synthetic

file traces (see Sections VI-A - VI-C). For synthetic file

traces, the mean data size of files is varied from 1MB

to 50MB. When it comes to real-world traces, data sizes

are obtained from the traces.

• File Popularity Rate - The MU Value. The second

parameter that we have chosen to vary is the MU value for

the Poisson distribution of file requests that are fed into

the storage server. This value was varied from 1 to 1000

and with 1 skewing the file accesses patterns to a small

number of files and 1000 spreading out the distribution

of files accessed.

• Arrival Rate. For synthetic traces, we used the inter-

arrival delay to represent the arrival rate of file requests

submitted from applications to the cluster storage system.

We used four different synthetic workload scenarios by

varying the inter-arrival delay of the file requests. We

have added 0 to 1000 ms of inter-arrival delay between

requests to represent lighter to heavier loads respectively.

Note that we have also set a default inter-arrival delay at

700 ms to keep our queue from growing too large and

our response times growing too large for the energy and

non-energy aware comparisons.

• Number of Files to Prefetch. The last parameter that we

have varied is the number of files to prefetch and we have

varied this from 10 to 100. The total number of files in our

test file system is 1000 files for testing purposes. EEVFS

with the prefetching flag set is represented as PF in the

figures and NPF represents EEVFS without prefetching.

• Disk Idle Threshold. If disks are sitting idle for a certain

period of time (i.e., Disk Idle Threshold), the disks are

switched to the standby mode to conserve energy.

Parameter Values

Data Size(MB) 1, 10, 25, 50
File Popularity Rate - The MU Value 1, 10, 100, 1000
Inter-arrival Delay(ms) 0, 350, 700, 1000
Number of Files to Prefetch 10, 40, 70, 100
Disk Idle Threshold (sec) 5

TABLE II: System and Workload Parameters.

C. Metrics

To quantify the energy efficiency improvement and per-

formance impacts of our prefetching scheme, we used the

following three metrics in the experimental evaluation.

• Energy Savings (see Section VI-A). We compared the

energy consumption of the cluster storage system with

the energy-efficient prefetching mechanism against that

of the same system without employing the prefetching

mechanism.

• Number of Power State Transitions (see Section VI-B).

The total number of power state transitions can closely

reflect overhead incurred by switching the power state

of the disks between the active and standby mode. We

evaluated the impacts of workload parameters on the

overhead introduced by power state transitions.

• Response Time (see Section VI-C). Our energy-efficient

prefetching mechanism aims to improve energy efficiency

of cluster storage systems while minimizing performance

penalties. We measured the performance penalties caused

by the prefetching mechanism in terms of the increase in

response time.

VI. EXPERIMENTAL RESULTS

A. Energy Savings

Fig. 3 plots energy consumption of the tested cluster storage

system as a function of the four workload and system param-

eters. From Fig. 3 we discover that EEVFS with prefetching

significantly improves the energy efficiency of the disk sys-

tem. Power measurements were collected from the individual

storage client nodes running the experiments and combined

for our results. Taking a look at Fig. 3(a), which varies the

data size used for the experiment, we realize that larger data

sizes produce larger energy efficiency gains. If the data size is

1MB we produce a 11% energy efficiency gain and when the

data size is 50MB the energy savings produced is 15%. The

other interesting thing to note about the data size experiments

is that the overall energy output of EEVFS with PF and no

PF significantly increases when the data size is 50MB. This

is produced because our default inter-arrival delay of 700 ms

is too low and the queue for the storage client nodes becomes

quite large and the test runs longer than the original trace time

causing the overall energy output to increase. Even though the

test ran longer for the PF and no PF cases the energy efficiency

gain produce by EEVFS with PF was still the largest for 50

MB. For the data size experiments MU was fixed at 1000, the

number of files to prefetch was 70, and the inter-arrival delay

is set at 700 ms.

Fig. 3(b) shows the impact of popularity rate (i.e., the MU

value) on the energy efficiency of the cluster storage system.

From this figure we realize that the larger MU value produces

a smaller energy efficiency gain. This is caused by the fact that

many files are requested in the trace and the probability that

the data required for the trace will be prefetched is smaller
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(d) Impact of the Number of Files to Prefetch

Fig. 3: Energy Consumption of the tested cluster storage system as a function of (a) data size, (b) popularity rate, i.e., MU,

(c) inter-arrival dealy, and (d) number of files to prefetch. PF - with prefetching; NPF - without prefetching

with larger values of MU. Using our default prefetch size

value of 70 files we are able to produce the same amount

of energy savings when MU is 100 or smaller. The reason

for this similarity in energy consumption is the fact that when

MU is 100 or smaller EEVFS is able to prefetch all of the

required data and sleeps the disks at the beginning of the trace

execution and is able to keep the disks in the standby state for

the entirety of the trace. For the MU experiments the data size

was fixed at 10 MB, the number of files to prefetch was 70,

and the inter-arrival delay is set at 700ms.

Fig. 3(c) reveals the impact of the inter-arrival delay on

energy efficiency. The results plotted in Fig. 3(c) indicate that

we are able to produce larger energy efficiency gains when the

inter-arrival delay is increased. Intuitively this makes sense

because large inter-arrival delays produce lighter workloads.

Light workloads generally produce more opportunities for the

data disks to be placed into the standby state. The interesting

thing to note is that the overall energy efficiency actually

seemed to level off around the 700ms inter-arrival delay value.

When the inter-arrival delay value is increased to 1000 ms

we actually see a small decrease in energy efficiency. This

could likely be caused by the fact that we sleep a disk as

a particular request enters the storage client node, and if the

requests are spaced further apart it will take slightly longer for

the disks to transition to the standby state. For the inter-arrival

experiments the data size was fixed at 10 MB, the number of

files to prefetch was 70, and MU is set to 1000.

Fig. 3(d) evaluates the effect of the number of files to

prefetch into a buffer disk. In this experiment, the data size

was fixed at 10 MB, the inter-arrival delay is 700 ms, and

MU is set to 1000. The results show that as the number of

prefetched files is increased, EEVFS produces larger energy

savings. When the number of files to prefetch is 10 (i.e., 1% of

the total files in a storage node), our prefetching strategy can

only improve energy efficiency by 3%. This result is expected

because larger amounts of data prefetched increases the chance

that EEVFS is able to serve a request from the buffer disk.

Once the number of files to be prefetched is increased to 40

and above, the prefetching mechanism can provide significant

energy savings due to the fact that a vast majority of requests

can be served by the buffer disk.

B. Power State Transitions

Fig. 4 displays the total number of state transitions for each

test, of which the results were plotted in Fig. 3. For the data

size experiments we notice that the number of state transitions

decreases as the data size is increased. This result confirms

that EEVFS can place the data disks into the standby state

fewer times and for longer periods of time. This is intuitive

because increasing the data size causes each request to be

served longer and consecutive hits in the buffer disk produced

large idle windows for the data disks.
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Fig. 4: Number of power state transitions as a function of (a) data size, (b) popularity rate, i.e., MU, (c) inter-arrival dealy,

and (d) number of files to prefetch.

It is interesting to note that no state transitions will produce

no energy savings, so there is a balance between energy

efficiency and the number of state transitions. We aim to

minimize the number of disk spin ups while being able to place

the disks in the standby state for optimal energy savings. As

the inter-arrival delay is increased, it produces a similar pattern

as compared to the data size experiments. The number of state

transitions decreases as the inter-arrival delay is increased.

Similarly, as the energy savings is increased the number of

state transitions is decreased due to the fact that larger inter-

arrival delays produce lighter loads for the data disks in the

storage client node. The MU and number of files prefetched

results are very similar because they produce a situation where

the data disks are transitioned to the standby state for the entire

trace. This occurs for small values of MU and for larger values

of the number of files to prefetch. The interesting thing to

note that when the number of prefetch files is 10 it produces

the largest amount of state transitions for all of the tests, 447.

This same case also produced the smallest energy savings with

only a 3% increase in energy efficiency. This small amount

of energy savings may not be worth the stress put on the

hard drives from the large amount of state changes. The idle

threshold can be increased to prevent disks from transitioning

frequently and producing a small amount of energy savings.

C. Response Times

Now we analyze the performance penalties caused by

the prefetching mechanism. Fig. 5 illustrates the increase

in response time due to prefetching. The results collected

concerning MU and the number of files to prefetch represent

two special cases as indicated in the state transition results

explanation. When the disks are able to stay in the standby

state the entire time there is virtually no response time penalty.

This is because the response time penalties are generally

a product of the state transitions. If the number of state

transitions rises it also causes a response time degradation.

This is mainly due to the spin up operations, which average

around 2 sec for the disks used in our experiments.

Figs. 5(a) and 5(c) show the effect of data size and inter-

arrival delay on response time. From these two figures we can

deduce that there is a linear relationship between the response

time of the cluster storage system with prefetching and without

prefetching. This is promising due to the fact that it shows that

there is a tolerable response time penalty for producing energy

efficiency gains.

The response times for the data size of 50 MB were omitted

because of the fact that they were much larger than the other

values because of the large amount of queuing that took place

on the storage server node. As the data size is increased we

produce smaller penalties in the response time degradation. For
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Fig. 5: File request response time as a function of (a) data size, (b) popularity rate, i.e., MU, (c) inter-arrival dealy, and (d)

number of files to prefetch. PF - with prefetching; NPF - without prefetching

the data size of 1MB we have a 121% increase in response

time, 120 ms to 265 ms, but for the largest data size we

produced only a 4% increase in response time degradation.

We believe that the number of state transitions is closely

related to the response time penalty and it is interesting to

compare the results in Fig. 5 with Fig. 4. The inter-arrival

delay response time pattern closely follows the pattern of the

data-size, which is similar to the pattern in the results in

the previous sections. As the inter-arrival delay is increased

the response time decreases for the prefetching and non-

prefetching versions of EEVFS. The response time degradation

is 31% for the smallest inter-arrival delay value and 16%

for the largest inter-arrival delay value. There seems to be a

response time anomaly produced when the inter-arrival delay

is 700 ms because the response time degradation is 37% at this

point representing the largest response time degradation for the

inter-arrival delay experiments. This performance degradation

could be caused by the fact that the storage nodes attempt

to predict idle window periods that are as large as possible,

but aren’t guaranteed to be the optimal solution. This might

have produced a situation where the wake up transitions may

have been skewed towards a disk that takes a longer time to

transition from the standby to active/idle state.
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Fig. 6: Energy Consumption of the tested cluster storage

system when the Berkeley Web Trace are considered.

D. Berkeley Web Trace Energy Consumption

The final figure, 6, we have produced presents a trace

that was taken from the Berkeley file-system trace collection

project [25]. The particular trace we used was a section of

the web trace collection. For this experiment we set the data

size to 10MB and kept the number of prefetch files to 70. The

file access patterns were taken directly from the web trace

collection but we modified the data size and the inter-arrival

delay for requests to prevent a large amount of queuing on

the storage server. Based on the results In Fig. 6 we were
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able to produce a 17% energy efficiency improvement when

prefetching was enabled in EEVFS. This represents a number

that is near the maximum that we expect our current test bed

to produce using EEVFS. After investigating the Berkeley web

trace it was discovered that we were able to place all of the

data disks in the standby for the entirety of the Berkeley web

trace. The web trace appeared to be skewed towards a smaller

subset of data, but we were unable to find out how many files

were contained in their file system.

VII. CONCLUSION & FUTURE WORK

In this paper we introduced EEVFS - an energy-efficient

virtual file system. Based on our experimental results we

conclude that EEVFS can boost the energy efficiency of

storage systems by more than 17%. We believe this number

will increase as more disks are added to each EEVFS storage

nodes. Although we were unable to test this theory using

our existing testbed, we tested this theory using models and

simulation. We evaluated energy efficiency and performance

as functions of data size of files, popularity rate (i.e., the MU

value), inter-arrival delay, and the number of files to prefetch.

The metrics used in each experiment are energy consumption,

the number of power state transitions, and response time.

Our experimental results confirm that EEVFS is conducive

to saving energy with a tolerable impact to the response time

of disk requests.

For the future work we intend to develop EEVFS to be

a production grade piece of software. We have currently

investigated two approaches to improving EEVFS. The first

approach involves extending PVFS to handle our energy

management strategies. The second method is to extend the

source code of EEVFS to make it robust. We also plan to

investigate striping techniques within EEVFS that can help

improve the performance of EEVFS, while still maintaining

energy savings. EEVFS is a distributed file system and we

intend to investigate the performance of EEVFS in a large-

scale distributed environment.
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