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Abstract—As energy use by datacenters has risen over the
years, the costs required to run a datacenter have substantially
increased. Several algorithms for thermal management and
thermal-aware job placement exist, such as [1], [2], and [3];
however, choosing the scheme that will most efficiently cool a dat-
acenter can be challenging. Thermal models offer a great solution
to help choose which algorithm will perform best by juxtaposing
different thermal-aware algorithms. When the temperature can
be observed over all servers through simulated steps, one can
decipher the differences and advantages of one thermal-aware
algorithm over another. Existing thermal modelers, however, can
be slow and may take a while to learn to use. When one wishes
to compare several thermal models, waiting for hours for the
result of one thermal-aware algorithm may mean that not as
many algorithms can be compared.

Agent-Directed Thermal Modeler (ADTM) provides a solution
that has a low learning curve and still produces visualizations of
datacenters quickly. It is aimed at being easy to configure while
still producing very meaningful data through graphs and images.
There are very few parameters, making setup much easier - one
simply has to configure a few settings such as initial number
of jobs, job gain, and which thermal-aware algorithm to use.
Once these settings are configured, the simulation can be run in
a matter of seconds. A single time-step of the simulation takes
milliseconds. The graphical and pictorial output of ADTM can
then be used to determine which thermal-aware algorithm works
best for a given datacenter in a much shorter time than other
thermal-modelers. ADTM is used to compare XInt-GA to random
job placement in order to show that a 5% increase in energy
savings is expected in an overloaded datacenter. This simulation
for both algorithms takes only a few seconds, so many thermal-
aware algorithms can be compared quickly in order to determine
the most effective and realistic algorithm that can be chosen to
cool a datacenter.
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I. INTRODUCTION

The energy usage of datacenters has been a growing prob-
lem as more data are stored. With this increase in data storage,
more jobs need to be processed, more nodes are needed to
complete these jobs, and, as a result, an increasing amount
of energy is required. The energy consumed by IT equipment
alone, however, only accounts for part of the increase. The
cooling costs for IT equipment can account for 50 percent of
energy consumption in a datacenter [4]. How can one save
on cooling energy costs without destroying hardware through
overheating?
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Intelligent thermal-aware algorithms have been developed
that help keep servers cool. In addition, some algorithms
attempt to minimize energy consumption with little to no
impact on performance. This helps in solving the issue of
cooling costs, but how can one determine exactly how a
specific algorithm will affect a specific datacenter? With so
many algorithms available, choosing the proper algorithm for
a datacenter can be a difficult process. Simply reading several
papers can take a long time, and comparing these algorithms
against each other can be nearly impossible without some
form of modeling. This is why ADTM was developed: to
allow datacenter operators to quickly visualize several thermal-
aware algorithms and choose which will best keep a datacenter
cool. Using thermal models like those produced by ADTM can
visually show how a given scheme will work in a particular
datacenter through a step-by-step simulation. These models
will help lower cooling costs and prevent “disk-o inferno”.

II. MOTIVATION

As has been mentioned already, several thermal-aware al-
gorithms exist in order to efficiently place jobs on nodes in
order to prevent the overheating of specific nodes. This allows
a more uniform heating of the datacenter which, in turn, means
the HVAC does not need to be turned on until all nodes need
to be cooled (to prevent unnecessary cooling of nodes that
are already cool). Visualizing these algorithms and comparing
them can be a daunting task. Some existing modelers exist,
but they can have a high learning curve and take a lot of time
to provide a simulation.

ADTM aims to simplify the process. There are only a few
parameters to input into ADTM in order to run a simulation.
This is much less-detailed and easier to configure than the
amount of time that one might use in order to learn how to use
a CFD simulator such as Flovent. In addition, each step in the
simulation takes milliseconds, meaning the entire simulation
for several timesteps will take minutes. These issues with
existing thermal modelers provided the motivation in order
to create ADTM.

III. RELATED WORK

The motivation for this report helped determine existing
work to use in order to aid in the development of ADTM.



These two algorithms/concepts helped in the design of this
thermal modeler: Von Neumann neighborhoods and XInt-GA.

A. Von Neumann Neighborhoods

The Von Neumann Neighborhood is a way of representing
neighbors around a node. The nodes are represented as a
rectangular matrix [5]. Each node is a certain distance away
from its neighboring nodes. For example, a node immediately
above, below, to the right, or to the left of a node is a distance
of one unit away. Two units above, below, to the right, or to
the left would be two units away, and so on.

Closer neighbors in the Von Neumann neighborhood have
a greater impact on a node’s temperature than nodes that are
further away. A hot node surrounded by cool nodes will be
cooled down, and a cool node surrounded by hot nodes will
be heated up. ADTM uses the Von Neumann neighborhood in
order to determine the thermal impact of neighboring nodes
(a detailed description is in Numerical Description section
of this report). For speed considerations, ADTM considers
neighbors that are one and two units away. As more neighbors
are considered, the thermal impact will be more accurate, but
this will slow down the simulation.

B. XInt-GA

XInt-GA is a thermal-aware genetic algorithm. It uses genes
from a parent popluation and combines them in order to
form a descendant population. A certain percentage is used to
determine when a mutation (a change) occurs in the resulting
offspring. This process occurs for several iterations, with a
fitness function determining the likelihood of an offspring
reproducing [6].

In ADTM, XlInt-GA uses a three-descendant competition
with the fitness function defining the coolest average node at
time t+1 as the most fit node. The winning descendant has
two offspring plus itself to compete.

IV. NUMERICAL DESCRIPTION OF ADTM AND EXAMPLE

A more detailed example will help show exactly how Von
Neumann neighborhoods are used in ADTM. It takes into
account three factors: heat generated from executing jobs, heat
recirculated from nearby servers, and heat dissipation. These
factors are further explained below.

o Constant job generated heat model: ADTM assumes jobs
will consume the same amount of CPU power and will
generate the same amount of heat on a server. Atjqp is
used to denote the temperature increase of a server due to
executing a portion of one job in a single time step. Thus,
the temperature of server s will increase by Atjq, * m
during one time tick, where m is the number of jobs
executing on s at this tick. The lifetime of jobs in ADTM
are random.

« Von Neumann heat recirculation model: The interference
of nearby servers to server s due to heat recirculation is
modeled by using a weighted Von Neumann sum method.
Nearby servers can affect s’s temperature to different
extents according to their distance from s and their own

temperature. Equation 1 describes the weighted sum of
nearby servers’ temperatures as t,.c;-, which stands for
the temperature increase of s due to heat recirculation
from other servers. In this equation, ws, decrements
linearly as s;’s distance to s increases, and « is a constant
representing how strong the recirculation is. In order to
increase the speed at which the simulation runs, only
servers within 2 distance units to s will have a notable
effect on s. Further servers are excluded from the Von
Neumann sum.

297 e{nearbyServers} Ws,; * si.temp

Zsi €{nearbyServers} Ws;

Lrecir = Q% (D

o Heat dissipation model: Server s’s heat dissipates at
every time tick due to the air conditioning system that
constantly blows cold air. The heat dissipation occurs
by decrementing each server’s temperature by fg.. at
every time tick until this server reaches the equilibrium
temperature of the datacenter.

The overall temperature change for s at this time tick is
ttotalChange = A'[fjob * M+ trecir — tdec. The temperature of s
at the next time tick ?;11 = ¢; + tiotalChange- The high temp
threshold for ¢;; is set to 65°C [7]. When t;11 > tihresholds
the server is shut down in order to cool down. A server’s
temperature cannot go below the equilibrium temperature t.qu
since the cooling system only works when the datacenter is
hotter than teq,. ADTM sets g, to 25 °C [7].
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Fig. 1. A numerical example

For example, Figure 1 shows a 2D model of the datacenter,
and the center square represents s, the node of interest. Blue
squares represent a distance of 1 server away from server s,
and their weights in the Von Neumann sum are set to 3. Orange
squares represent a distance of 2 servers away from s, and
their weights are set to 1 in this example. = 0.1 is used
for equation 1. Solving for t,..;- yields 3.18°C. Suppose s
is executing 10 jobs at the current time tick, and ¢4, = 0.1.
This puts temperature increase due to jobs at 1. Zg4.. is set
to 3 in this example, so the final temperature change can be
calculated as t;otaiChange = 1 4+ 3.18 — 3 = 1.18°C.



V. JUXTAPOSING THERMAL-AWARE ALGORITHMS
THROUGH THERMAL SIMULATIONS
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Fig. 2. ADTM Simulation

Figure 2 represents a model generated by ADTM (as well
as the configured parameters) that can be used to help cool
data centers. Each white circle represents a job. Currently
they are either randomly placed (if the XInt-GA parameter
is unchecked) or placed according to the XInt-GA algorithm.
Each square in the simulation represents a server and its
temperature. The lightest green color represents a server
that is at its equilibrium temperature (the temperature of a
server without interference from job processing, HVAC, or
neighboring interference). As a green server turns to red, that
server is gaining more heat from processing jobs or from
the heat dissipation of nearby servers in its von Neumann
neighborhood. At the hottest temperature (completely red),
the HVAC unit will be forced to cool the server (expending
cooling energy). As smarter algorithms are programmed into
ADTM, servers and the HVAC will take on different behaviors.
Server temperatures will be cooler on average as jobs are
placed in a more efficient manner. The simulation can be run
automatically, or time steps can be simulated one at a time. In
this way, different thermal-aware algorithms can be modeled
with ADTM.
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Fig. 3. Agent Counts

In addition to modeling temperature, more fine-grained
detail can be seen by adding charts. Figure 3 shows an example
chart that can be generated by ADTM of the number of jobs
associated with each time step.

VI. THERMAL MODELING XINT-GA

In addition to random job placement, ADTM implements
a version of XlInt implemented by a scaled down genetic
algorithm (GA). With XInt, ADTM can handle spikes in job
input to the simulator. Better job distribution leads to better
thermal management in the datacenter. A thermally managed
datacenter in turn leads to lower cooling costs.

A. Implementation

XlInt is a process that can be followed using multiple
methods. Two methods discussed by its authors are SQP
(sequential quadratics) and GA (genetic algorithms). ADTM
implements the genetic algorithm version of XInt. The XlInt
process was simplified in order to make it faster; a full genetic
algorithm with simulation lookahead would have taken the
simulation too long to run and would have been overkill.
Instead, the XInt lookahead was only set to one timestep in
the future to make sure jobs weren’t clustered into a single
section during each time step. Next, the genetic algorithm was
simplified. Using a fitness function of the chosen node’s future
temperature, the parent population chose random, relatively
cool spots. The most fit parents were chosen to populate
the second generation, which mutated the parents to find the
coolest nearby node to the most fit parent. The most fit node in
the child generation was chosen as the job placement location.

B. Observations

The default simulation parameters are intended to load the
datacenter in a way that produces enough heat to turn on the
HVAC. While the load isn’t more than the datacenter can take,
it is enough to require a cooling source. The first observation
can be drawn from observation of the simulation’s graphical
datacenter representation interface.



Fig. 4. Random Job Placement at 900 Seconds

Fig. 5. XInt-GA Job Placement at 900 Seconds

At first glance of figure 4 and figure 5, the inclination is
to think that XInt-GA’s algorithm causes a hotter datacenter,
but this assumption based on the larger area of red would
be wrong. In random job placement, the hotspots require the
HVAC to turn on, causing a larger difference between the
hot and cold spots of the datacenter. An unevenly heated
datacenter wastes precious HVAC resources on cooler areas of
the datacenter! In contrast, XInt balances out the heat through
the entire datacenter. There are fewer hot and cold areas, as
the datacenter is more uniform.

A more uniformly managed datacenter yields to the next
important observation from the automatically generated data
of ADTM.
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Fig. 6. Random Job Placement Energy Usage
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Fig. 7. XlInt-GA Job Placement Energy Usage

As shown in figure 6 and figure 7, with random job
placement, the HVAC energy usage kicks in after only 150
seconds of simulated job load. Contrast this with XInt, which
balances the load and temperature during peak usage, causing
it to take longer for the datacenter to heat up (about 400
seconds). This indicates that XlInt is better able to balance
out high, temporary loads on a datacenter so that the HVAC
does not have to be used as often. In addition, the wattage
used by XlInt never spiked as high as random job placement.

VII. A LOOK BEHIND THE SCENES OF ADTM: USING
REPAST SIMPHONY AS A FRAMEWORK FOR THERMAL
MODELING

These models and charts are generated by utilizing the
Repast Simphony framework, which provides utilities for time-
step-based agent-directed software development. The Repast
framework provides tools for visualization and includes a
plugin for development in the Eclipse IDE [8]. Within this
framework, a simulation of an nxm datacenter can be cre-
ated where the temperature of the nodes in the datacenter
are influenced by their neighbors. Instead of simulating the
movement of heat through the system, each node’s temperature
is calculated by a function using its current temperature and
the neighboring nodes.



A. Agent-Based Simulation Development

ADTM'’s simulation is an imperative-driven agent-directed
development. An imperative-driven simulation is one in which
the agents (or actors) in the simulation are given rules by
which to achieve their goals. In this case, we define the agents
and their rules. For more information, please reference [9].
Here we define the agents and their rules:

1) The World: The world in which the individual agents
reside defines their boundaries. The world uses three important
parameters: an X-dimension, a Y-dimension, and a job creation
rate. These dimensions define the cluster of nodes that reside
next to each other. By default, the world is a 50x50 room of
2500 nodes equally spaced in the cluster. Each time unit, the
job creation rate defines how many jobs are created. Therefore,
the rules for the world are:

1) If the world is not yet created, create an nxm world from
the X-dimension and Y-dimension parameters, placing a
Node agent on each gridpoint.

2) Each step of the simulation, create = jobs defined by the
job creation rate.

3) Place the jobs using the selected job placement algo-
rithm.

2) Nodes: The nodes process jobs, heat up as they process
jobs, and cool down when they get too hot by the assumed
HVAC unit. The nodes have a homeostasis temperature of
25°C to 65°C. Their behavior is defined as follows:

1) Calculate the Von Neumann neighborhood weighted
average of temperatures in the surrounding Nodes (Von
Neumann Neighborhoods are described in section IV).
When the neighbor distance is 1, the weight is 3x that
of a neighbor of distance 2.

2) Calculate the average of the Node’s current temperature
with the weighted Von Neumann Neighborhood calcu-
lation from (1).

3) Change the Node’s temperature to the temperature in-
fluenced by the Von Neumann Neighborhood from (2).

4) Decrement the temperature by 1°C if it is not currently
at its homeostasis temperature.

5) If the Node’s temperature is too high, log that the HVAC
implicitly cools the Node by the number of degrees
required to get back to a safe temperature range.

3) Jobs: Jobs are the workunits of the simulation. They
cause the heat intrinsically and actively change the temperature
on the node in which they are residing. While the Nodes’
instructions have them dissipate heat in a Von Neumann
Neighborhood, the Jobs increase heat on the node that is
processing them. Operating under the assumption that a node
can process as many jobs simultaneously as needed, each job
randomly generates its lifespan. A Job’s rules are defined as
follows:

1) If the job has just been created, randomly generate
its lifespan. The lifespan is currently defined as being
between 0 and 50 seconds.

2) Increase the Node temperature by 3°C.

3) Decrement the lifespan by 1 second.

4) If the lifespan drops to 0, remove the job from the
simulation.

B. Visualization

Fig. 8. Simulation Visualization

The world is drawn onto the display as defined by the
X and Y dimensions. Nodes are placed onto the grid with
their homeostasis temperature of 25°C. Nodes are visualized
as an individual square on the grid. When a Node is at its
homeostasis temperature, it is bright green. As it warms up,
it changes to bright red. Individual Jobs are shown as small
white dots close to the Node that is processing them.

VIII. ISSUES FACED WHILE IMPLEMENTING ADTM

To date, no known issues have been logged against ADTM;
however, currently only one major thermal-aware algorithm
(XInt-GA) has been implemented.

Six main implementation issues arose as ADTM was de-
signed:

1) The Java classpath was difficult to setup for the Eclipse
project. As other team members attempted to import the
project into Eclipse, path issues arose and had to be
resolved before ADTM could be compiled on another
machine.

2) Several Java dependencies are required that are provided
by the JRE built into Repast. These are included in the
binary distribution. Although 64-bit Java is operational,
it was difficult to get working.

3) Agent-directed software development is not very com-
mon in our student body, so fewer developers have
expertise in it. This means issues that arise from agent-
directed development will not have as many searchable
answers on the Internet as more traditional object-
oriented or function decomposition development. In ad-
dition, a learning curve existed for team members not
familiar with this approach.

4) The parameters that were made available to the user
were chosen by how useful they would be to model a
data center. As such, size of the data center, initial jobs,
and created jobs were made configurable.

5) Temperature data can be observed by the color of the
node in the model which is not currently configurable.
This could pose a problem for color-blind users.



IX. USING ADTM
A. Building ADTM

The easiest way to use ADTM is to execute start_model.bat
included in the ADTM directory of the binary distribution.
While this method of execution does not require downloading
Repast Symphony, the launcher only supports Windows plat-
forms XP and later. Other operation systems will have to build
the project from the source code.

In order to build the project, the Repast Simphony suite can
be downloaded from [8]. The “Download” section of this site
has install instructions for Windows, Mac, and Linux. Once
the download is complete, the ADTM project can be imported
into Eclipse from the ADTM directory. One can do this by
doing the following within Eclipse Repast:

« Go to File

o Import...

o Existing Projects into Workspace

o Under “Select root directory”, browse for the ADTM

project

o Select Finish

Once the project is imported, it can be built by right-
clicking the project under Package Explorer and selecting
“Build Project”.

B. Running the Simulation

To run the project, select the arrow next to the Play button
and choose “ADTM Model”. The following screen should
appear (Figure 9).

Fig. 9. Starting ADTM

Selecting the play button (Start Run) will start the simula-
tion and run through several time steps automatically until the
stop button (Stop Run) is pressed. This will stop the simulation
on a time step. In addition, the button between the start and
stop button will run one step in the simulation. This can be
used run the simulation step-by-step. In order to start the
simulation over, the Reset Run button can be selected (just
to the right of the stop button). Note that this will change
the Default Random Seed and reset the parameters to default

values, which will cause a different random job placement
strategy to occur.

The model is shown by default. In order to view a chart,
the Scenario Tree needs to be selected in the left panel. Right-
click the charts option, and select “Add Time Series Chart”.
After the name and data set is input, Finish can be selected.
The model view will now have a tab to select that will have
the same name as the name of chart that was created. Selecting
that tab will display the chart.

C. Inputting Parameters

By default, ADTM has a set of parameters that will be used
in the simulation. The input parameters are as follows (defaults
in parenthesis):

o Default Random Seed (random): seeds the Java pseudo-

random number generator

¢ Use XInt-GA (unchecked): selects either the random job

placement algorithm or the XInt-GA algorithm

o X-Dimension (50): number of servers on the X-axis

e Y-Dimension (50): number of servers on the Y-axis

« Initial Number of Jobs (100): the number of jobs that will

be used at the beginning of the simulation - note that the
first timestep will have (initial + job gain) number of jobs

e Job Gain (65): the number of jobs added each timestep

In order to customize these parameters before a simulation,
choose the Parameters tab on the left panel. Note that the
simulation must be restarted in order to use any modified
parameters.

X. EXPERIMENTAL RESULTS

Having explained the usage of ADTM, this thermal modeler
will now be evaluated. The performance of the proposed
agent-directed thermal modeler will be given. In addition, a
comparision of the modified XInt algorithm and the random
job placement strategy will be discussed.

A. Purpose of ADTM Experiment

Extensive experiments were conducted to test the effec-
tiveness of ADTM. The purpose of these experiments were
threefold. First, the performance of the modified XInt thermal-
aware algorithm was compared with the thermal-agnostic
random job placement strategy. Potential energy savings and
simulation run times were inspected. Second, the temperature
changes in the data center at different time steps were vi-
sualized using different job placement strategies. Third, the
simple user interface was demonstrated in order to show
how changing parameters affects a specific thermal-aware
algorithm.

B. Experimental Setup

The proposed thermal modeler was implemented in Java
on the Repast Symphony Agent-Directed programming frame-
work. The modified XInt genetic algorithm and random job
placement were implemented in Java. All the experiments
were conducted on a Thinkpad Windows laptop equipped with
an Intel Xeon 2.4GHz processor and 4GB memory. ADTM



with default parameters will have a small memory and CPU
footprint. It will run on any system that can install a Java
runtime environment with the Repast Symphony framework
dependencies. Since the parameters for the size of the data-
center and number of jobs created are dynamically configured
by the user, the hardware utilization footprint will be different
for each set of parameters. Using default parameters with
the the Java(TM) SE Runtime Environment 1.6.0 build 31 in
32-bit mode, ADTM requires 108MB of memory (73MB of
which are used for the VM overhead) with an additional 1MB
of memory required for every 30 simulated seconds. Unless
otherwise specified, the default 50*50 world was used, and
the duration of experiments were set to 800 seconds.

C. Energy Usage

The energy usage for the two job placement strategies
included with ADTM are now compared using different data
center utilizations.

Energy Usage Energy Usage

(a) Random Job Placement. (b) Modified XInt.

Fig. 10. Underutilization.

Energy Usage Energy Usage

(a) Random Job Placement. (b) Modified XInt.

Fig. 11. Opverutilization.

Figure 10 shows that when the data center is underutilized,
the baseline power consumption for the current 50*50 data
center is 1700 to 1800 KW for both strategies. The baseline
power consumption is due to the fact that a server still
consumes power when it is idle or in low utilization, which
can be as high as 2/3 of its peak power. Also note that in this
case, the XlInt algorithm barely saves any energy costs over
random job placement. The reason is that the HVAC adds
cooling costs when a server reaches the max temperature. In
the underutilization case, hardly any server reaches 1},45, SO
only the baseline cooling cost is incurred for both strategies.
However, the overutilization simulation in Figure 11, shows
that both strategies have higher power usage than the baseline.
The modified XInt algorithm consumes less power and is more
stable. This shows that the modified XInt algorithm provides
more energy efficiency than the random job placement strategy
in a datacenter that is overutilized.

D. Simulation Run Time

The simulation run time of the two job placement strategies
will now be examined to show that the modified XInt algo-
rithm runs almost as quickly as the random job placement
strategy. For a 800 time tick simulation on a 50*50 world,
the random job placement simulation runs for 62 seconds,
while the modified XInt algorithm runs for 63 seconds. For
a 800 time tick simulation on a 40*40 world, the random
job placement simulation takes 51 seconds, while the mod-
ified XInt algorithm runs for 52 seconds. There is barely a
noticeable difference in the simulation time between the two
job placement strategies, which indicates that ADTM runs
quickly even when simulating complicated thermal-aware job
placement algorithms.

E. Analysis and Implications

When the job rate is too high for the number of servers,
no thermal-aware algorithm will be able to keep the data
center cool enough without excessive cooling from the HVAC.
Nevertheless, the modified XInt algorithm uses about 5% less
energy than random job placement when the datacenter is
overutilized. Extensive experiments confirm the correctness of
our agent-directed thermal modeler by successfully showing
energy savings for a better thermal-aware algorithm. These
experiments also show that getting data from ADTM is quick
(several algorithms could potentially be run in just an hour).
Finally, the learning curve for ADTM is very low thanks to
its well-defined parameters, intuitive user interface, and easy-
to-understand graphs and models.

XI. CONCLUSION

Several thermal-aware algorithms exist that can help data
centers minimize the energy needed to cool a data center.
Simply reading about different algorithms, however, makes it
hard to visualize the impact this strategy will have among the
nodes in a data center. Thermal modelers do a great job of
visualizing which nodes in a data center will remain hot and
which ones will be cooled by simulating an algorithm and
the air flowing throughout a data center. However, existing
modelers can have a high learning curve and take a long time
to simulate in order to produce a model.

ADTM’s purpose was to minimize the learning curve while
still providing a useful model that does not take several
hours to create. The few parameters needed to run an ADTM
simulation minimizes the time needed to learn how to use
ADTM. It also runs quickly, simulating steps in a matter of
milliseconds. This means in just a minute or two, one can have
a very meaningful model that can show how a thermal-aware
algorithm will affect a data center.

ADTM was then shown to compare two different job place-
ment algorithms. In the first algorithm, random job placement
puts jobs randomly on a node in the data center. ADTM’s
default values are intentionally set to overload the data center.
When the data center is overloaded, random job placement
still has several nodes that are very cool. This means the
HVAC will needlessly turn on to cool down the hot nodes



while several nodes are still at their equilibrium temperature.
XInt-GA is more efficient (5% more efficient). When the
HVAC turns on when the XInt-GA parameter checkbox is
checked, most of the nodes are already heated close to their
threshold temperature value of 65°C. The energy charts that
can be produced by ADTM shows that it takes longer for
the HVAC to turn on using the XInt-GA algorithm. This
simple example illustrates the use of ADTM in showing the
superiority of XInt-GA over random job placement as well as
showing servers’ temperatures with each time step.

XII. FUTURE WORK

This report shows that ADTM can be an effective way of
modeling thermal-aware algorithms with a very small learning
curve. Future ideas for ADTM may include providing a
more accurate thermal model. A heat recirculation matrix
could potentially provide more accuracy. In addition, more
thermal-aware algorithmic implementations could be included.
Some ideas might be algorithms that consider file placement,
algorithms that include thermal prediction, and algorithms that
minimize heat recirculation. A final idea could be to use real
trace data from the industry (perhaps data from Yahoo! or
Google, for instance) in order to verify the effectiveness of
ADTM.

The von Neumann neighborhood represents a simplistic
interference matrix when influencing a neighboring node’s
change in temperature. CFD models can be used to more
accurately model this region of influence. This would also
delinearize the HVAC influence in cooling down the nodes.
Equations based on CFD and experimentation would remove
some of these static assumptions.
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— Provided proofreading and expertise in publishing
documents
— Prepared students for presentation at conferences
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