
PUSH: A Pipelined Reconstruction I/O
for Erasure-Coded Storage Clusters

Jianzhong Huang, Xianhai Liang, Xiao Qin, Senior Member, IEEE,

Qiang Cao,Member, IEEE, and Changsheng Xie,Member, IEEE

Abstract—A key design goal of erasure-coded storage clusters is to minimize reconstruction time, which in turn leads to high reliability

by reducing vulnerability window size. PULL-Rep and PULL-Sur are two existing reconstruction schemes based on PULL-type

transmission, where a rebuilding node initiates reconstruction by sending a set of read requests to surviving nodes to retrieve surviving

blocks. To eliminate the transmission bottleneck of replacement nodes in PULL-Rep and mitigate the extra overhead caused by non-

contiguous disk access in PULL-Sur, we incorporate PUSH-type transmissions to node reconstruction, where the reconstruction

procedure is divided into multiple tasks accomplished by surviving nodes in a pipelining manner. We also propose two PUSH-based

reconstruction schemes (i.e., PUSH-Rep and PUSH-Sur), which can not only exploit the I/O parallelism of PULL-Sur, but also maintain

sequential I/O accesses inherited from PULL-Rep. We build four reconstruction-time models to study the reconstruction process and

estimate the reconstruction time of the four schemes in large-scale storage clusters. We implement a proof-of-concept prototype where

the four reconstruction schemes are deployed and quantitatively evaluated. Experimental results show that the PUSH-based

reconstruction schemes outperform the PULL-based counterparts. In a real-world (9,6)RS-coded storage cluster, PUSH-Rep speeds

up the reconstruction time by a factor of 5.76 compared with PULL-Rep; PUSH-Sur accelerates the reconstruction by a factor of 1.85

relative to PULL-Sur.

Index Terms—Erasure-coded storage cluster, reconstruction, PULL-type transmission, PUSH-type transmission, TCP Incast

Ç

1 INTRODUCTION

1.1 Motivations

TRADITIONAL reconstruction techniques in storage clus-
ters advocate the pull model, where a master node

initiates reconstruction by sending requests to worker
nodes dedicated to the reconstruction process. The pas-
sive pull model inevitably encounters a transmission
bottleneck problem that lies in rebuilding nodes. In this
paper, we propose two PUSH-based reconstruction
schemes—PUSH-Rep and PUSH-Sur—to improve recon-
struction performance in a distributed storage cluster. At
the heart of this study is the proactive PUSH technique
that evenly distributes network and I/O loads among sur-
viving nodes to shorten reconstruction times.

The following three factors motivate us to propose the
PUSH-based reconstruction technique for erasure-coded
clustered storage.

� the high cost-effectiveness of erasure-coded storage,

� the severe impact of recovery time on reliability, and

� the deficiency of PULL-based reconstruction I/Os.
Motivation 1. Erasure-coded storage clusters have

increasingly become a cost-effective and fault-tolerant solu-
tion for archive storage [1], [2], data centers [3], [4], cloud
storage [5], [6], and the like. Especially, Reed-Solomon (RS)
codes [7], [8] are widely used in storage clusters to provide
high data reliability. For example, Windows Azure Storage
(WAS) adopts a variant of RS codes to implement a
four-fault-tolerant cluster system [9]. A detailed review
on the RS-coded distributed storage is provided in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2311808.

Motivation 2. Ideally, erasure-coded storage clusters
should protect against data loss caused by node failures,
because high reliability is an indispensable requirement for
building large-scale storage systems. The mean-time-to-
data-loss or MTTDL of a r-fault-tolerant storage system is
inversely proportional to the rth power of recovery time of
a storage node [10]. Therefore, it is extremely important to
speed up the reconstruction process, which in turn can
improve system reliability by shrinking vulnerability win-
dow size [11], [12].

Motivation 3. The existing reconstruction schemes adopt a
PULL-transmission mode, where a rebuilding node initiates
the reconstruction by sending read requests to fetch/pull
surviving blocks. Such a PULL mode not only raises the
TCP Incast problem due to its synchronized many-to-one
traffic pattern [13], but also yields poor reconstruction per-
formance. When it comes to a reconstruction which relies
on replacement nodes [2], the network traffic of replacement
nodes contributes to an excessively long reconstruction

� J. Huang is with the Department of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: hjzh@hust.edu.cn.

� X. Liang, Q. Cao, and C. Xie are with Wuhan National Lab. for Optoelec-
tronics, Huazhong University of Science and Technology, Wuhan, China
430074. E-mail: {caoqiang, cs xie}@hust.edu.cn, hustlxh@gmail.com.

� X. Qin is with the Department of Computer Science and Software Engi-
neering, Shelby Center for Engineering Technology, Samuel Ginn College
of Engineering, Auburn University, AL 36849-5347.
E-mail: xqin@auburn.edu.

Manuscript received 14 May 2013; revised 27 Feb. 2014; accepted 4 Mar.
2014. Date of publication 12 Mar. 2014; date of current version 9 Jan. 2015.
Recommended for acceptance by A.R. Butt.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2311808

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

time. The problem with the reconstruction among surviving
nodes [14] is that each surviving node bears extra seek time
owing to the non-contiguous disk access. This problem
makes the low write bandwidth become a major reconstruc-
tion performance bottleneck.

In this paper, we introduce a PUSH-type transmission to
speed up node-reconstruction performance. Our PUSH ena-
bles surviving nodes to accomplish reconstruction tasks in a
pipelining manner—Each surviving node combines its local
block with an intermediate block from another surviving
node to partially generate an intermediate block forwarded
to a subsequent node. Thus, PUSH can speed up the recon-
struction process by maximizing the utilization of both net-
work and I/O bandwidth of all the surviving nodes.

1.2 Contributions

The contributions of this study are summarized as follows:

� We introduce a PUSH-type transmission (PUSH for
short) in the field of node reconstruction. We pro-
pose two PUSH-based reconstruction schemes,
which exploit high I/O parallelism and sequential
I/ O access pattern. PUSH supports the one-to-one
traffic pattern, which naturally solve the Incast
problem.

� We develop four reconstruction-time models for the
proposed schemes. The models, which are validated
using a real storage system, are used to pinpoint per-
formance bottlenecks in the reconstruction process.

� We implement PUSH in a real-world erasure-coded
storage cluster, on which reconstruction processes
are systematically evaluated. Experimental results
show that the PUSH-based reconstruction schemes
outperform the PULL-based counterparts. Under the
(9, 6)RS-coded storage cluster, PUSH-Rep speeds up
the reconstruction time by a factor of 5.76 compared
with PULL-Rep; PUSH-Sur accelerates the recon-
struction by a factor of 1.85 relative to PULL-Sur.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 sur-
veys the related work of data reconstruction techniques.
The design of PUSH is detailed in Section 3. Section 4
presents the four reconstruction-time models. Section 5
describes the experimental settings and results. Section 6
discusses important applicability issues. Finally, a conclu-
sion is made in Section 7.

2 RELATED WORK

A vast majority of existing reconstruction techniques are
optimized for disk arrays or Redundant Array of Inexpen-
sive Disks (RAID). These reconstruction approaches can be
classified into four categories:

i) Maximizing recovery parallelism. SOR creates a
number of reconstruction processes associated with
strips [15]; DOR makes every surviving disks busy
with reconstruction reads at all time [16];

ii) Reducing interference between reconstruction and
user I/Os. WorkOut speeds up the recovery process

by outsourcing all write requests and popular read
requests to a surrogate RAID set [17];

iii) Optimizing decoding operations. Cassidy and
Hafner proposed a code-specific hybrid recon-
struction algorithm to reduce XOR operations and
improve decoding performance during recovery
[18];

iv) Minimizing the number of reads on surviving
disks. RDOR recovers a failed disk in a RDP-coded
RAID with the decreased number of disk reads
[19]; MICRO utilizes storage cache and RAID con-
troller cache to diminish the number of reconstruc-
tion I/Os [20].

Increasing attention has been paid to repairing solutions
in the arena of erasure-coded storage clusters. Representa-
tive reconstruction approaches tailored for clusters can be
divided into three groups:

i) Improving reconstruction I/O parallelism. HydraS-
tor makes all remaining nodes contribute to data
rebuilding (i.e., bulk rebuilding), which maximizes I/
O utilization [14]. The Per-file RAID offered by Pana-
sas allows a metadata manager to rebuild files in par-
allel [21].

ii) Reducing parity-group size. WAS divides data frag-
ments into multiple equal-sized groups and com-
putes one local parity for each group, thereby
reducing the number of surviving nodes needed to
reconstruct a failed data fragment [9];

iii) Minimizing the number of reconstruction I/Os. A
handful of Regenerating Codes designed to optimize
reconstruction I/O bandwidth include MSR/MBR
[22], MCR [23], and MBCR [24], to name just a few.

In summary, Regenerating Codes achieve repair optimi-
zation by designing a new linear coding scheme. Both
HydraStor and WAS adopt the pull-type transmission
pattern—a certain node (e.g., a replacement node, or a
surviving node acting as a rebuilding node) simulta-
neously issues multiple reconstruction read requests to
surviving nodes. In particular, k surviving blocks are
fetched to a different Extent Node (EN) performing as a
replacement node in WAS; k-1 surviving blocks are deliv-
ered to one surviving node in HydraStor. Different from
the existing PULL-based reconstruction schemes, our
PUSH technique aims to fully exploit both network and
I/O bandwidth to significantly speed up the recovery of
failed storage nodes.

3 PUSH RECONSTRUCTIONS

3.1 Preliminaries

In contrast to replication, erasure codes can provide equiv-
alent fault tolerance with significantly low storage over-
head, hence saving storage bandwidth [22]. We show how
to build a (kþr,k) RS-coded storage cluster. Since RS codes
are systematic in nature, source data {D1;D2; . . . ;Dk} are
embedded in encoded data {D1;D2; . . . ;Dk;P1;P2; . . . ;Pr}.
Fig. 1 illustrates that parity blocks {P1;P2; . . . ;Pr} are gen-
erated by multiplying k data blocks with the k � r redun-
dancy matrix. For simplicity, both data and parity blocks
are exclusively stored on the k þ r storage nodes, which

HUANG ET AL.: PUSH: A PIPELINED RECONSTRUCTION I/O FOR ERASURE-CODED STORAGE CLUSTERS 517

are designated data nodes fDN1;DN2; . . . ;DNkg and parity
nodes PN1;PN2; . . . ;PNrf g.

Let us take a single-node failure in a (6, 4)RS-coded stor-
age cluster as an example. Without losing generality (i.e.,
thanks to the symmetry of RS coding), we assume data
node DN1 is faulty. According to the encoding algorithm of
RS codes, the parity blocks Prow;1 and Prow;2 at the rowth row
can be created from data blocks as

Prow;1 ¼ a1;1Drow;1 þ a1;2Drow;2 þ a1;3Drow;3 þ a1;4Drow;4 (1)

and,

Prow;2 ¼ a2;1Drow;1 þ a2;2Drow;2 þ a2;3Drow;3 þ a2;4Drow;4: (2)

The coefficient a1;i (i 2 [1,2,. . .,k]) is 1 in the Vander-
monde Reed-Solomon codes [8], [25]. Thus, we can derive
block Prow;1 from blocks Drow;1; . . . ;Drow;4 as:

Prow;1 ¼ Drow;1 þDrow;2 þDrow;3 þDrow;4: (3)

The MDS property of RS codes suggests that a failed
block can be recovered from any k surviving blocks. Thus,
we calculate blocks {Drow;1;Drowþ1;1; . . . ;Drowþ4;1} using
Eqs. {4, 5, . . ., 8}, respectively. For example, Eq. (4) indi-
cates that a replacement node can fetch four surviving
blocks {Prow;1;Drow;2;Drow;3;Drow;4} to regenerate the failed
block Drow;1. Note that Eq. (4) can be decomposed as fol-
lows:

I1 ¼ I0 + ð1=a1;1ÞProw;1; where I0 ¼ 0; (4.1)

I2 ¼ I1 + ð�a1;2=a1;1ÞDrow;2; (4.2)

I3 ¼ I2 + ð�a1;3=a1;1ÞDrow;3; (4.3)

Drow;1 ¼ I3 + ð�a1;4=a1;1ÞDrow;4: (4.4)

Since storage nodes offer sufficient computing capability
in addition to I/O services [2], [26], [27], nodes {PN1;
DN2;DN3} can compute the linear combinations using Eqs.
{4.1, 4.2, 4.3} and then forwards intermediate blocks
{I1; I2; I3} to nodes {DN2;DN3;DN4}, respectively. Thus, each
surviving node accomplishes a portion of the entire recon-
struction process, making it possible to evenly distribute
network and computing load caused by node reconstruc-
tion among the surviving nodes.

3.2 Two PULL-Based Reconstruction Approaches

Let us consider two existing reconstruction techniques that
rely on the pull mode, where a rebuilding node first issues
read requests to surviving nodes and then reconstructs a
failed block using the requested blocks.

The PULL-based reconstruction can be envisioned as a
master-worker computing model [21], in which a master
triggers a reconstruction procedure by sending a set of
read requests, then waits for the requests to be com-
pleted by workers. There are two classical reconstruction
approaches in real-world erasure-coded storage clusters:
i) a designated master (e.g., a replacement node) fetches
k surviving blocks and reconstructs a failed block [2], [9];
and ii) each surviving node plays the role of a master (i.
e., acting as a rebuilding node) and all surviving nodes
perform as workers, where write I/Os of rebuilt blocks
are spread out over all the surviving nodes [14], [21].
From the angle of message communication, this ‘Master-
Worker’ pattern belongs to the category of PULL-type
transmission. Throughout this paper, we refer to the
reconstruction scheme using replacement nodes as PULL-
Rep; we term the solution of distributing reconstruction
load among surviving nodes as PULL-Sur.

In the case of PULL-Rep, all reconstruction reads are
sequential requests that minimize disk seeking times;
rebuilt blocks are sequentially written to disks of replace-
ment nodes. Fig. 2a shows that k surviving blocks should
be delivered to a replacement node (e.g., RN1), which
becomes a network bottleneck that slows down the
entire reconstruction process. Furthermore, such a many-
to-one (‘M:1’) communication pattern may cause the
severe Incast problem (see Section 3.4 and Appendix B,
available online, for details).

α1,2 α1,k

×
D2

Dk

D1

=
P1
P2

Pr

Parity BlockData BlockTransposed Redundancy Matrix

α1,1
α2,2 α2,kα2,1

αr,2 αr,kαr,1

... ...

...

...

...

...

......

Fig. 1. Generating parity blocks in (kþr,k) Reed-Solomon codes.

DN2 DN3

Prow,1Drow,3 Prow,2 Prow,rDrow,k

Prow+1,1
Drow+1,3

Drow+1,1

Prow+1,2 Prow+1,rDrow+1,k

DNk PN1 PNr

Drow,1

DN1 PN2

...Drow,2 ...

... ...

DN4

Drow,4

Drow+1,4

DN1 DN2 DN3

Drow,kDrow,2 Prow,1 Prow,r

RN1

Drow,3

Drow+1,kDrow+1,2 Prow+1,1 Prow+1,rDrow+1,3

DNk PN1 PNr

Drow,1

......

......

Drow+1,1

Fig. 2. Two PULL-mode-based Reconstruction Schemes. (a) PULL-Rep:
A replacement node fetches k surviving blocks and rebuilds the corre-
sponding failed block. (b) PULL-Sur: each surviving node fetches k� 1
surviving blocks and rebuilds the corresponding failed blocks. After the
entire reconstruction process is completed, all rebuilt blocks are
migrated to an new node.

518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

As shown in Fig. 2b, PULL-Sur allows each surviving
node to rebuild a subset of failed data. As a result, all the
surviving nodes accomplish the reconstruction in parallel.
The downside of PULL-Sur is that apart from serving one
read and one write, a surviving node must simultaneously
respond to k� 1 read requests from other surviving nodes.
The write ratio of PULL-Sur is 1/(kþ 1); I/O requests in
PULL-Sur are not sequential, which result in a low write
throughput. For example, our evidence (see Fig. 6) confirms
that the write throughput is less than 5.0 MBps under 14 per-
cent write ratio and 60 percent random distribution.

3.3 Two PUSH-Based Reconstruction Schemes

The goal of the PUSH technique for node reconstruction is
two-fold. First, PUSH aims to alleviate the reconstruction
performance bottleneck caused by a replacement node’s
network bandwidth in PULL-Rep. Second, PUSH also aims
to mitigate extra seeking times induced by the non-sequen-
tial disk accesses in PULL-Sur. In comparison to surviving
nodes that passively respond to reconstruction reads in
PULL, the surviving nodes in PUSH proactively participate
in the entire reconstruction process:

Drow;1 ¼ ðProw;1 � a1;2Drow;2 � a1;3Drow;3 � a1;4Drow;4Þ=a1;1;

(4)

Drowþ1;1 ¼ ða2;2Prowþ1;1 � Prowþ1;2 � ða2;2 � a2;3Þ
Drowþ1;3 � ða2;2 � a2;4ÞDrowþ1;4Þ=ða2;2 � a2;1Þ;

(5)

Drowþ2;1 ¼ ða2;3Prowþ2;1 � Prowþ2;2 � ða2;3 � a2;2Þ
Drowþ2;2 � ða2;3 � a2;4ÞDrowþ2;4Þ=ða2;3 � a2;1Þ;

(6)

Drowþ3;1 ¼ ða2;4Prowþ3;1 � Prowþ3;2 � ða2;4 � a2;2Þ
Drowþ3;2 � ða2;4 � a2;3ÞDrowþ3;3Þ=ða2;4 � a2;1Þ;

(7)

Drowþ4;1 ¼ ðProwþ4;2 � a2;2Drowþ4;2 � a2;3

Drowþ4;3 � a2;4Drowþ4;4Þ=a2;1:
(8)

We refer to the PUSH-based reconstruction using
replacement nodes as PUSH-Rep; we call the PUSH-based
scheme that distributes reconstruction load among surviv-
ing nodes as PUSH-Sur. In PUSH-Rep and PUSH-Sur, each
surviving node first combines a locally stored block with a
block received from another node to produce part of a final
block, and then delivers the resulting intermediate block to
a subsequent node (see Fig. 3). In doing so, all the surviv-
ing node can devote all their resources, including CPU
time, I/O capacity and network bandwidth, to the recon-
struction process. Conceptually, a surviving node is an
object-based storage device that can semi-independently
manipulate its stored data [28].

Fig. 4 illustrates the I/O processing of PUSH-Rep,
where all the nodes involved in the reconstruction pro-
cess form a reconstruction chain, (e.g., {SN1 ! SN2 ! � � � !
SNk ! RN1}). The ‘PUSH’ step in surviving node SNi

includes the following operations: (i) to read a surviving
block Si from a local disk; (ii) to receive an intermediate
block Ii�1 from another node; (iii) to compute a linear
combination of the multiple of Si with Ii�1, and (iv) to
deliver a resulting block (i.e., ai � Si þ Ii�1) to the subse-
quent node in the reconstruction chain.

PUSH involves multiple storage nodes (e.g., k surviving
nodes and a replacement node in PUSH-Rep). Only after
each node pushes local intermediate blocks to the node’s
corresponding destination can failed blocks be success-
fully reconstructed. So the operations of reading a local
block or receiving an intermediate block over network
may stall the reconstruction process. To address this per-
formance issue, we pre-allocates a memory region in each
surviving node to cache both local and intermediate blocks
(see Fig. 5a). Each block is associated with a tag indicating
the block’s status. If two blocks in a block pair (e.g., Srow;i
and Irow;i�1) are tagged with ‘1’, then the node will be trig-
gered to carry out a linear-combination computation. Fur-
thermore, each pre-allocated memory region should be
sufficiently large to maintain affluent reconstruction pro-
cesses and to achieve high I/O throughput (see Appendix
E, available online).

Each surviving node in PUSH-Sur should store final
rebuilt blocks to its local disk. In practice, a rebuilt block

DN2 DN3

Prow,1Drow,3 Prow,2 Prow,rDrow,k

Prow+1,1
Drow+1,3

Drow+1,1

Prow+1,2 Prow+1,rDrow+1,k

DNk PN1 PNr

Drow,1

DN1 PN2

...Drow,2 ...

... ...

DN1 DN2 DN3

Drow,kDrow,2 Prow,1 Prow,r

RN1

Drow,3

Drow+1,kDrow+1,2 Prow+1,1 Prow+1,rDrow+1,3

DNk PN1 PNr

Drow,1

......

......

Drow+1,1

Fig. 3. Two PUSH-mode-based Reconstruction Schemes. (a) PUSH-
Rep: A surviving node creates an intermediate block using a linear com-
bination based on what it owns and receives, sends the resulting inter-
mediate block to a subsequent node; (b) PUSH-Sur: This scheme is
similar to PUSH-Rep except that all the surviving nodes are concurrently
reconstructing blocks.

SNk SNk-1 ...

S1

RN1 SN2 SN1

S2Sk-1Sk

I0I1Ik-1Ik ...αk*Sk+Ik-1 αk-1*Sk-1+Ik-2 α2*S2+I1 α1*S1+I0 0

D1

I2

Fig. 4. The I/O procedure of PUSH-Rep. All the nodes involved in the
reconstruction form a reconstruction chain.

HUANG ET AL.: PUSH: A PIPELINED RECONSTRUCTION I/O FOR ERASURE-CODED STORAGE CLUSTERS 519

is written to a separate spare space in the disk, leading to
small and non-sequential I/Os. To reduce seek times, we
also pre-allocate a memory region for writes (see Fig. 5b).
The RAM region is dedicated to collecting reconstruction
writes to form a large sequential write transferred onto
the disk when several contiguous rebuilt blocks are ready.

3.4 Incast in Reconstruction

Phanishayee et al. observed that the TCP-Incast problem is
caused by packet loss due to the ‘M:1’ communication and
insufficient buffer space allocated at an Ethernet switch
[13]. The switch buffers usually are overloaded by large
influx of messages delivered in the ‘M:1’ communication;
then dropped packets in turn trigger the TCP/IP retry
mechanism and the multiplicative decrease algorithm in TCP
will halve TCP/IP windows; finally, observed throughput
(a.k.a. Goodput) is substantially reduced.

Recall that the existing PULL-based reconstruction
schemes have the ‘M:1’ communication pattern. For exam-
ple, k blocks are simultaneously fetched from k surviving
nodes to a replacement node in PULL-Rep (see Fig. 2a).
Such an ‘M:1’ communication pattern can induce the TCP
Incast problem [13]. We carry out a set of PULL-Rep tests
where parameter k is varied from 1 to 18 (see Appendix
B, available online). The experimental results clearly
reveal that the Incast problem exists in the PULL-based
reconstruction schemes, in which a serious breakdown in
read bandwidth is emerging when the coding parameter k
increases.

Vasudevan et al. use high-resolution timers (e.g., to set
TCP Retransmission Timeout (RTO) to 200 ms) to mitigate
the adverse impact of the Incast problem in Ethernet-
based clusters in data centers [29], [30]. These fine-granu-
larity timeout approaches can alleviate the Incast effect,

however, they are incapable of eliminating the root cause
of the Incast problem. More importantly, thanks to the
‘1:1’ communication, our proposed PUSH-based recon-
struction schemes can obviate the occurrence of Incast.

4 RECONSTRUCTION MODELS

This section presents analytical reconstruction models to
predict performance of PUSH (i.e., PUSH-Rep, and PUSH-
Sur) as well as the existing counterparts (i.e., PULL-Rep,
PULL-Sur). The accuracy of all the four performance models
is validated against the results collected on a real-world
storage cluster.

Table 1 lists the notation used in the models.

4.1 Reconstruction Time

There are clear distinctions between recovery and recon-
struction from the standpoint of recovery stage (see
Appendix C, available online). In this study, we investigate
reconstruction schemes and evaluate their performance in
terms of reconstruction time. Due to the space limit, here
we only present four equations of reconstruction time for
the four schemes, and the derivation of reconstruction-
time equations is detailed in Appendix D, available online.

Reconstruction times TPULL�Rep, TPULL�Sur, TPUSH�Rep

and TPUSH�Sur can be expressed as Eqs. (9), (10), (11) and
(12), respectively,

TPULL�Rep ¼
Xk
i=1

trecv Srow;i

 !
� Snode
Sblock

; (9)

TPULL�Sur ¼ max
kþr�2

i¼0

�
twrite Drowþi;col

�� Snode
ðkþr�1ÞSblock; (10)

TPUSH�Rep ¼ max
k

i¼1
ftrecv Irow;i ; tread Srow;ig �

Snode
Sblock

; (11)

Surviving Block (Srow+1,1)
Intermediate Block (Irow+1,0)

...

Blocks

1
0
1

Tag

0

...

(a) Memory Region for Reads

1

...

Blocks

(b) Memory Region for Writes

Surviving Block (Srow+2,1)
Intermediate Block (Irow+2,0)

1
0
1

Tag

0

...

1

Rebuilt Block (Drow+2,1)
Rebuilt Block (Drow+1,1)

Pair

Pair Rebuilt Block (Drow+4,1)
Rebuilt Block (Drow+3,1)

Fig. 5. PUSH’s RAM Regions, where a tag indicates the status of a
block. (a) A memory region for reads is used to cache both local surviv-
ing blocks and intermediate blocks; (b) A memory region for writes is
applied to collect rebuilt blocks that are then stored to a disk.

TABLE 1
Symbol and Notation

7.595

3.998 3.636 3.369 3.013 2.709 2.384 2.172 1.904

11.003

3.7823.871
4.5274.6534.950

6.417
7.237

7.883

5.5325.703

8.627

2.5762.8283.0393.4263.8574.1074.437
4.942

5.676
6.343

4.457
5.245

0

2

4

6

8

10

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Random Distribution (% Random)

W
rit

e
Th

ro
ug

hp
ut

(M
B

ps
) 14%-write

10%-write
8%-write

Fig. 6. Impact of random distribution percent on write throughput with
respect to different write percentages (14, 10 and 8 percent).

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

TPUSH-Sur ¼ max
Xk�1

i¼1

trecv Irow;i ;twrite Drow;col

()
� Snode

ðkþr�1ÞSblock:

(12)

4.2 Model Validation

We validate the above reconstruction models by comparing
reconstruction times obtained from the models with experi-
mental data collected on a real-world storage cluster.

4.2.1 Write Throughput

To evaluate the impact of percent of random distribution on
the write throughput, we run IOMeter [31] on HDD disks
deployed in a tested storage cluster (see details of the exper-
imental environment in Section 5.1). Recall that the write
ratio is 1/(kþ1) in PULL-Sur, we set the write ratio to be 14,
10, and 8 percent using parameter k of 6, 9, and 12, respec-
tively. We draw two observations from Fig. 6. First, the
write throughput is very low in the case of non-sequential
accesses; therefore, the dominating factor of PULL-Sur’s
reconstruction time is write throughput rather than the sur-
viving-block-receiving bandwidth. Note that, the network
bandwidth available to receive k�1 surviving blocks ranges
from 700 to 900 Mbps. Second, the percent of random distri-
bution has a significant impact on the write throughput,
indicating that improving PULL-Sur’s write throughput can
be achieved by batching small non-sequential writes into
large sequential ones.

4.2.2 Reconstruction Time

Let R<PULL-Rep;PUSH-Rep> be a ratio between the reconstruc-
tion times of PULL-Rep and PUSH-Rep. We can derive
R<PULL-Rep;PUSH-Rep> from Eqs. (9) and (11) as:

R<PULL-Rep;PUSH-Rep> ¼
Pk

i¼1 trecv Srow;i

maxki¼1ftrecv Irow;i ; tread Srow;ig
: (13)

With the pre-allocated RAM region in place, each sur-
viving node enjoys a sequential read pattern to fetch sur-
viving blocks. The read throughput is larger than the
receiving bandwidth (120 versus 800 Mbps), so the ratio
R<PULL-Rep;PUSH-Rep> is approximated as k.

Each surviving node simultaneously responds to k� 1
reconstruction reads, one local read and one local write in
PULL-Sur, thereby resulting in a random I/O access. When
k is set to 6, a large number of (e.g., 80 percent) I/O accesses
in a surviving node are random; when k is large (e.g., 9 and
12), the random percent increases (e.g., 90 percent).
Although PUSH-Sur reduces the percentage of random

accesses, a small number of (e.g., 10 percent) I/Os are not
sequential. This is because rebuilt blocks should be written
to a separate free disk space. Therefore, reconstruction-
time ratio R<PULL-Sur;PUSH-Sur> between PULL-Sur and
PUSH-Sur is approximately 1.74, 2.24, and 2.41 when k is 6,
9, and 12 using the experimental data in Fig. 6, respectively.

Fig. 7 shows the reconstruction time derived from our
models (i.e., Eqs. (9), (10), (11), (12)) and the experimental
results obtained from the implemented prototypes on a stor-
age cluster (see Fig. 8). It is observed that the difference
between the theoretical ratios and experimental counter-
parts is very small (�8 percent). The model validation con-
firms that the proposed performance models can accurately
predict the reconstruction times spent in rebuilding failed
nodes in erasure-coded storage clusters.

4.3 Model Applicability

The models described and validated in this section can be
applied in the following four scenarios. First, the models
allow us to quantify the reconstruction times of the PULL-
Rep, PULL-Sur, PUSH-Rep, and PUSH-Sur schemes,
respectively. It is usually intractable to leverage prototypes
to evaluate multiple reconstruction schemes on large-scale
storage clusters. The models can be applied to estimate
reconstruction times of erasure-coded clusters where fault-
tolerance parameters ‘k’ and ‘r’ are large.

Second, the models offer insightful design guidelines for
reconstruction schemes. Let us consider PUSH-Sur as an
example. The model suggests that a large number r of parity
nodes shortens the reconstruction time (see Eq. (12)). When
the parameter r goes up, an increasing number of available
nodes can participate in the reconstruction process to collab-
oratively reduce reconstruction time. On the other hand,
increasing number of parity nodes leads to high building
cost of a cluster without increasing storage spaces. There-
fore, there exists a tradeoff between performance gain and
cost of storage clusters.

Third, the models are used to pinpoint potential perfor-
mance problems. Let us take the heterogeneity issue as an
example (see also Section 6—Further Discussions). Among
a group of heterogeneous surviving nodes, a node with
poor I/O performance may become the bottleneck in PULL-
Sur due to increased writing time twrite Drow;col

.
Last, the models confirm that a large value of parameter k

has a negative impact on reconstruction times. The recon-
struction bandwidth of PULL-Rep usually is a function of
network bandwidth and parameter k. A large number k of
data nodes can lead to a long reconstruction time. Therefore,

0

3

6

9

12

k=6 k=9 k=12
(a) PULL-Rep vs. PUSH-Rep

R
<P

U
LL

-R
ep

, P
U

SH
-R

e p
>

Theoretical
Experimental

0

1

2

3

4

k=6 k=9 k=12
(b) PULL-Sur vs. PUSH-Sur

R
 <

PU
LL

-S
ur

,P
U

SH
-S

ur
>

Theoretical
Experimental

Fig. 7. Comparisons of reconstruction time ratio obtained from experi-
mental results and theoretical formulas.

324.05

104.29 141.61

1172.00

150.05101.31

278.06

583.43

873.26

132.44105.23

334.42

0
200
400
600
800

1000
1200
1400

PULL-Rep PULL-Sur PUSH-Rep PUSH-Sur

Req. Size=128KB, r=3, f=1

R
ec

on
st

ru
ct

io
n

Ti
m

e(
s) k=6 k=9 k=12

Fig. 8. Reconstruction times of the four schemes with respect to different
numbers of data nodes (k¼ 6, 9, 12). SRU¼128 KB, r¼ 3, f¼ 1.

HUANG ET AL.: PUSH: A PIPELINED RECONSTRUCTION I/O FOR ERASURE-CODED STORAGE CLUSTERS 521

some existing erasure-coded storage (e.g., WAS [9]) are
inclined to reduce the parity group size.

5 PERFORMANCE EVALUATION

We implement the proposed PUSH-based reconstruction
schemes along with the two alternatives (i.e., PULL-Rep
and PULL-Sur) in a real-world storage cluster. We conduct
a wide range of experiments to quantitatively compare the
reconstruction performance of the four solutions.

5.1 Experimental Setup

Our testbed is an RS-coded storage cluster that consists
of 18 commodity-based storage nodes and a master node
(i.e., server). All the nodes are connected through a Cisco
GibE switch. Each storage node contains an Intel(R) E5800
@ 3.2 GHz CPU, 2,GB DDR3 memory, and an integrated
Gigabit Ethernet interface. All the disks installed in
the nodes are West Digital’s Enterprise WD1003FBYX
SATA2.0 disks. The operating systems running in the stor-
age nodes is Ubuntu 10.04 X86 64 (Kernel 2.6.32); the
operation system installed in the storage server is Fedora
12 X86_64 (Kernel 2.6.32). The master node is equipped
with two Xeon(R) X5650 @2.80 GHz (four cores) CPUs,
12 GB DDR3 memory, and the Intel X58 Chipset Main-
board, and serves as a replacement node in the case of
TCP Incast test (see Appendix B, available online). All the
storage nodes play the role of rebuilding nodes and sur-
viving nodes in the tests of PULL-Rep, PULL-Sur, PUSH-
Rep, and PUSH-Sur.

5.2 Evaluation Methodology

Evidence shows that a configuration of ‘r¼ 3’ achieves a suf-
ficiently large MTTDL for archival storage systems [2].
Moreover, code parameter ‘r � 3’ is a common setting in
production storage systems, e.g., ‘r¼ 3’ in the Google’s new
GFS [32] and ‘r¼ 4’ in Microsoft’s WAS [9]. We adopt ‘r¼ 3’
and ‘r¼ 4’ in our experiments to resemble real-world stor-
age cluster systems. Since a single-node failure is the most
common case, we mainly focus on the scenario of single-
node reconstruction.

The amount of data stored on each storage node is set to
10 GBytes, which is sufficiently large to evaluate the recon-
struction times of the tested solutions. We set the size of
pre-allocated memory region for reads to 256 MBytes. The
reconstruction performance is measured in terms of the
completion time spent in reconstructing 10 GB data. Each
experiment is repeatedly conducted five times; then the
average reconstruction time is calculated.

In both PULL-Sur and PUSH-Sur, each surviving node
performs as a rebuilding node that writes rebuilt blocks to
its local disk. For the sake of simplicity, we let each surviv-
ing node equally rebuild 10 GB/(kþr�1) data. The longest
reconstruction time among the kþr�1 nodes is a metric of
the reconstruction performance. To make a fair comparison
between PULL-Sur and PUSH-Sur, we pre-allocate two
memory regions (i.e., one for reads and another for writes)
in each surviving node for PULL-Sur.

Both PUSH-Rep and PUSH-Sur compute a linear combi-
nation of a set of data blocks using the finite field arithmetic
from Jerasure [33].

To investigate PUSH-type transmissions, we compare the
PUSH-based reconstruction schemes with the PULL-based
reconstruction schemes that eliminate the adverse impact of
Incast. Hence, we set parameter RTO to be 200 ms in both
the PULL-Rep and PULL-Sur schemes.

5.3 Experimental Results

The reconstruction performance is affected by several
important factors, including the number k of data nodes, the
redundancy r of erasure codes, the number f of failed nodes,
and the request unit size (SRU).

5.3.1 k—Number of Data Nodes

In (k+r,k)RS-coded storage, k surviving blocks are loaded to
reconstruct a failed block. We evaluate the impacts of the
number k of surviving blocks on reconstruction perfor-
mance by setting the value of k to 6, 9, and 12, respectively.
Fig. 8 plots the reconstruction times of the four schemes
when parameters SRU, r, and f are set to 128 KB, 3, and 1,
respectively.

It is observed that with the increasing value of k, PULL-
Rep achieves poorer reconstruction performance (see the
first three bars in Fig. 8). The reason lies in the fact that, in
PULL-Rep, a large k value makes an excessive number of
surviving blocks loaded to rebuild a failed block, which in
turn causes a long receiving time experienced by the
replacement node. PUSH-Rep is sightly sensitive to parame-
ter k, because k surviving nodes constitute a reconstruction
pipeline and all the surviving nodes receive equal amount
of data regardless of the k value.

PULL-Sur exhibits long reconstruction time when
parameter k is large, because the percent of random distri-
bution increases along with the increasing value of k. On the
contrary, the reconstruction time of PUSH-Sur decreases
when the data node number k increases, thanks to the fact
that the number of blocks rebuilt by one surviving node
reduces (see the second item in Eq. 10).

Fig. 8 shows that PUSH-Rep can speed up the reconstruc-
tion process of PULL-Rep by a factor of 5.76, 8.37, and 11.14
when k is set to 6, 9, and 12, respectively. Compared with
PULL-Sur, PUSH-Sur accelerates the reconstruction by a
factor of 1.85, 2.29, and 2.53 when k equals to 6, 9, and 12,
respectively. The reason why the reconstruction time of
PULL-Sur is larger than that of PUSH-Sur is that a surviving
node has a slim chance of performing sequential I/Os in
PULL-Sur. Although a surviving node can prefetch multiple
contiguous blocks to its RAM region to boost read perfor-
mance, such a prefetching mechanism is unable to guaran-
tee sequential reads in PULL-Sur due to the fact that this
surviving node must passively serve read requests from k-1
other surviving nodes while the requested surviving blocks
are residing on different disk regions. However, in PUSH-
Sur, each surviving node can sequentially read blocks to its
local RAM region for reads, thereby minimizing random
read I/O load.

5.3.2 r—Redundancy of Erasure Codes

In this group of experiments, we examine the sensitivity of
the four reconstruction schemes to the redundancy r of era-
sure codes. We conduct the experiments on the storage

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

cluster where the request size is 128 KB and the number of
data nodes is 6.

Fig. 9 reveals that the parameter r almost has no impact
on the reconstruction time of PULL-Rep, because exact k of
kþ r� 1 surviving nodes are involved in the reconstruction.

Not surprisingly, the reconstruction time of PULL-Sur
and PUSH-Sur decreases when the redundancy r goes up.
This is because a larger r value indicates more surviving
nodes contributing to the reconstruction process, which
enjoys high parallelism in reconstruction I/Os. For example,
in the PULL-Sur case, the theoretical reconstruction-time
ratio R< r1;r2> between ‘r ¼ r1’ and ‘r ¼ r2’ approximates
ðkþ r2 � 1Þ=ðkþ r1 � 1Þ according to Eq. (10). R< r1;r2>

equals to 1.125 when k ¼ 6; r1 ¼ 3, and r2 ¼ 4, which is close
to the ratio obtained from the experimental results (i.e.,
1.105 for PULL-Sur, and 1.109 for PUSH-Sur). The above
analysis confirms the correctness of Eqs. (10) and (12).

5.3.3 f – Number of Failed Nodes

In the f-node failure case, there are kþ r nodes involved in
the reconstruction for both PULL-Rep and PUSH-Rep.
These nodes include f replacement nodes and kþ r� f sur-
viving nodes. As to both PULL-Sur and PUSH-Sur,
kþ r� f nodes are involved in the reconstruction.

To examine the impact of number of node failures on the
reconstruction performance, we carry out two-node recon-
struction experiments on the (9, 6) RS-coded storage cluster
when the request size is 128 KB. Note that the results of sin-
gle-node reconstruction are reported in Section 5.3.1.

We draw three observations from Fig. 10. First, the recon-
struction time of PULL-Rep is not very sensitive to the num-
ber f of failed nodes (see the first two bars on the left of
Fig. 10). The reason is two-fold: i) the replacement node’s

reception bandwidth dominates the reconstruction times,
and ii) each replacement node receives the same amount of
surviving data, i.e., k� 10GB.

Second, compared with the single-node reconstruction,
the reconstruction times of PULL-Sur and PUSH-Sur
increase by a factor of around 1.4 in the case of double-node
reconstruction. Now we explain why the factor is 1.4�
rather than 2.0�.

The reconstruction time TPULL-Sur f for PULL-Sur under
f-node failure can be derived from Eq. (10) as below:

TPULL-Sur f ¼ max
kþr�f�1

i¼0
ftwrite Drowþi;col

g � f�Snode
ðkþr�fÞSblock: (14)

Parameter twrite Drowþi;col
varies under different number

of node failures, because the write ratio of each surviv-
ing node is f=ðkþ fÞ. Note that in addition to one read
and f writes, each surviving node should simultaneously
respond to k� 1 reconstruction reads from other surviv-
ing nodes. A large write ratio implies high write
throughput thus small write latency. Eq. (14) shows that
the reconstruction time TPULL-Sur f is not directly propor-
tional to the number f of failures.

Third, the reconstruction time of PUSH-Rep in the two-
node-reconstruction case doubles that of the one-node-
reconstruction case. This reconstruction trend is reasonable,
because i) the receiving phase of each surviving node domi-
nates the reconstruction time, and ii) each surviving node
should receive two intermediate blocks during two-node
reconstruction process.

5.3.4 SRU—Size of Request Unit

To examine the impact of the request unit size or SRU, we
conduct experiments on the (9, 6) erasure-coded storage
cluster where SRU is set to 64, 128, 256, 512, 1,024, and
2,048 KB, respectively.

Fig. 11 shows that both PULL-Rep and PUSH-Rep are not
sensitive to SRU, because it is the receiving phase rather than
disk I/Os dominates the overhead of reconstruction process.

We observe that PULL-Sur and PUSH-Sur perform
poorly when the size of request unit is small. The perfor-
mance improvement of PUSH-Sur over PULL-Sur becomes
more pronounced when SRU is small. For example, the
reconstruction-time ratio R<PULL-Sur;PUSH-Sur> between
PULL-Sur and PUSH-Sur is 2.64, 1.85, and 1.38 when SRU
is 64, 128, and 256 KB, respectively. Such a performance
trend is attributed to the fact that the room for sequential

278.06251.66

103.12
150.05

101.31

583.43

135.32

584.39

0
100
200
300
400
500
600
700

PULL-Rep PULL-Sur PUSH-Rep PUSH-Sur

SRU=128KB, k=6, f=1

R
ec

on
st

ru
ct

io
n

Ti
m

e(
s) r=3 r=4

Fig. 9. Comparisons of reconstruction time with respect to different
redundancy levels (r ¼ 3, 4), with settings of ‘SRU ¼ 128 KB, k ¼ 6,
f ¼1’.

278.06

101.31
150.05

587.75

412.80

215.92 212.64

583.43

0
100
200
300
400
500
600
700

PULL-Rep PULL-Sur PUSH-Rep PUSH-Sur

SRU=512KB, k=6, r=3

R
ec

on
st

ru
ct

io
n

Ti
m

e(
s) f=1 f=2

Fig. 10. Comparisons of reconstruction time with respect to different
node failures (f ¼ 1, 2), with settings of ‘SRU ¼ 128 KB, k ¼ 6, r ¼ 3’.

47
2.6

10
1.314

5.7

10
1.414

3.114
4.9

10
1.7

17
9.1

10
2.0

58
6.7 58

3.4

15
0.1

27
8.1

11
0.5

10
1.915

2.7

58
4.6

10
6.2

58
2.3

10
4.4

58
3.7

10
2.2 10

3.4

58
1.8

0

100

200

300

400

500

600

700

PULL-Rep PULL-Sur PUSH-Rep PUSH-Sur

k=6, r=3, f=1

R
ec

on
st

ru
c t

io
n

Ti
m

e(
s) 64KB 128KB 256KB

512KB 1024KB 2048KB

Fig. 11. A comparison of reconstruction times with respect to different
size of request unit, which is set to 64, 128, and 256 KB. ‘k ¼ 6, r ¼ 3,
f ¼ 1’.

HUANG ET AL.: PUSH: A PIPELINED RECONSTRUCTION I/O FOR ERASURE-CODED STORAGE CLUSTERS 523

bandwidth improvement becomes small when SRU is
large, and the chance of improving performance through
an increased SRU in PUSH-Sur is smaller than that in
PULL-Sur. On the other hand, when the size of SRU is
larger than 256 KB, the reconstruction times of PULL-Sur
and PUSH-Sur are insensitive to SRU, because both PULL-
Sur and PUSH-Sur are unable to gain further benefit from
saturated disk I/O bandwidth when the SRU size reaches a
specific value. Furthermore, regardless of the SRU size,
PUSH-Sur is constantly superior to PULL-Sur because each
surviving node in PULL-Sur passively responds to k� 1
reads from other surviving nodes, thereby suffering from
non-sequential reads.

5.4 A Summary of Observations

Important observations drawn from Figs. 8, 9, 10 and 11 are
summarized as follows.

� Among the four performance factors (i.e., k, r, f, and
SRU), only the number k of data nodes and the
number f of failed nodes make significant impacts
on the reconstruction performance of PULL-Rep
and PUSH-Rep, respectively;

� both PULL-Sur and PUSH-Sur are substantially
affected by the size of request unit, which agrees
with the fact that disk writes dominate the overhead
of reconstruction for the reconstruction among sur-
viving nodes; and

� the two PUSH-based schemes outperform both
PULL-based counterparts in terms of reconstruction
time regardless of the parameters k, r, f, and SRU.

6 FURTHER DISCUSSIONS

Eqs. (4) � (8) show the way of regenerating failed blocks
when the number k of data nodes and the number r of parity
nodes is four and two, respectively. In fact, each failed block
can be reconstructed by computing a certain linear combi-
nation when parameters k, r are arbitrary.

This paper evaluates both PUSH-Rep and PUSH-Sur
schemes under both single- and double-node reconstruction
scenarios. We show evidence that PUSH can be employed
to address the issue of any multiple node failure. For exam-
ple, let us consider a triple-node reconstruction handled by
PUSH-Sur. Each surviving node generates three intermedi-
ate blocks using its local block and the received block with
three different coefficients, and forwards the three resulting
blocks to a subsequent surviving node.

Our reconstruction performance models suggest that
there is a demand to address the heterogeneity issue (see
Section 4.3), where surviving nodes may have various I/O
performance. In a heterogeneous storage cluster, a surviv-
ing node with low I/O throughput inevitably slows down
the entire reconstruction process. To remedy such a defi-
ciency, we intend to incorporate a load balancing strategy
into PUSH, where the slow surviving node joins a limited
number of reconstruction chains. A challenge that awaits
us is to determine the appropriate number of reconstruc-
tion chains for each surviving node to join according to its
available I/O bandwidth.

Our proposed PUSH-based schemes outperform the
PULL-based ones under the non-Incast environments. It
is not a surprise that in the TCP Incast case (e.g., RTO ¼
200 ms) both PUSH-Rep and PUSH-Sur achieve higher
reconstruction speedup over the PULL-based solutions
because of the ‘1:1’ traffic pattern.

7 CONCLUSION AND FUTURE WORK

Existing PULL-based reconstruction techniques (e.g., PULL-
Rep and PULL-Sur) have two major drawbacks—the net-
work capacity of replacement nodes and disk writes of
rebuilding nodes dominate the reconstruction time in PULL-
Rep and PULL-Sur, respectively. To address these issues, we
proposed the PUSH approach, in which a PUSH-type trans-
mission is incorporated into node reconstruction. We devel-
oped two PUSH-based reconstruction schemes (i.e., PUSH-
Rep and PUSH-Sur). Compared to the PULL-based counter-
parts where surviving blocks are transferred in a synchro-
nized ‘M:1’ traffic pattern, our PUSH-based reconstruction
solutions support the ‘1:1’ pattern, which naturally solves
the Incast problem. We built performance models to investi-
gate the reconstruction times of our PUSH-based schemes
applied in large-scale storage clusters. We extensively evalu-
ated the four schemes on a real-world cluster. Our empirical
results show that the PUSH-based reconstruction schemes
outperform the PULL-based ones. On the (9, 6)RS-coded
storage cluster, PUSH-Rep speeds up the reconstruction
time by a factor of 5.76 over PULL-Rep; PUSH-Sur acceler-
ates the reconstruction of PULL-Sur by a factor of 1.85.

Nowadays a grand challenge for storage clusters is effi-
ciently migrating data replicas to create an erasure-coded
archive [34]. To take this challenge, we are going to integrate
the PUSH-type transmission into the archival migration in
erasure-coded storage clusters.Moreover, since PUSH-based
reconstruction schemes are sensitive to slow nodes, we plan
to extend the PUSH-based reconstruction schemes for het-
erogeneous erasure-coded storage clusters by taking into
account both load and heterogeneity of surviving nodes.

ACKNOWLEDGMENTS

The authors would like to thank Fenghao Zhang and Siti
Huang for their constructive discussions. This work was
supported in part by the National Basic Research Program
of China under Grant No.2011CB302303 and the Develop-
ment Program under Grant No. 2013AA013203. Xiao Qin’s
work is supported by the US National Science Foundation
under Grants CCF-0845257(CAREER), CNS-0917137(CSR),
and CCF-0742187(CPA). Qiang Cao is the corresponding
author of this paper.

REFERENCES

[1] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “A
decentralized algorithm for erasure-coded virtual disks,” in Proc.
Int. Conf. Dependable Systems Networks, 2004, pp. 125–134.

[2] M. Storer, K. Greenan, E. Miller, and K. Voruganti, “Pergamum:
Replacing tape with energy efficient, reliable, disk-based archival
storage,” in Proc. 6th USENIX Conf. File Storage Technol., 2008, p. 1.

[3] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sarma, R.
Murthy, and H. Liu, “Data warehousing and analytics infrastruc-
ture at facebook,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 1013–1020.

524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

[4] Z. Zhang, A. Deshpande, X. Ma, and E. Thereska, “Does erasure
coding have a role to play in my data center?” Microsoft research
MSR-TR-2010, vol. 52, 2010.

[5] B. Calder et al., “Windows azure storage: A highly available cloud
storage service with strong consistency,” in Proc. 23rd ACM Symp.
Operating Syst. Principles, 2011, pp. 143–157.

[6] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing I/O for recovery
and degraded reads,” in Proc. 10th USENIX Conf. File Storage Tech-
nol., 2012, pp. 251–264.

[7] J. Plank et al., “A tutorial on reed-solomon coding for fault-toler-
ance in raid-like systems,” Softw. Practice Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[8] M. Manasse, C. Thekkath, and A. Silverberg, “A reed-solomon
code for disk storage, and efficient recovery computations for era-
sure-coded disk storage,” Proc. Inf., pp. 1–11, 2009.

[9] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in
Proc. USENIX Annu. Tech. Conf., 2012, p. 2.

[10] K. Rao, J. Hafner, and R. Golding, “Reliability for networked stor-
age nodes,” IEEE Trans. Dependable Secure Comput., vol. 8, no. 3,
pp. 404–418, May 2011.

[11] Q. Xin, E. Miller, T. Schwarz, D. Long, S. Brandt, and W. Litwin,
“Reliability mechanisms for very large storage systems,” in Proc.
20th IEEE/11th NASA Goddard Conf. Mass Storage Syst. Technol.,
2003, pp. 146–156.

[12] Q. Xin, E. Miller, and S. Schwarz, “Evaluation of distributed
recovery in large-scale storage systems,” in Proc. 13th IEEE Int.
Symp. High Performance Distrib. Comput., 2004, pp. 172–181.

[13] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger,
G. Gibson, and S. Seshan, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in Proc. 6th
USENIXConf. File Storage Technol., 2008, p. 12.

[14] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.
Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage,” in Proc. 7th Conf. File
Storage Technol., 2009, pp. 197–210.

[15] M. Holland, G. Gibson, and D. Siewiorek, “Fast, on-line failure
recovery in redundant disk arrays,” in Proc. 23rd Int. Symp. Fault-
Tolerant Comput., 1993, pp. 422–431.

[16] M. Holland, G. Gibson, and D. Siewiorek, “Architectures and
algorithms for on-line failure recovery in redundant disk arrays,”
Distrib. Parallel Databases, vol. 2, pp. 295–335, 1994.

[17] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “Workout: I/O
workload outsourcing for boosting raid reconstruction per-
formance,” in Proc. 7th Conf. File Storage Technol., 2009,
pp. 239–252.

[18] B. Cassidy, J. Hafner, Space efficient matrix methods for lost data
reconstruction in erasure codes,” IBM Res., Armonk, NY, USA,
Tech. Rep. RJ10415, 2007.

[19] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failure in rdp code storage systems,” ACM SIGMETRICS Per-
form. Eval. Rev., vol. 38, no. 1, pp. 119–130, 2010.

[20] T. Xie and H. Wang, “Micro: A multilevel caching-based recon-
struction optimization for mobile storage systems,” IEEE Trans.
Comput., vol. 57, no. 10, pp. 1386–1398, Oct. 2008.

[21] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the panasas
parallel file system,” in Proc. 6th USENIX Conf. File Storage Tech-
nol., vol. 2, 2008, pp. 1–2.

[22] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,”
IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4539–4551, Sep.
2010.

[23] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery
of distributed storage systems from multiple losses with network
coding,” IEEE J. Select. Areas Commun., vol. 28, no. 2, pp. 268–276,
Feb. 2010.

[24] A. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing multi-
ple failures with coordinated and adaptive regenerating codes,”
in Proc. Int. Symp. Netw. Coding, 2011, pp. 1–6.

[25] I. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[26] M. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes effi-
ciently for storage in a distributed system,” in Proc. Int. Conf.
Dependable Syst. Netw., 2005, pp. 336–345.

[27] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure
coding libraries for storage,” in Proc. 7th Conf. File Storage Technol.,
2009, pp. 253–265.

[28] F. Wang, S.A. Brandt, E.L. Miller, and D.D. Long, “Obfs: A file sys-
tem for object-based storage devices,” in Proc. 21st IEEE/12th
NASA Goddard Conf. Mass Storage Syst. Technol., 2004, pp. 283–300.

[29] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-
grained TCP retransmissions for datacenter communication,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 303–
314, 2009.

[30] H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson,
V. Vasudevan, and A. Phanishayee, “A (In)cast of thousands:
scaling datacenter tcp to kiloservers and gigabits,” Carnegie Mel-
lon Univ. Parallel Data Lab, Pittsburgh, PA, USA, Tech. Rep.
CMU-PDL-09-101, 2009.

[31] T. IOMETER, “Iometer: I/o subsystem measurement and charac-
terization tool,” Open source code distribution: http://www.
iometer.org, 1997.

[32] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in Proc. 9th USENIX Symp. Operating Syst.
Design Implementation, 2010.

[33] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in c/c++ facilitating erasure coding for storage applica-
tions-version 1.2,” Univ. Tennessee, Knoxville, TN, USA, Tech.
Rep. CS-08-627, 2008.

[34] L. Pamies-Juarez, F. Oggier, and A. Datta, “Data insertion and
archiving in erasure-coding based large-scale storage systems,” in
Proc. Distrib. Comput. Internet Technol., 2013, pp. 47–68.

[35] TAHO-LAFS. (2010). Tahoe: The least-authority filesystem [Online].
Available: Open source code distribution: http://tahoe-lafs.org/
trac/tahoe-lafs

[36] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G.
Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs: A high-
throughput file system for the hydrastor content-addressable
storage system,” in Proc. 8th USENIX Conf. File Storage Technol.,
2010, pp. 225–238.

[37] I. CLEVERSAFE. (2008). Cleversafe dispersed storage, [Online]. Avail-
able: Open source code distribution: http://www. cleversafe. org/
downloads.

[38] L. Rizzo, “On the feasibility of software fec,” Univ. di Pisa, Italy,
Tech. Rep. LR-970131, 1997.

[39] F. F. J. MacWilliams and N.N.J.A. Sloane, The Theory of Error-Cor-
recting Codes: Part 2, vol. 16., Amsterdam, The Netherlands:
Elsevier, 1977.

[40] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.
Lahiri, D.A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and
flexible data center network,” ACM SIGCOMM Computer Com-
mun. Rev., vol. 39, no. 4, pp. 51–62, 2009.

[41] F. Zhang, J. Huang, and C. Xie, “Two efficient partial-updating
schemes for erasure-coded storage clusters,” in Proc. IEEE 7th Int.
Conf. Netw., Archit. Storage, 2012, pp. 21–30.

Jianzhong Huang received the PhD degree in
computer architecture in 2005 and completed
the post doctoral research in information engi-
neering in 2007 from the Huazhong University
of Science and Technology (HUST), Wuhan,
China. He is currently an associate professor
in the Wuhan National Laboratory for Opto-
electronics at HUST. His research interests
include computer architecture and dependable
storage systems. He received the National
Science Foundation of China in Storage Sys-

tem Research Award in 2007.

HUANG ET AL.: PUSH: A PIPELINED RECONSTRUCTION I/O FOR ERASURE-CODED STORAGE CLUSTERS 525

Xianhai Liang received the BS in computer sci-
ence and technology in 2012 from the Wuhan
University of Technology (WHUT), China. He is
currently working toward the MS degree at
HUST. His research interests include networked
storage systems and file system.

Xiao Qin (S’00-M’04-SM’09) received the BS
and MS degrees in computer science from
HUST, China, and the PhD degree in computer
science from the University of Nebraska-Lincoln,
in 1992, 1999, and 2004, respectively. He is cur-
rently an associate professor with the Depart-
ment of Computer Science and Software
Engineering, Auburn University. His research
interests include parallel and distributed systems,
storage systems, fault tolerance, real-time sys-
tems, and performance evaluation. He received

the US National Science Foundation Computing Processes and Artifacts
Award and the NSF Computer System Research Award in 2007 and the
NSF CAREER Award in 2009. He is a senior member of the IEEE.

Qiang Cao received the BS degree in applied
physics, the MS degree in computer technology,
and the PhD degree in computer architecture in
1997, 2000 and 2003, respectively. He is currently
an associate professor at the Huazhong Univer-
sity of Science and Technology. His research
interests include computer architecture, large
scale storage systems, and performance evalua-
tion. He is a senior member of China Computer
Federation (CCF) and amember of the IEEE.

Changsheng Xie received the BS and MS
degrees in computer science both from HUST,
Wuhan, China, in 1982 and 1988, respectively.
He is currently a professor in the Department of
Computer Engineering at HUST. He is also the
director of the Data Storage Systems Laboratory
of HUST and the deputy director of the Wuhan
National Laboratory for Optoelectronics. His
research interests include computer architec-
ture, I/O system, and networked storage system.
He is the vice chair of the expert committee of

Storage Networking Industry Association (SNIA), China. He is a mem-
ber of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

