Conserving Energy in Real-Time Storage
Systems with 1/O Burstiness

ADAM MANZANARES, XIAOJUN RUAN, SHU YIN, and XIAO QIN
Auburn University

ADAM ROTH

Big Tribe Corporation

and

MAIS NAJIM

University of Southern Mississippi

Energy conservation has become a critical problem for real-time embedded storage systems. Al-
though a variety of approaches for reducing energy consumption have been extensively studied,
energy conservation for real-time embedded storage systems is still an open problem. In this arti-
cle, we propose an energy management strategy, I/O Burstiness for Energy Conservation (IBEC),
exploiting the burstiness of real-time embedded storage systems applications. Our approach aims
at combining the IBEC energy-management strategy with a Linux-based disk block-scheduling
mechanism to conserve the energy of storage systems. Extensive experiments are conducted in-
volving a number of synthetic disk traces as well as real-world data-intensive traces. To evaluate
the energy efficiency of IBEC, we compare the performance of IBEC against three existing strate-
gies, namely, PA-EDF, DP-EDF, and EDF. Compared with the alternative strategies, IBEC reduces
the power consumption of real-time embedded disks system by up to 60%.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; D.4.4 [Operating Systems]: Communications Management—Buffering; D.4.8
[Operating Systems]: Performance—Simulation

General Terms: Design, Performance

Additional Key Words and Phrases: Disk scheduler, energy efficiency, linux

The work reported in this article was supported by the US National Science Foundation un-
der Grants No. CCF-0742187, No. CNS-0757778, No. CNS-0831502, No. OCI-0753305, No.
DUE-0621307, and No. DUE-0830831, and Auburn University under a start-up grant and the
Intel Corporation under Grant No. 2005-04-070.

Author’s addresses: A. Manzanares, X. Ruan, S. Yin, and X. Qin, Department of Computer Science
& Software Engineering, Auburn University, Auburn, AL 36849-5347; email: {acm0008, xzr0001,
szy0004, xqin}@auburn.edu; A. Roth, Big Tribe Corporation, San Francisco, CA 94107; email:
aroth@bigtribe.com; M. Nijim, School of Computing , The University of Southern Mississippi, Hat-
tiesburg, MS 39406; email: mais@orca.st.usm.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/02-ART20 $10.00

DOI 10.1145/1698772.1698778 http://doi.acm.org/10.1145/1698772.1698778

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:2 o A. Manzanares et al.

ACM Reference Format:

Manzanares, A., Ruan, X., Yin, S., Qin, X., Roth, A., and Najim, M. 2010. Conserving energy in
real-time storage systems with I/O burstiness. ACM Trans. Embedd. Comput. Syst. 9, 3, Article 20
(February 2010), 21 pages.

DOI = 10.1145/1698772.1698778 http://doi.acm.org/10.1145/1698772.1698778

1. INTRODUCTION

Because of the rapid advances in computational power, disk performance, and
high-speed networks, storage systems have attracted increased interest. This
trend can be attributed to the rapidly growing demands of data-intensive appli-
cations, which include but are not limited to video surveillance [Avitzour 2004],
remote-sensing database systems [Chang et al. 1997], out-of-core applications
[Qin et al. 2005], digital libraries [Sumner and Marlino 2004], and long-running
simulations [Tanaka 1993]. The main components of real-time embedded sys-
tems include VLSI chips and hard-disk drives [Benini et al. 2000]. Recent de-
velopments in magnetic disk manufacturing techniques have made it possi-
ble to provide real-time embedded systems with small form-factor disk drives
with high capacities [Zedlewski et al. 2003]. Often, hard-disk drives are one of
the highest energy-consuming components of a computing system [Greenawalt
1994; Zheng et al. 2003]. A recent study shows that storage devices account for
almost 27% of the total energy consumption of a computing system [Maximum
Institution 2002]. Emerging high-speed disks with high-power needs exacer-
bate this problem. Hence, reducing the power consumption of hard disks is
a reasonable approach to achieving long battery life for real-time embedded
systems. In recent years, processor energy conservation for real-time and non—
real-time embedded systems [Xie and Qin 2008; Zong et al. 2008] and parallel
computing systems [Liu et al. 2008; Ruan et al. 2007; Zong et al. 2007] has been
extensively studied. However, energy conservation for disk storage components
(see, e.g., Nijim et al. [2008] and Ruan et al. [2009]) in embedded real-time
systems remains an open problem. The lack of such energy conservation tech-
nologies becomes critical because, without it, reducing energy consumption of
storage systems for real-time embedded applications is highly unlikely.

In this study, we aim to develop a novel energy-management strategy for
real-time embedded storage systems. Our final goal is to combine our energy-
management strategy with kernel disk scheduling mechanisms to conserve
the energy consumed by storage systems. The conventional implementations
of real-time disk schedulers typically use Linux block device drivers. Kim et
al. [2003] investigated the possibility that the Disk Internal Scheduler (DIS)
could possibly reorder real-time requests, but we assume that the hardware
disk scheduler preservers the order of requests by the kernel. This assumption
should be reasonable considering the fact that DIS can be turned off at the
expense of disk performance. Our goal is to maximize energy, so we propose that
the DIS can be turned off to trade energy efficiency for a small hit to performance
when modern disk schedulers are used. The proposed approach can minimize
the energy consumption of real-time embedded disks, while making the best
effort to meet timing constraints of real-time disk requests.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/0 Burstiness . 20:3

The rest of this article is organized as follows. In Section 2 we summarize
the related work. Section 3 describes a model of energy-management in real-
time embedded disks. In Section 4, we propose the energy-management strat-
egy. Section 5 presents the experimental results, and Section 6 concludes the
article.

2. RELATED WORK

Many excellent studies exist on the subject of storage systems. Previous tech-
niques used to improve the performance of storage systems include caching and
buffering [Forney et al. 2001; Huber et al. 1995; Ma et al. 2002], parallel file
systems [Cho et al. 1997; Ligon and Ross 1996; Preslan et al. 1999], load balanc-
ing [Qin et al. 2005; Scheuermann et al. 1998], and disk striping [Bordawekar
et al. 1994; Salem and Garcia-Molina 1986]. Disk-scheduling mechanisms play
an equally important role in bridging the performance gap between CPUs and
disks [Coffman and Hofri 1990; Jacobson and Wilkes 1991; Seltzer et al 1990;
Yu et al. 1993]. Although the shortest seek time first (SSTF) algorithm is ef-
ficient in minimizing seek times, it is starvation-bound and unfair in nature.
The SCAN scheduling algorithm is effective at tackling the unfairness problem
while optimizing seek times [Denning 1967]. Reist and Daniel [1987] proposed
a parameterized generalization of the SSTF and SCAN algorithms. These disk-
scheduling algorithms are inadequate for meeting the demands of disk requests
with timing constraints.

Many data-intensive applications are real time in nature in the sense
that disk requests must be completed before specified deadlines [Reuther and
Pohlack 2003]. To fulfil the real-time requirements, Seltzer et al. [1990] devel-
oped the SCAN-EDF algorithm, which can process disk requests in a timely
manner. While some disk schedulers were implemented for a mixed-media
dataset, a mixture of data accessed by multimedia applications and best-effort
applications [Balafoutis et al. 2003], other disk-scheduling algorithms were
proposed to provide quality-of-service guarantees for different classes of ap-
plications [Bruno et al. 1999; Reddy and Wyllie 1999; Shenoy and Vin 1998].
Our approach differs from the existing disk-scheduling algorithms in that ours
can effectively conserve energy by combining an energy management strategy
with real-time disk-scheduling algorithms. Our strategy can be readily inte-
grated into any existing disk scheduler to minimize the energy consumption of
real-time embedded storage systems.

Research has been carried out concerning disk energy management in the
context of storage servers [Colarelli and Grunwald 2002; Hong and Potkon-
jak 1996]. Most research in disk energy-management has focused on the is-
sue of when disks should be put to sleep to reduce power consumption while
maintaining high performance [Douglis et al. 1994; Helmbold et al. 2000;
Weissel et al. 2002]. Gurumurthi et al. [2003] proposed an approach to reduce
the disk energy consumption by making use of multispeed disks with smaller
spin-up and spin-down times. Carrera et al. [2003] developed an energy con-
servation technique to save energy by combining laptop disks and server disks.
Manzanares et al. [2008] designed a prefetching mechanism to reduce energy

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:4 o A. Manzanares et al.

Real Time Application

Waiting Queue of Disk Requests

Energy Management Core

L ¢

Real-Time Disk — Energy Management
Request Scheduler — Strategy (IBEC)

SN~
Disk Driver

Embedded disk

Fig. 1. Architecture of energy management in real-time storage systems.

consumption in parallel disk systems. Very recently, we implemented a dis-
tributed energy-efficient scheduling algorithm for real-time data-intensive ap-
plications running on Data Grids [Liu et al. 2008]. To measure the effectiveness
of different dynamic energy-management policies developed for hard disks, Lu
et al. [2000] implemented filter drivers that are able to record disk accesses
and also analyze the performance impact of the energy-management overhead.
These energy management schemes are focused on non—real-time applications
and are unable to guarantee deadlines of real-time disk requests. The ma-
jor difference between our approach and the prior disk energy conservation
techniques is that ours can reduce energy consumption of disks while meet-
ing deadlines of disk requests. Cheng and Goddard [2006] propose an online
energy-efficient I/0 scheduling algorithm for hard real-time systems. Although
closely related, our work focuses on disk systems with soft real-time deadlines.
Li et al. [2005] investigated using slack times to conserve energy consumption
of memory and dynamic RPM disk systems. Our work also leverages deadlines
containing slack time, but with low-power and commercially available disk
systems.

3. MODEL OF ENERGY MANAGEMENT

3.1 Architecture

First, we build an abstract energy-management model for real-time embedded
disk systems. The model depicted in Figure 1 is based on the concept of an
energy-management strategy, which is combined with a real-time disk sched-
uler. The energy-management strategy is designed to manipulate the hard-
disk power states and delay the execution of requests in a waiting queue of re-
quests. While the real-time disk scheduler implements generic logic and timing

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/0 Burstiness . 20:5

read/write

0.75W
Fig. 2. Power-state model of the IBM DTTA 350-640 HDD [Benini et al. 2000].

mechanisms for scheduling and waiting, the disk driver is responsible for con-
trolling access to a real-time embedded disk [Nijim et al. 2006].

The energy-management strategy was implemented in conjunction with a
real-time disk-scheduling algorithm Earliest Deadline First, or EDF. By the
virtue of the chosen implementation architecture, our strategy can be readily
integrated with any real-time disk-scheduling policy. In this study, we focus
on a storage system with a single disk, although the proposed strategy can be
extended to storage systems with parallel and distributed disks. There are two
main approaches to extending this work to parallel disk systems. The first and
easiest is to just duplicate the energy-management core for each disk added
to the disk system. To take advantage of the added bandwidth of the parallel
disks, the kernel or the user would have to manage the placement of data in
the disks. The second approach is to present one energy-management core to
the kernel but attach many disks to the energy-management core. The second
approach requires careful planning on how to manage the data on the disks,
and we plan to save this for future research.

Energy management can be accomplished in a variety of ways in both real-
time and non-real-time systems. As of now, most energy-aware hardware com-
ponents support multiple power states [Benini et al. 2000]. For example, a CPU
may implement a feature such that when it is idle, its clock-rate is reduced by
a large factor, which reduces the core voltage. This, in turn, reduces power con-
sumption and thermal dissipation. In this study, however, we are only concerned
with hard-disks, which attempt to manage energy in a similar way. Most disks
currently in deployment only explicitly support two operating power states, an
active state and a sleep state. When in the active state, the disk is fully opera-
tional. When in the sleep state, the motor turning the disk platter is disabled,
thus conserving energy.

Transitioning between these states is a process, which consumes a substan-
tial amount of time and energy, especially when transitioning from the sleep
state to the active state [Benini et al. 2000]. Given the high cost associated with
transitioning from one state to another, it is easy to see that minimizing the
number of power state transitions such that disks are kept sleeping as long as
possible can substantially reduce energy consumption of disks.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:6 o A. Manzanares et al.

3.2 Modeling Disk Requests and Energy Consumption

Each real-time disk request submitted to a disk system specifies its timing
constraint in the form of a deadline, by which the request must be completed
by the disk system. Note that deadlines of disk requests can be derived from
real-time applications issuing the disk I/O operations. A disk request r is mod-
elled by three parameters, r = (a, s, t), where a is the disk address, s is the
data size measured in KB, and d is the specified deadline. To model disk power
consumption, we use a finite state machine representation built around per-
formance data gleaned from an IBM DTTA 350-640 hard-disk drive. Let R =
{r1,7r9, ...r,} be a list of disk requests issued to a real-time embedded disk sys-
tem. Let T,, and Tos denote the time intervals in which the disk system is
active and inactive, respectively. We refer to T} as the time required entering
and exiting the inactive state. The total energy consumed by the disk system
can be computed as

Etotal = Eon + Eoff+ Etr

(1)
= TonPon + ToffPoff+ TtrPtr,

where P,, and P, are the power of the disk in the active and inactive state,
respectively, and Py, is the state transition power.

The transition time 7} and transition power P;. can be computed by the
following two equations.

frtr = Non,offTon,off + Nof}fon Tof/‘fon: (2)
Ptr = fon,offPon,oﬁ" + fofﬁonPoﬁ‘,'on
Ton,off Tofﬁon) (3)
fon,off = T) foff,'on =

on,off + Toﬁfon Ton,off + Tofﬁon

where Ty, o and T4, are the required times to enter and exit the inactive

state, Py o and Py, are the power values when the disk enters and exits the

inactive state. In Equation (2), Nopof and Nogo, are the number of times the

disk enters and exits the inactive state. Without loss of generality, we assume

that Nop,or and Nygon are identical. Thus, Equation (2) can be simplified as
frtr = Ntr(Ton,off + Nof}fon),

4)
Ntr = Non,off = Tofﬁon'

In general, T,, in Equation (1) is the sum of the total serve and total idle times
(See Eq. 5).
Ton = Lserve + fridle, (5)

where the total serving time is the sum of the serving time of each disk request.
Thus, we have

Tserve = Xn: Ts(l),

~ (6)
TS(L) = Tseek(i) + Trut(i) + 71trans(i)a

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/O Burstiness J 20:7

where T, is the amount of time spent seeking the desired cylinder, 7, is the
rotational delay, and T},4,s is the amount of time spent actually reading from
or writing to the disk.

We can quantitatively compute the energy saved by the energy-management
strategy using the following equation:

Esave = (Ton + Toff+ frtrPon) - Etotal
= (Ton + Toff+ Ty Pon) — (TonPon + ToffPoff"f‘ TtrPtr) (7
= (Pon - PoffToff) + (Pon - Ptthr)-

Our energy-management strategy seeks to save energy by minimizing the disk
system’s total energy consumption (see Equation (1)). Therefore, we can obtain
the following problem formulation, where f; is the finish time of the ith disk
request.

Minimize E,, + E.5+ Ey

8
Subject to Vr; e R : fi < d;. ®)

4. THE ENERGY-MANAGEMENT STRATEGY

This section presents our energy-management strategy leveraging I/0 Bursti-
ness for Energy Conservation (IBEC). It is assumed that the energy overhead
of running IBEC is negligible when compared to the processing times of disk re-
quests. This assumption is reasonable because recent studies show that energy-
management strategies spend less than 1% of computation time on power man-
agers [Lu et al. 2000].

The IBEC algorithm is based on the idea that by delaying the execution of
some requests, it is possible to allow the disk to remain in a “sleep” state for a
longer duration of time. It also processes larger contiguous blocks of requests
when the disk is active, thus making better use of the disk when it is fully
powered. The implications of this are twofold. First, we improve the efficiency
of the disk by reducing the amount of time that it sits idle in the “active” state.
Second, we also reduce the total number of power state transitions that the
disk will make when servicing a given request-stream.

This is important because transitioning from the sleep state to the active
state is expensive both in terms of power consumed and the amount of time that
it takes to complete the transition. By reducing the number of these transitions,
it is possible to substantially improve the power-consumption characteristics
of the system. If a request arrives while the disk is in the sleep state, and we
determine that the request’s deadline does not require immediately waking the
disk, then we cache the request for later processing.

In fact, under the IBEC algorithm, if the disk is in the sleep state, we do
not wake it until we determine that we must do so in order to guarantee the
deadline of a(the) waiting disk request(s). Note that it is probable that while we
are waiting to wake the disk to service our waiting request, other requests will
continue to arrive. These requests are also queued until the disk is transitioned
to the active state, at which point all waiting requests are serviced at once. This
is the mechanism by which IBEC reduces the number of state transitions. It also
attempts to create contiguous blocks of requests to service out of a potentially

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:8 o A. Manzanares et al.

arbitrarily sporadic stream of requests. Also, note that as more requests end
up queued and consequently delayed, it is necessary to not just ensure that
we guarantee the deadline of the first request in the waiting queue. We must
also ensure that by delaying the first request, we are not causing the deadlines
of subsequent requests to become unrealizable. Note that these deadlines are
for soft real-time applications and that missed deadlines are tolerable. Thus,
it may be the case that we will need to transition to the active state some
length of time before it is absolutely imperative to do so to meet the deadline
of the first request, such that we can still hope to guarantee the deadlines of
subsequent requests. This imposes additional requirements on the algorithm.
First, it becomes necessary to re-evaluate the threshold, at which we must
transition the disk to the active state whenever a new request is added to the
waiting queue. Second, there must be a mechanism for estimating the amount
of time spent in serving a given request, given what we currently know about
the state of the system. The first criteria is fairly trivial, the second is a bit less
so; however, the estimation does not need to be exact, so long as it is always
greater than or equal to the worst-case service time of the given request.

It is obviously better to be as close to exact as possible, but as long as our esti-
mation is never less than the actual value, we can assume that we are not caus-
ing deadlines to be missed. It is possible to produce scenarios in which it is not
possible to avoid missing a deadline when applying this energy-management
policy. As we will see, this sort of situation actually occurs only rarely in prac-
tice. A simple way to estimate the worst-case service time of a request, while
remaining reasonably accurate within the bounds of the system, is to simply as-
sume that the request will require seeking the read/write head entirely across
the disk. We also assume that once the head is in the correct position, we will
have to wait for one full revolution of the hard-disk. Assuming that the disk we
are working with performs consistently in terms of its read and write speeds,
which for the purposes of our simulation it does, we then have a request ser-
vice time estimate. This estimate is not only reasonably cheap to compute, but
it should also always exceed the actual service time of any real disk request
without being so far off from the actual value as to render such an estimation
pointless. It should also be noted that by itself, IBEC is an energy-management
policy, not a scheduling algorithm. It is meant to be implemented on top of, or in
conjunction with, a separate scheduling algorithm, which should be a real-time
scheduling algorithm, such as EDF or LLF. As requests arrive, they are first
scheduled according to the real-time scheduling algorithm being used and then
processed by the IBEC energy-management policy. A high-level algorithmic de-
scription of IBEC is given in Figure 3. (Note that this description assumes that
any arriving requests have already been properly scheduled by the associated
scheduling algorithm).

Step 7 (see Figure 4) verifies that deadlines can still be guaranteed as new re-
quests are added to the waiting queue. Step 7 is responsible for estimating slack
times based on known arrival times and I/O service times. The IBEC strategy
(see Figure 3) makes use of the estimated slack times to improve disk energy-
management. Generally speaking, as more slack times are approximated by
Step 7, the energy-efficiency potential of the IBEC algorithm rises.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/0 Burstiness . 20:9

if there are no requests active or pending then
the disk enters the inactive state;
else
if the disk is active then
dispatch a request in the queue with the earliest deadline;
else /* the disk is inactive */
while deadlines of all the waiting requests can be guaranteed do
Cache any requests that have arrived;
the disk enters the active state again to meet timing constraints;
0. dispatch any waiting requests;

S0P NG R LN —

Fig. 3. The IBEC energy-management strategy.

while count < requests.size
estimate=requests[count].estimate + requests[count+1].estimate
if estimate > request[count+1].arrive_time + request[count+1].deadline
if enough slack time available
use available slack time
update slack time
else not enough slack time available
dispatch requests
end if
10. end if
11. count++
12. end while

PRAINPR D=

e

Fig. 4. IBEC Step 7 details.

To support the presentation of Step 7, let us describe a way of calculat-
ing I/O slack times. Disk request r; is characterized by four parameters,
r; = (0;,a;,l;,d;), where o; indicates that the request is a read or write, a;
is the disk address, /; is the data size measured in kilobytes (KB), and d; is
the specified deadline. Let es; and s; denote the earliest start time and I/O
service time of request r;, we can calculate the slack time s/; of r;, as shown in
Equation (9):

sli=d; —(es; +5;)

=di—(/0j+ > Sk+8i>' ©)

rreR,dp<d;

The earliest start time es; in Equation (9) can be computed by p; +
> recR.dy<d; Skt i, where p; represents the remaining I/O service time a disk
request currently being processed, and), .p 4, -4, St is the I/O service time of
requests (e.g., r,) whose deadlines are earlier than or equal to that of ;. In
other words, the earliest start time es; of request r; is a sum of the remaining
service time of the request being processed and the aggregated service times of
the tasks with earlier deadlines.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:10 o A. Manzanares et al.

For a given disk request r;, we can derive its I/O service time s; using Equation
(9) as follows,

li
Si = Tyeer(ri) + Tror(ri) + s (10)
Buist

where Ti..;(r;) and T,,,(r;) are the seek time and rotational latency, Bli is the

data transfer time that largely depends on the data size /; of the requestlsand the
disk bandwidth Bg;s,. The disk bandwidth used in our simulations is 35MB/s
for a read operation and 25MB/s for a write operation.

It is assumed that disk requests are randomly distributed on the sectors of
given cylinders. Thus, rotational latency 7T} (r;) in Equation (10) can be derived
from Rpg (revolutions per second) using the following equation. Note that Rpg
is 120 for our experimental evaluation of IBEC.

Trot (ri) = (1/RPS)/3 (11)

The seek time Ty (r;) of request r; can be approximated as a function of the
number of cylinders (i.e., N¢) the disk has to travel. In our experiments, the
number of cylinders to be traveled is fixed at 6,400.

Tseer = 0.06 % \/Nc. (12)

Now, we are in a position to outline the following three properties of the IBEC
algorithm.

Property 1. If a newly arrived disk request r; has a feasible schedule under
IBEC, the deadline of r; must be guaranteed. Thus, the slack time of r; must
be larger than or equal to zero. The condition below must be met in accordance
with Equation (9):

pit+ Y. sits<d
rreR,dp<d;

Property 2. Let us consider a newly arrived disk request r; with deadline d;
and a set (i.e., R) of pending disk requests that have been previously scheduled.
The deadlines of all the disk requests in R must be guaranteed. Since the
requests whose deadlines are earlier than d; are not affected by the newly
arrived request r;, the requests whose deadlines are later than d; must be
processed before their specified deadlines. Thus, the IBEC algorithm needs to
meet the following condition

Vrr, € R,d;, > d; :es, +s, <dj.

Property 3. If the disk is in the sleep state, the start time of an accepted
disk request r; is delayed as late as possible under the condition that all the
accepted disk requests must be completed before their deadlines. The basic idea
in the implementation of Step 7 (see Figure 4) is to estimate the I/O service
time of two subsequent requests using Equation (10). If this estimate is greater
than the second requests deadline plus its arrival time (see also Property 1),
there exists a scheduling issue. Specifically, if there is enough slack time (see
Equation (9)) available, the slack time is used (see Property 3) and the available

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/O Burstiness J 20:11

slack time is adjusted accordingly. If enough slack time is not available for
any one of the requests, all the requests will be dispatched to minimize the
performance penalty. Step 7 has a time complexity of O(n?), where n is the
number of requests. This can be derived from Figure 4. The while loop runs
O(n) times, but the update slack time operation has a complexity of O(n). This
is due to the fact that updating the slack time updates the time when the first
request will be serviced, which affects all subsequent requests.

Please note that it is desirable to allow the disk to sit idle for some thresh-
old of time before sleeping it, as opposed to immediately sleeping the disk as
soon as there are no requests active or pending. This is due to the relatively
large amount of power consumed in transitioning from the sleep state back to
the active state, which creates a situation in which it could conceivably be
more efficient to allow the disk to sit idle for a brief period of time in hopes that
more requests will arrive. The exact threshold at which it is no longer beneficial
to allow the drive to sit idle is a function of the disk’s power consumption char-
acteristics as well as the relative distribution of requests in the request-stream.
This threshold can be computed if we know details about our request-stream
in advance, or if we have some way of making a best-guess based on an obser-
vation of the request-stream at runtime [Benini et al. 2000]. This, however, is
beyond the scope of both this research and the IBEC algorithm in its current
incarnation.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the IBEC algorithm using syn-
thetically generated traces as well as real-world application traces. To compare
the impact of our algorithm on energy savings and guarantee ratio, we compare
IBEC with three existing scheduling algorithms, Earliest Deadline First (EDF),
Delayed Power EDF (DP-EDF), and Power-Aware EDF (PA-EDF). We added ex-
isting DPM techniques to the EDF scheduling algorithms to come up with DP-
EDF and PA-EDF to compare against our IBEC strategy [Benini et al. 2000].
EDF is a well-known real-time scheduling scheme with no power-awareness at
all. The three baseline algorithms are briefly described in the following text.
IBEC and DP-EDF require an idle threshold to be defined, which controls the
amount of idle time to pass before sleeping a disk. In our experimental results,
this idle threshold is set to 100ms.

(1) EDF: The disk request with the earliest deadline is always executed first.

(2) DP-EDF: Switch a disk to the sleep state whenever it has been idle for a
certain amount of time and wake it up immediately whenever a request
arrives. All arrived requests will be processed according to EDF order.

(3) PA-EDF: Switch a disk to the sleep state whenever it is idle and wake it
up immediately whenever a request arrives. All arrived requests will be
processed in an EDF order.

The first goal of the performance evaluation is to examine the energy con-
sumption and guarantee ratio of IBEC as compared to the baseline algorithms
when the average deadline or requests is varied. Second, we will investigate

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:12 o A. Manzanares et al.

Table I. Simulation Parameters

Parameter Fixed Value Varied Value

Minimal 20ms 1, 10, 20, 50, 100, 250, 1,000, 2,000, 5,000, 10,000, 15,000ms
deadline

Maximal 100ms |10, 50, 100, 250, 1,000, 2,000, 5,000, 15,000, 20,000, 35,000ms
deadline

Request 0.5 0.05, 0.15, 0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95, 1.0
arrival rate

Request Normal |Normal, Clustered, Sparse

arrival pattern

Minimal 24KB 24, 128, 512, 1,024, 4,096, 16,384, 32,168, 128,672, 514,688,
request size 1,029,376, 2,058,752, 8,235,008, 16,470,016KB

Maximal 32,168KB [512, 1,024, 4,096, 16,384, 32,168, 128,672, 514,688, 10,29,376,
request size 2,058,752, 8,235,008, 16,470,016, 65,880,064KB

the impact the request distribution pattern has on power consumption and
guarantee ratio. Third, we evaluate how the power consumption and guaran-
tee ratio of IBEC are impacted when the request arrival rate is varied. Last
but not least, we validate the results from the synthetic real-time requests
by running three real world real-time applications with IBEC. All of the disk
parameters used in the simulations are based on Figure 2.

5.1 Simulation Set-up

Before presenting the empirical results in detail, we present the simulation
model as follows. Table I summarizes the key configuration parameters of the
simulated disk scheduling system used in our experiments. The fixed value
parameters remain constant when we are attempting to quantify the impact of
changing the varied value on the IBEC strategy. For example, in Figures 7 and
8, the fixed parameters are the minimal deadline of 20ms, maximal deadline
of 100ms, request arrival rate of 0.5, the minimal request size is 24KB and
the maximal request size is 32,168KB. The Varied Value is the request arrival
pattern and it is a Normal, Clustered, or a Sparse request distribution pattern.
The experiments in Figures 7 and 8, attempt to study the impact that the arrival
pattern has on the IBEC strategy.

5.2 Impact of Average Deadline

The goal of this experiment is twofold: (i) to compare the proposed IBEC al-
gorithm against the three alternatives and (ii) to understand the impact of
changing the average request deadline has on IBEC. The average deadline is
found by generating a deadline for each request between the min and max
deadline parameter and then taking the average of all the requests deadlines.
For example the min deadline and max deadline used for the first experiment
are 50ms and 100ms, respectively, and for the second experiment, 100ms and
250ms, with the last experiment using 15,000ms and 35,000ms.

Figure 5 shows the energy consumption of these four algorithms when the av-
erage request deadline varies from 75ms to 25,000ms. We observe from Figure 5
that each of the four algorithms consume the same amount of energy when the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with I/O Burstiness . 20:13

[@iBec B PA-EDF
ol _®mDP-EDF B EDF

Guarantee ratio (%)

625 1500 3500 10000 15000 25000
Average Deadline

Fig. 5. Energy factor for different average request deadlines.

HIBEC I PA-EDF
B DP-EDF B EDF

Energy Factor

1500 3500 10000 15000
Average Deadline

Fig. 6. Guarantee ratio for different average request deadlines.

average request deadline is less than 3,500ms. This is because the hard-disk
has to be kept active to service the arriving disk requests, which have very
tight deadlines. In other words, there is no opportunity for IBEC to conserve
power. Therefore, IBEC gracefully degrades to existing power-aware schedul-
ing algorithms, like DP-EDF and PA-EDF. When the average request deadline
is equal to or larger than 3,500ms, however, IBEC starts to conserve more en-
ergy than the three baseline algorithms. We attribute the EF improvement of
IBEC over the three baseline algorithms to the fact that IBEC judiciously em-
ploys loose deadlines to conserve energy. The improvement of IBEC over the
three existing schemes in terms of EF grows larger as the average deadline is
continually increased. Taking an average of the EF over the varying average
deadlines, IBEC can save 10.8% of the energy consumed as compared to the
three baseline algorithms.

Figure 6 plots the GR of the four algorithms when the deadline is increased
from 75 to 25,000ms. It reveals that IBEC performs exactly the same, with re-
spect to GR, as the baseline approaches when the deadline is less than 1,000ms.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:14 o A. Manzanares et al.

This is caused by a combination of a high workload and tight deadlines. This
forces IBEC to only concentrate on guaranteeing arrival requests timing con-
straints, which have a higher priority than the power conservation goal. Inter-
estingly, the GR of IBEC suddenly drops off when the deadline is 10,000ms. In
fact, this is an artifact of our specific implementation of the IBEC algorithm.
In order to keep simulation times manageable and to approximate a real sys-
tem, we limited the maximum number of requests that IBEC would ensure
their deadline constraints. This was also intended to model real-world comput-
ing systems, where no infinite amount of time is available to re-evaluate the
schedulability of a queue. In particular, when the length of the waiting queue
of requests is larger than 1,000, our implementation of the IBEC algorithm
will no longer guarantee the schedulability of requests after the 1,000th. The
10,000ms deadline allows the number of requests to grow larger than 1,000,
thus the schedulability of the requests are no longer guaranteed and the GR
drops. This number was chosen because of the O(n?) time complexity of the
IBEC mechanism that discovers if deadlines can still be met. With n represent-
ing the size of the disk requests in the waiting queue, large waiting queues can
negatively impact performance. The limit of 1,000 requests keeps IBEC running
in a reasonable amount of time, while still maintaining energy savings.

5.3 Impact of Request Arrival Pattern

This section is focused on the performance impact of the request arrival pattern.
Specifically, we evaluate the performance of the four algorithms where the disk
request arrival pattern follows a Normal request arrival pattern, a Sparse re-
quest arrival pattern, and a Clustered request arrival pattern. Request arrival
pattern is defined as the method for generating time stamps for the requests.
For the normal request arrival pattern, a request is generated based on the
arrival rate and the default time step, which is 1ms for our experiments. The
generator advances the time step during every iteration of its execution and
writes a request only if the arrival rate is larger than a uniform random num-
ber generated at each iteration. The sparse request arrival pattern follows a
similar pattern, except it adds a random uniformly generated extra time, from
zero to the sparse idle threshold, to the time step when a request is to be gener-
ated. The clustered request arrival pattern is also similar to the normal request
arrival pattern, except it writes a cluster of requests when required instead of
one request. The cluster size falls between a maximum and minimum value
and these values are depicted in Figures 7 and 8.

The normal request arrival pattern is our standard pattern, which models
applications that write or read a request based on a uniform random number
at fixed intervals. The other two request arrival patterns follow this request
arrival pattern, except they either vary the time step or vary the number of
requests written at a given time step. The sparse request arrival pattern adds
a uniform random time to the time step, so the intervals are no longer fixed.
This makes the workload lighter as compared to the normal distribution. The
clustered request arrival pattern represents bursty traffic, since it generates
a cluster of requests at the fixed intervals. The letters on the x-axis denote

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with I/O Burstiness . 20:15

EIBEC E PA-EDF
B DP-EDF B EDF

Guarantee ratio (%)

I
$,500 S,1500 S,5000 C,25-50 C,100-500 C,500-
1000

Load pattern

Fig. 7. Energy factor for different workload distribution.

1.2 EIBEC B PA-EDF

14 B DP-EDF B EDF
1

0.9

08

07

0.6

05

0.4

0.3

0.2

0.1
0

Energy Factor

N,0.5 8,500 S,1500 $,5000 C,25-50 C,100-500 C, 500-
1000

Load Pattern

Fig. 8. Guarantee ratio for different workload distributions.

the names of the request arrival pattern being used. For example, “N” means
normal, “S” means sparse, and “C” means clustered. The numbers following the
letters denote the parameters that were specified to the corresponding request
arrival patterns. For instance, “N, 0.5” denotes a normal request arrival pattern
with an arrival rate of 0.5, “S, 500” indicates sparse request arrival pattern
with a sparse idle threshold of 500ms, and “C, 25-50” indicates a clustered
request arrival pattern mode with between 25 and 50 requests occurring per
cluster.

From Figure 7, we can make three important observations. First, all algo-
rithms perform identically in power consumption under the Normal distribu-
tion. Second, the three power-aware algorithms noticeably outperform the EDF
scheme, which has no power-awareness at all, when the Sparse distributions
were applied. This is because the Sparse distribution produces a relatively
large time interval between two continuous disk requests, which in turn gives

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:16 o A. Manzanares et al.

EIBEC B PA-EDF
B EDF

Energy Factor

=

1 1 1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Arrival Rate

Fig. 9. Energy factor for different arrival rates.

the three power-aware algorithms many chances to switch the hard-disk to
the sleep mode to save energy. Furthermore, IBEC slightly outperforms DP-
EDF and PA-EDF, two naive power-aware algorithms. The rationale behind
this phenomenon is that IBEC can make the most use of the slack time of each
arriving request. To put it in another way, IBEC only wakes up the disk at the
last second from which all arrived requests’ deadlines can still be met, while
DP-EDF only lets the disk sleep for a fixed period of time no matter whether
a request is waiting for service or not. Third, for clustered workloads, IBEC
and the two naive power-aware techniques perform comparably, and they both
significantly perform better than EDF. This is due to the fact that IBEC, DP-
EDF, and PA-EDF can put the disk to the sleep status completely between
clusters of requests. Thus, the three power-aware algorithms can substantially
save power compared with EDF. The reason why IBEC ties with DP-EDF and
PA-EDF is that the performance improvement of IBEC in terms of power con-
sumption depends on slack times of arriving requests rather than the overall
arrival patterns.

The results reported in Figure 8 reveal that all of the four algorithms deliver
a 100% guarantee ratio under the Sparse distribution. The reason for this is
that the average request deadline is generally much shorter than the sparse idle
threshold, which means that even though IBEC aggressively slows down the
processing pace of disk requests, their deadlines can still be satisfied. When we
applied a Cluster distribution pattern, the performance of the four algorithms
goes down when the parameters of the Cluster distribution increase. This is be-
cause a large number of requests arrived during a cluster of incoming requests.
Consequently, all the algorithms can only guarantee the deadlines of a small
part of them.

5.4 Impact of the Request Arrival Rate

To examine the relationship of GR and EF of the four algorithms to the request
arrival rate we varied the arrival rate from 0.05 to 1 using a Normal distribu-
tion. The first observation drawn from Figure 9 is that all of the four algorithms
have almost the same low performance in energy factor when arrival rate is
larger than 0.25. This scenario represents heavier workloads, which keep the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/O Burstiness J 20:17

HIBEC
B DP-EDF

B PA-EDF
B EDF

Guarantee ratio (%)

1
|

1
W

1
.25

1
1
1
.
1) 1: 1 i
5 0.55 0.65 0.75 0.85 0.95 1

= = -

0.4
Arrival Rate

Fig. 10. Guarantee ratio for different arrival rates.

Table II. Impact on System Energy

Disk Power IBEC Energy System Energy
Consumption % Savings % Savings %
10% 10%, 35%, 60% 1%, 4%, 6%
15% 10%, 35%, 60% 2%, 5%, 9%
27% 10%, 35%, 60% 3%, 10%, 16%

disk busy all the time and make it nearly impossible to conserve power. There
is an interesting “anomaly” that occurs in the first two experimental cases. The
only non—power-aware algorithm, EDF, consumes the least amount of power. In-
deed, this snapshot demonstrates how high the overhead of transitioning from
the sleep state to the active state can be. The work-stream is so heavy that it
just does not allow the disk to be left in the sleep state long enough to offset
the overhead of transitioning back to the active state. It is also worth noting
that at these two arrival rates, IBEC outperforms the other two naive power-
ware algorithms in terms of EF by 20%. In terms of GR, all of the four algo-
rithms performed identically as depicted by Figure 10. More importantly, IBEC
performs identically to other scheduling algorithms, implying that IBEC can
maintain a comparable performance in GR while noticeably improving power
consumption.

Table Il illustrates the energy impact that IBEC may have on the overall com-
puting system using simulated energy savings and the maximum overall disk
energy consumption from [Zedlewski et al. 2003]. The disk power consumption
column represents the total percentage of system energy that the disk system
consumes. This allows us to estimate the total system energy savings IBEC
may have on the entire computing system.

5.5 Real-World Applications

To validate the results from the synthetic simulations, we applied our IBEC al-
gorithm to three real-world applications. Table III briefly introduces the three
applications. These real-world applications are I/O-intensive parallel applica-
tions that do not have explicit real-time deadlines. We modified the traces to
include real-time deadlines. There are some very positive observations that can

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:18 o A. Manzanares et al.

Table III. Real-World Applications

Application Definition

Data-mining Extracts association rules from retail data
Factorization Compute the dense LU decomposition of an out-of-core
Search activity | Partial match and approximate searches

12. o IBEC 0 PA-EDF m DP-EDF O EDF

Power Factor

Data-mining Factorization Searching active
application application processes

Fig. 11. Power consumption for data mining, factorization, and searching active processes
applications.

OIBEC

110
100
90
80
70
60
50
40
30
20
10
0

B DP-EDF BHEDF

Guarantee Ratio (%)

Data-mining application Factorization application Searching active
processes

Fig. 12. Guarantee ratio for data mining, factorization, and searching active processes
applications.

be drawn from Figures 11 and 12. For all three applications, IBEC is able to offer
GRs that are comparable with those provided by other algorithms, while consis-
tently delivering reduced power consumption over the baseline algorithms. In
some cases, the improvement in terms of EF is marginal, but in most situations
it is significant. Table IV summarizes the power consumption improvements of
IBEC over the three baseline algorithms. The most desirable feature of IBEC is
that the power savings are consistent across every test conducted. We can there-
fore have confidence that IBEC is a valid mechanism of improving the power
consumption of a system without compromising scheduling performance.

These results are promising because they show that IBEC can be reliably
used to consistently conserve at least a modicum of energy. The IBEC algorithm
is also a very effective way to conserve energy if it is deployed in a system where
a schedulable stream of disk requests can always be generated.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with I/O Burstiness . 20:19

Table IV. Summary of Power Consumption

Improvements
Algorithms | Dmine LU Pgrep
PA-EDF 37.8% | 11.1% | 54%
DP-EDF 9.6% | 42.8% | 42.5%
EDF 13.8% | 60% 39.5%

6. SUMMARY

In this article, we developed an energy-management strategy (IBEC) leveraging
I/0 burstiness of real-time embedded storage system applications. To compare
the performance of the IBEC strategy against three existing approaches (PA-
EDF, DP-EDF, and EDF), we conducted extensive simulation experiments using
synthetic workload conditions as well as real-world data-intensive applications.
The results show that compared with the three alternative strategies, IBEC
substantially reduces energy consumption by up to 60% while maintaining a
comparable guarantee ratio.

In our future work, we will consider supporting multispeed disks where en-
ergy can be conserved by dynamically adjusting disk speed toward energy sav-
ing. We will investigate a way of applying IBEC into parallel I/O systems with
multispeed disks. This extension will further improve energy efficiency of par-
allel disk systems.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their insightful suggestions and
comments for improving the quality of this article.

REFERENCES

Avitzour,D. 2004. Novel scene calibration procedure for video surveillance systems. IEEE Trans.
Aerospace and Electr. Syst. 40, 3, 1105-1110.

Arcaampr, M., XiE, T., AND Qv, X. 2005. PARM: A power-aware message scheduling algorithm for
real-time wireless networks. In Proceedings of the Workshop of Wireless Multimedia Networking
and Performance Modeling. ACM, New York.

Bavarourts, E., NERJES, G., MUTH, P., PATERAKIS, M., WEIKUM, G., AND TRAIANTAFILLOU, P. 2003. Clus-
tered scheduling algorithms for mixed-media disk workloads in a multimedia server. J. Cluster
Comput. 6, 1, 75-86.

Benig, L., BocLioro, A., aND MicHELL, G. D. 2000. A survey of design techniques for system-level
dynamic power management. IEEE Trans.VLSI Syst. 8, 3, 299-316.

Bisson, T. anp BrannT S. 2004. Adaptive disk spin-down algorithms in practice. In Proceedings
of the 3rd USENIX Conference on File and Storage Technologies. ACM, New York.

BorpawEKAR, R., THAKUR, R., AND CHOUDHARY, A. 1994. Efficient compilation of out-of-core data
parallel programs. Tech. Rep. SCCS-662, NPAC.

Bruno, J., GaBBER, E., OzpEN, B., AND S1LBERSCHATZ, A. 1999. Disk scheduling algorithms with
quality of service guarantees. In Proceedings of the IEEE Conference on Multimedia Computing
Systems. IEEE, Los Alamitos, CA.

CARRERA, E. V., PINHEIRO, E., AND BianchHini, R. 2003. Conserving disk energy in network servers.
In Proceedings of the International Conference on Supercomputing. ACM, New York.

Cuang, C., Moon, B., AcHARYA, A., SHOCK, C., SussMAN, A., AND Sarrz. J. 1997. Titan: A high-
performance remote-sensing database. In Proceedings of the 13th International Conference on
Data Engineering. IEEE, Los Alamitos, CA.

CHENG, H. AND GopDARD, S. 2006. EEDS_NR: An online energy-efficient I/O device scheduling
algorithm for hard real-time systems with non-preemptible resources. In Proceedings of the 18th
Euromicro Conference on Real-Time Systems. IEEE, Los Alamitos, CA.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

20:20 o A. Manzanares et al.

CHo, Y., WinsLETT, M., SuBramaniam, M., CHEN, Y., Kvo, S., anD Seamons, K. E. 1997. Exploiting
local data in parallel array I/O on a practical network of workstations. In Proceedings of the 5th
Workshop on I/0O in Parallel and Distributed Systems. ACM, New York.

CorrMaN, J. R. anpD Horri, M. Queueing models of secondary storage devices. Stochastic
Analysis of Computer and Communication Systems, Ed. Hideaki Takagi, North-Holland,
1990.

CorareLLI, D. aND GrunwALD, D. 2002. Massive arrays of idle disks for storage archives. In Pro-
ceedings of the International Conference on Super-Computing. ACM, New York.

DenniNg, P. J. 1967. Effects of scheduling on file memory operations. In Proceedings of AFIPS
Conference.

Douaus, F., Krisanan, P., anp Marsa, B. 1994. Thwarting the power-hunger disk. In Proceedings
of the Winter USENIX Conference. USENIX, Berkeley, CA.

FornEy, B., ArpAcI-DuUsseAU, A. C., aND ArPacT-Dusseay, R. H. 2002. Storage-Aware caching: Revis-
iting caching for heterogeneous storage systems. In Proceedings of the International Symposium
on File and Storage Technology. USENIX, Berkeley, CA.

GREENAWALT, P. M. 1994. Modelling power management for hard disks. In Proceedings of the
International Workshop Modelling, Analysis, and Simulation on Computer and Telecom. Systems.
IEEE, Los Alamitos, CA.

GURUMURTHI, S., SIVASUBRAMANIAM, A., KANDEMIR, M., AND FANkE, H. 2003. DRPM: Dynamic speed
control for power management in server class disks. In Proceedings of the International Sympo-
sium on Computer Architecture. ACM, New York.

HevrmBorp, D. P., Long, D. D. E., Sconvers, T. L., AND SHERROD, B. 2000. Adaptive disk spin-down
for mobile computers. Mob. Networks Appl. 5, 4, 285-297.

Hong, I. AND PoTRONJAK, M. 1996. Power optimization in disk-based real-time application specific
system. In Proceedings of the International Conference Computer-Aided Design. ACM, New York,
San Jose, CA.

Huger, J., Evrorp, C. L., Reep, D. A, Cuien, A. A., anp Brume, D. S. 1995. PPFS: a high per-
formance portable parallel file system. In Proceedings of the 9th ACM International Conference
Super-Computing. ACM, New York.

JacoBson, D. AND WILKES, J. 1991. Disk scheduling algorithms based on rotational position. Tech.
rep. HPL-CSP-91-7.

Ky, K., Hwang, J., Lim, S., CHo, J., AND PARk, K. 2003. A real-time disk scheduler for multimedia
integrated server considering the disk internal scheduler. In Proceedings of the International
Parallel and Distributed Symposium. IEEE, Los Alamitos, CA.

L1, X., L1, Z., Znovu, Y., AND ADVE, S. 2005. Performance directed energy management for main
memory and disks. ACM Trans. Storage 346-380.

Licon, W. B. anD Ross, R. B. 1996. Implementation and performance of a parallel file system for
high-performance distributed applications. In Proceedings of the IEEE International Symposium
on High Performance Distributed Computing. IEEE, Los Alamitos, CA.

Ly, C., QiN, X., KULKARNI, S., WANG, C. J., L1, S., MANZANARES, A., AND BASKIVAR, S. 2008. Distributed
energy-efficient scheduling for data-intensive applications with deadline constraints on data
grids. In Proceedings 27th IEEE International Performance Computing and Communications
Conference. IEEE, Los Alamitos, CA.

Ly, Y., Cuung, E. Y., Smunié, T, Benint, L., anp DE MicHELL, G. 2000. Quantitative comparison
of power management algorithms. In Proceedings of the Design Automation and Test in Europe.
IEEE, Los Alamitos, CA.

Ma, X., WinsLETT, M., LEE, J., AND YU, S. 2002. Faster collective output through active buffer-
ing. In Proceedings of the International Symposium on Parallel and Distributed Processing, Ft.
Lauderdale, FL.

ManzaNares, A., BeLLam, K., anp Qin, X. 2008. A perfecting scheme for energy conservation in
parallel disk systems. In Proceedings of the NSF Next Generation Software Program Workshop.
IEEE, Los Alamitos, CA.

Maximum INsTiTUTION. 2002. Power, Heat, and Sledgehammer. Maximum Institution Inc.

Num, M., Qm, X., X1, T., aND ArgaaMDpr, M. 2006. Awards: An adaptive write scheme for secure
local disk systems. In Proceedings of the 25th IEEE International Performance Computing and
Communication Conference. IEEE, Los Alamitos, CA.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

Conserving Energy in Real-Time Storage Systems with 1/O Burstiness J 20:21

Num, M., MANZANARES, A., AND QIN, X. 2008. An adaptive energy-conserving strategy for par-
allel disk systems. In Proceedings of the 12th IEEE International Symposium on Distributed
Simulation and Real-Time Applications. IEEE, Los Alamitos, CA.

PresraN, K. W., BArry, A. P.,, Brassow, J. E., EricksoN, G. M., NyGaarp, E., Sasor, C. J., Sorris, S.
R., D., Teicranp, D. C., anp O’Kegrg, M. T. 1999. 64-bit, shared disk file system for Linux. In
Proceedings of the NASA Goddard Conference on Mass Storage System. IEEE, Los Alamitos, CA.

Qm, X., Jiang, H., Zay, Y., anp Swanson. D. R. 2006. Improving the performance of I/O-intensive
applications on clusters of workstations. J. Cluster Comput. 9, 3, 297-311.

RE1sT, R. AND DaANIEL, S. 1987. A continuum of disk scheduling algorithms. ACM Trans. Comput.
Syst. T7-92.

ReuTHER, L. AND Porrack, M. 2003. Rotational-position-aware real-time disk scheduling using
a dynamic active subset. In Proceedings of the IEEE Real-Time System Symposium. IEEE, Los
Alamitos, CA.

Ruan, X.-J., MANZANARES, A., BELLAM, K., AND QIN, X. 2009. DARAW: A new write buffer to improve
parallel I/O energy-efficiency. In Proceedings of the 24th Annual ACM Symposium on Applied
Computing. ACM, New York.

Ruan, X.-J., QIN, X., N, M., Zong, Z.-L., anD BeLram, K. 2007. An energy-efficient scheduling
algorithm using dynamic voltage scaling for parallel applications on clusters. In Proceedings of
the 16th IEEE International Conference on Computer Communications and Networks. IEEE, Los
Alamitos, CA.

SaLem, K. AND Garcia-MoriNa, H. 1986. Disk striping. In Proceedings of the International Con-
ference Data Engineering. IEEE, Los Alamitos, CA.

SCHEUERMANN, P., WEIKUM, AND G., ZaBBACK, P. 1998. Data partitioning and load balancing in
parallel disk systems. VLDB J. 48—-66.

SeLrzeRr, M., CHEN, P., aND J. OusterHOUT, J. 1990. Disk scheduling revisited. In Proceedings of
the USENIX Technical Conference. USENIX, Berkeley, CA.

SHENoOY, P. anD VIN, H. 1998. Cello: A disk scheduling framework for next generation operating
systems. In Proceedings of the ACM SigMetrics. ACM, New York.

SumNER, T. AND MarriNo, M. 2004. Digital libraries and educational practice: A case for new
models. In Proceedings of the ACM/IEEE Conference Digital Libraries. ACM, New York, 170—
178.

Tanaka, T. 1993. Configurations of the solar wind flow and magnetic field around the planets
with no magnetic field: Calculation by a new MHD. oJ. of Geophys. Res. 17251-17262.

WEISSEL, A., BEUTEL, B., AND BELLOSA, F. 2002. Cooperative I/0: A novel I/O semantics for energy-
aware applications. In Proceedings of the Symposium on Operating Systems Design and Imple-
mentation. USENIX, Berkeley, CA.

W1AYARATNE, R. AND REDDY, A. L. N. 1999. Integrated QoS management for disk I/O. In Proceed-
ings of the IEEE Conference on Multimedia Computing Systems. IEEE, Los Alamitos, CA.

Xie, T. aND QIN, X. 2008. An energy-delay tunable task allocation strategy for collaborative ap-
plications in networked embedded systems. IEEE Trans. Comput. 57, 3, 329-343.

Yy, P. S, CuEn, M. S., aND KaNDLUR, D. D. 1993. Grouped sweeping scheduling for DASD-based
multimedia storage management. ACM Multimedia Syst. 1, 3, 99-109.

ZEDLEWSKI, J., SOBTI, S., GARG, N., ZHENG, F., KRiISHNAMURTHY, A., WANG, R. 2003. Modelling hard-
disk power consumption. In Proceedings of the USENIX Conference File and Storage Technologies.
USENIX, Berkeley, CA.

ZHENG, F., GaRrG, N., SoBTI, S., ZHANG, C., JosEPH, R., KRISHNAMURTHY, A., AND WaANG, R. 2003. Con-
sidering the energy consumption of mobile storage alternatives. In Proceedings of the Interna-
tional Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems. IEEE, Los Alamitos, CA.

ZoNG, Z.-L., Numm, M., aND QIN, X. 2008. Energy-efficient scheduling for parallel applications on
mobile clusters. Cluster Comput. J. Networks, Softw. Tools Appl. 11, 1,91-113.

Zong, Z.-L., Qiv, X., Numv, M., Ruan, X.-J., BeELLam, K., anD Argaavpr, M. 2007. Energy-efficient
scheduling for parallel applications running on heterogeneous clusters. In Proceedings of the 36th
International Conference Parallel Processing (ICPP). IEEE, Los Alamitos, CA.

Received February 2006; revised September 2008, February 2009; accepted March 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 20, Publication date: February 2010.

