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Abstract—With the advance of semiconductor, multi-core
architecture is inevitable in today’s embedded system design.
Nested loops are usually the most critical part in multimedia
and high performance DSP (Digital Signal Processing) systems.
Hence, maximizing loop parallelism is an important issue
to improve the performance of a modern compiler. This
paper studies how to maximize the system performance with
the consideration of energy reduction for applications with
multidimensional nested loops on multi-core DSP architec-
tures. An algorithm, EALPM (Energy-Aware Loop Parallelism
Maximization), is proposed in this paper. We implemented
a two phase strategy. First, the strategy uses retiming and
loop transformation to parallelize nested loops. Then the
strategy employs a novel voltage assignment algorithm to
reduce total energy consumption. The experimental results
show that on average, both performance and energy-saving
can be significantly improved using the EALPM algorithm.

Index Terms—Energy, multi-core, loop parallelization, re-
timing, voltage assignment

I. INTRODUCTION

With the advent of parallel architectures and systems
with deep memory hierarchies, nested loops optimization
has become an important area in high-level optimizations.
In many DSP applications such as multidimensional signal
processing and video applications, nested loops are the most
critical sections in which most of the execution time and
power is spent. The harness of parallelism in programs
to fully utilize their computation power is so important
that this can never be over-emphasized. Although we can
use multiple-threaded tools to generate coarse-grain parallel
programs [1], [2], it is hard to implement loop paralleliza-
tion at the granularities of loop iterations level manually.
Many automatic loop parallelization techniques have been
developed in the previous work [3], [4].

This paper focuses on improving both performance and
energy saving for loop applications. We choose to target
loop optimizations for two reasons [5]: First, through loop
optimizations, the multimedia and signal processing appli-
cations operated on multidimensional array structures will
improve their performance and energy saving. Second, these
optimizations are widely used by commercial and academic
optimizing compilers. For example, TI TMS320DM6467
(with Dual-Core) is widely used in DSP applications. To
the best of our knowledge, this paper is the first one
that addresses improving performance through maximizing
loop parallelism and reducing energy consumption through
voltage island assignments for nested loops on multi-core
architecture.

There are two kinds of parallelism: 1). Data parallelism,
involves performing a similar computation on many data
objects simultaneously [6]. 2). Task parallelism, involves
performing different tasks in parallel, where a task is
an arbitrary sequence of computation. Task parallelism, a
challenging issue, is one of the two major focuses of this
paper. For loops, dependence cycles are the main obstacle to
parallelization. The dependence relation in a set of instruc-
tions constructs a dependence cycle. In this paper, we will
combine the iteration level loop parallelization technique
(see [2]) with voltage levels assignment to increase both
performance and energy-saving for multi-core architecture.
We target at iteration-level parallelism, which means differ-
ent iterations from the same loop kernel can be executed in
parallel. In this approach, loop transformation is modeled
by retiming [7], [8]. Retiming was originally proposed to
minimize the cycle period of a synchronous circuit by evenly
distributing registers. Sha et al. has extended it to schedule
data flow graphs on parallel systems [9].
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In [2], an iteration level algorithm has been proposed. The
basic idea is to migrate inter-iteration data dependencies by
regrouping statements of a loop kernel in such a way that
the number of consecutive independent iterations is always
maximized. This approach constructs a dependence graph
to model the data dependencies among the statements in a
loop and then uses retiming to model dependence migration
among the edges in the dependence graph. As a result,
this classic loop optimization problem is transformed into
a graph optimization problem, i.e., one of finding retiming
values for its nodes so that the minimum non-zero edge
weight in the graph is maximized. The scheme proposed by
Shao et al. [2] does not consider energy consumption while
achieving the loop parallelism.

DVS (Dynamic Voltage Scaling) allows CPU frequency
and voltage to change dynamically at run time, in order to
match demand. The Transmeta Crusoe TM5800 processor
can scale its frequency from 800MHz down to 367MHz and
its voltage from 1.3V down to 0.9V, thereby reducing power
consumption [10]. DVS is also employed on Intel XScale
processors [11]. Because required voltage scales roughly
linearly with frequency within typical operating ranges, and
energy is proportional to the square of the voltage, a modest
reduction in supply voltage can yield significant energy-
saving [12], [13]. DVS allows the processor to slow down
to match the speed of the real world or external bottleneck.
Recently, researchers have proposed globally asynchronous
and locally synchronous DVS processors in which the
frequency and voltage of various processor components
(“domains”) can be changed independently at run time [14]–
[17].

Combining the consideration of energy and performance,
in the study, we design an algorithm, EALPM (Energy-
Aware Loop Parallelism Maximization), to improve both
performance and energy saving. The experimental results
show that EALPM significantly improves both performance
and energy saving. For example, with 8 cores, EALPM
demonstrates an average 86.5% reduction of total execution
time, compared with the approach without using parallelism
(Med-P1). Compared with the approach without using volt-
age assignment (Med.3), EALPM shows an average 28.7%
reduction in total energy consumption.

In summary, our paper has three major contributions:
First, we use retiming and loop transformation to parallelize
nested loops. Second, we use a novel voltage assignment
algorithm to reduce total energy consumption. We have
considered to reduce leakage power by system level power

management. Third, data parallelism is employed to increase
the performance.

In the next section, we will introduce necessary back-
ground with examples. Then, we discuss the algorithms
in Section III. We demonstrate our experimental results in
Section IV. Concluding remarks are provided in Section V.

II. BASIC CONCEPTS AND MODELS

In this section, we introduce some basic concepts, which
will be used in the later sections. First, we introduce
parallelism models coupled with an example. Next, we
introduce the MLDG (Multi-Dimensional Loop Dependency
Graph) model and multidimensional retiming. Finally, we
describe the energy model.

A. Parallelism Models

Embedded systems usually have strict timing and memory
constraints. Effective techniques targeting at embedded sys-
tems must consider both factors. Loops are the most time-
consuming parts of the computation-intensive applications
for embedded systems, so it is important to optimize the
execution of loops [12].

There are two kinds of parallelism. The first one is called
data parallelism, which involves performing a similar com-
putation on many data objects simultaneously. For nested
loops, this corresponds to several cores executing a given
nested loop in parallel. All the processors execute a similar
program (the same loop body), but work on different parts
of array data, i.e., they execute different iterations of the
loop [6]. In order to map a given multi-media program to
a multi-core architecture, we address both data parallelism
and task parallelism issues.

Figure 1 shows an example of data parallelism. The
program on the left-hand side is a two-dimensional nested
loop. For the outside loop 𝑖, the iteration number is 600.
We can divide the 600 into three 200 iterations, i.e., 1
to 200, 201 to 400, and 401 to 600. Each part will be
implemented by a separate core. The three parts do not have
dependencies, hence they can be executed in parallel. This
example illustrates the general idea of data parallelism.

The second type of parallelism is task parallelism, which
involves performing different tasks in parallel, where a task
is an arbitrary sequence of computation. For nested loops,
this type of parallelism represents executing different loop
nests in different cores at the same time [6]. For example, in
Figure 1, instructions 𝑋 [𝑖, 𝑗] = 0; and 𝑌 [𝑖, 𝑗] = 0; appear
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for i = 401 to 600

for i = 1 to 600
for j = 1 to 200 {

X [i , j] = 0;
Y [i , j] = 0; }

endfor
endfor

endfor
endfor

Y [i , j] = 0; }
X [i , j] = 0;

for j = 1 to 200 {

for j = 1 to 200 {
X [i , j] = 0;
Y [i , j] = 0; }

endfor
endfor

for j = 1 to 200 {
X [i , j] = 0;
Y [i , j] = 0; }

endfor
endfor

for i = 1 to 200

for i = 201 to 400

Fig. 1. An example of data parallelism.

in the same loop body. If we want to execute them on
different cores to improve performance, iteration level par-
allelism must be achieved. This is a more difficult problem
compared with the parallelization of outside loop 𝑖. In the
next two subsections, we will introduce the background of
Multi-Dimensional Loop Dependency Graph (MLDG) and
retiming issues. We will show how to solve task parallelism
for nested loop with a detailed example.

B. Multi-Dimensional Loop Dependency Graph (MLDG)

To clearly show the data dependencies between loops, we
use a multi-dimensional loop dependency graph (MLDG)
to model a nested loop. A MLDG G = (V, 𝐸𝑑, 𝛿) is a
node-weighted and edge-weighted directed graph, where 𝑉

is a set of nodes representing the loops to be fused. 𝐸𝑑 ⊆

𝑉 ×𝑉 is a set of edges representing dependencies between
the loops. 𝛿 is a function from 𝐸𝑑 to 𝑍𝑛 representing the
minimum loop dependency vector between two loops [2],
[12], [18].

We use the minimum loop dependency vector of an edge
in the MLDG model instead of all the loop dependency
vectors to improve the efficiency of our technique. All
the comparisons between two loop dependency vectors are
based on the lexicographic order in this paper. For example,
in the two-dimensional case, a vector 𝑣⃗ = (𝑣1, 𝑣2) is smaller
than a vector 𝑢⃗ = (𝑢1, 𝑢2) according to the lexicographic
order if either 𝑣1 < 𝑢1 or 𝑣1 = 𝑢1 and 𝑣2 < 𝑢2 [12], [19].

C. Multi-Dimensional Retiming

A graph transformation technique is used in this study
to remove parallelism-prevention dependencies based on the
multidimensional retiming technique. Note that the retiming
technique preserves all the data dependencies of the original
Loop Dependency Graph (LDG). Retiming redistributes
delays, i.e., data dependency distances, in a graph to achieve
parallelism. Retiming and Dependence Migration Retiming
[7] is used to model dependence migration, and it is defined
as follows.
Definition 2.1: Given a dependence graph 𝐺 = (𝑉,𝐸,𝑤),

a retiming 𝑟 of 𝐺 is a function that maps each node in
𝑉 to an integer 𝑟(𝑣). For a node 𝑢 ∈ 𝑉 , the retiming
value 𝑟(𝑢) is the number of dependence distances (edge
weights) drawn from each of its incoming edges and pushed
to each of its outgoing edges. Given a retiming function 𝑟,
let 𝐺𝑟 = ⟨𝑉,𝐸,𝑤𝑟⟩ be the retimed graph of 𝐺 obtained by
applying 𝑟 to 𝐺. Then 𝑤𝑟(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) + 𝑟(𝑢) − 𝑟(𝑣)

for each edge (𝑢, 𝑣) ∈ 𝐸 in 𝐺𝑟 [12].
For a multi-dimensional loop dependency graph 𝐺, a

multidimensional retiming 𝑟⃗ is a function from 𝑉 to 𝑍𝑛.
The retiming value 𝑟⃗(𝑢) represents how many delays are
added into the edges 𝑢→ 𝑣 and subtracted from the edges
𝑤 → 𝑢, for 𝑢, 𝑣, 𝑤 ∈ 𝑉 . Therefore, in the retimed MLDG
𝐺𝑟, we have 𝛿𝑟(𝑒) = 𝛿(𝑒) + 𝑟⃗(𝑢) − 𝑟⃗(𝑣) for each edge
𝑒 : 𝑢 → 𝑣. The summation of the edge weights in a cycle
remains a constant after retiming. The retiming value 𝑟⃗(𝑢)

means that a node 𝑢 originally executed in the iteration 𝑖⃗ is
moved to the iteration 𝑖⃗−𝑟⃗(𝑢). For a loop dependency graph,
all the computation of loop 𝑢 are executed 𝑟⃗(𝑢) iterations
earlier. Some iterations of the original loop are moved out
of the loop body to become prologue and epilogue. More
specifically, the codes to be executed before and after the
loop body to complete the execution of the whole loop. The
number of copies of a node 𝑢 in prologue or epilogue can
be computed from the retiming value [12].

The normalized retiming value for node 𝑢 is defined as
𝑟(𝑢)−𝑚𝑖𝑛𝑢𝑟(𝑢), where 𝑚𝑖𝑛𝑢𝑟(𝑢) is the minimum retiming
value of all nodes 𝑢 in 𝑉 . From this definition, we know
that the normalized retiming value for any node in 𝑉 is
larger than or equal to (0, 0) in the two-dimensional case.

Figure 2 shows an example of iteration level parallelism.
In Figure 2(a), there is a loop 𝑖 with two instructions 𝑀1

and 𝑀2. Figure 2(b) shows the loop dependency graph of
these two instructions. For 𝑀1, 𝐴[𝑖] waits for one-iteration-
before information of 𝐵, i.e., 𝐵[𝑖 − 1]. Thus, we have an
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Prologue:

endfor
M2: B[i] = A[i − 2] * 2;
M1: A[i] = B[i − 1] + 10;
for i = 2 : N 

Migration
Dependence

M2M1

r (M1) = 1 r (M2) = 0
3

0

M1 M2

(c)

(d)

(b)

(a)

Loop Transformation

1

2

M1: A[2] = B[1] + 10;
New loop kernel:
for i = 2 : N − 1;
M2: B[i] = A[i − 2] * 2;
M1: A[ i + 1] = B[i] + 10;
endfor
Epilogue:
M2: B[N] = A[N − 2] * 2

Fig. 2. An example of iteration level loop parallelism.

Core 1

.

..
.
.

M1: A[5] = B[4] + 10 ;

M1: A[8] = B[7] + 10 ;
M2: B[7] = A[5] * 2 ;

M2: B[4] = A[2] * 2 ;

i = 7

i = 4

Core 3

.

.

.

i = 5

M2: B[3] = A[1] * 2 ;
M1: A[4] = B[3] + 10 ;

M1: A[7] = B[6] + 10 ;
M2: B[6] = A[4] * 2 ;

i = 6

Core 2

i = 3

M1: A[6] = B[5] + 10 ;
M2: B[5] = A[3] * 2 ;

i = 2
M2: B[2] = A[0] * 2 ;
M1: A[3] = B[2] + 10 ;

.

Fig. 3. An example of iteration level loop parallelism.

arrow with 1 going to 𝑀1. Similarly, we have an arrow
with 2 going to 𝑀2, which means 𝑀2 needs to wait for
two-iteration-before information from 𝐴. Figure 2(c) shows
how to use retiming to change the dependencies of the
two instructions. With retiming 𝑟(𝑀1) = 1, for 𝑀1, the
incoming number 1 is shifted to the outgoing arc, then the
number of outgoing arcs is increased to 3. Then the value of
incoming arc of 𝑀1 becomes 0. For 𝑀2, we need to use
retiming, so we have 𝑟(𝑀2) = 0. Figure 2(d) shows the
actually changes in the program shown in Figure 2(a) after
implementing the retiming technique. The whole loop into
is divided into three parts. The prologue part only has one
instruction, 𝑀1 : 𝐴[2] = 𝐵[1]+10;. The epilogue part also
only has one instruction, 𝑀2 : 𝐵[𝑁 ] = 𝐴[𝑁 − 2] ∗ 2;. The
major part, i.e., the new kernel part, is in the middle. We
can use three cores to implement this major part in parallel.
The execution time is reduced to nearly 1/3 of the original
approach.

Figure 3 shows how to implement the new loop kernel
part with three cores in parallel: core 1 executes iterations 2,

5, 8, 11, ⋅ ⋅ ⋅; core 2 performs iterations 3, 6, 9, 12, ⋅ ⋅ ⋅; and
core 3 implement iterations 4, 7, 10, 13, ⋅ ⋅ ⋅. In iteration 2,
A[3] is generated, and it is needed only in iteration 5. 𝐵[2]

can be directly used in the same iteration 2. Hence, after
retiming, there is no dependency problem to prevent the
parallelization. The non-zero number 3 actually decides how
many cores can be used in parallel. Paper [2] has detailed
proofs and shows how to retime the graph and implement
the program on arbitrary number of cores.

D. The Energy Model

Energy consumption needs to be considered as one of the
primary metrics in embedded system design. In a CMOS
circuit, The dynamic power consumption is proportional to
𝑉 2 ⋅ 𝑓 ⋅ 𝐶𝐿, where 𝐶𝐿 is the load capacitance, V is the
supply voltage, and f is the system clock frequency [20]–
[25]. Therefore, energy is equal to 𝑉 2 ⋅ 𝑓 ⋅ 𝑐 ⋅ 𝑡, where 𝑐

is a constant and different components may have different
𝑐. Reducing the supply voltage can result in substantial
power and energy saving. Roughly speaking, system’s power
dissipation will be halved if we reduce 𝑉 by 30% without
changing any other system parameters [12], [21].

According to the 𝛼 formula in CMOS circuit, the cycle
period time 𝑇𝑐 is proportional to 𝑉

(𝑉−𝑉𝑡ℎ)𝛼
, where 𝑉𝑡ℎ is

the threshold voltage and 𝛼 ∈ (1.0,2.0] is a technology
dependent constant [21]–[24]. Given the number of cycles
𝑁 of node 𝑣, its computation time 𝑇 (𝑣) = 𝑁 ×𝑇𝑐. We can
see that the lower voltage will prolong the execution time
of a node but reduce its energy consumption.

DVS (Dynamic Voltage Scaling) is a technique that varies
system’s operating voltages and clock frequencies based on
the computation load to provide desired performance with
the minimum energy consumption. It has been demonstrated
as one of the most effective low power system design
techniques and has been supported by many modern micro-
processors. Examples include Transmeta’s Crusoe, AMD’s
K-6, Intel’s XScale and Pentium III and IV, and some DSPs
developed in Bell Labs [12].

One hardware approach to save energy is the voltage
islands technique [6], [26], [27]. The core-based design
using voltage islands is a new technique which helps re-
ducing both switching and standby components of power
dissipation. Simply speaking, a voltage island is a group
of on-chip cores powered by the same voltage source,
independently from the chip-level voltage supply. The use
of voltage islands permits operating different portions of the
design at different voltage levels in order to optimize the
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overall chip power consumption. In the SoC (System on
Chip) context, the voltage island enables core-level power
optimization by utilizing a power supply that is unique from
the rest of the design.

core 12

island 1
voltage

island 2
voltage

island 3
voltage

ddV   = 1.0, 1.1, 1.2 V V   = 1.0, 1.2, 1.4 V V   = 1.1, 1.3, 1.5 Vdddd

core 2core 1

core 3 core 4

core 5 core 6

core 7 core 8

core 9 core 10

core 11

Fig. 4. The multi-core architecture with voltage islands.

Figure 4 shows the multi-core architecture with voltage
islands. In this architecture, the chip area is divided into
multiple voltage islands, each of which is controlled by a
separate power feed and operates under a different voltage
level/frequency. There are three voltage islands shown in
Figure 4. The 𝑉𝑑𝑑 in island 1 has three voltage levels: 1.0
𝑉 , 1.1 𝑉 , and 1.2 𝑉 ; island 2 has 1.0 𝑉 , 1.2 𝑉 , and
1.4 𝑉 and island 3 has 1.1 𝑉 , 1.3 𝑉 , and 1.5 𝑉 ; Each
voltage island is divided into multiple power domains. All
the domains within an island are fed by same 𝑉𝑑𝑑 source but
independently controlled. For example, in Figure 4, island
1 has two domains, each domain has two cores. So totally 4
cores, i.e., cores 1, 2, 3, and 4, are in island 1. The advantage
of this island based architecture is that it can help save both
dynamic and leakage power [27]. Specifically, it can save
dynamic energy by employing different voltage levels (using
DVS) for the different islands, and reduce leakage energy
by shutting down the power domains that are not needed by
the current computation, and other methods such as using
ABB (Adaptive Body Biasing) [28].

We define the voltage assignment problem as follows:
given 𝑁 core on a heterogeneous multi-core architecture,
i.e., the number of power domain of each voltage island need
not be the same; the number of cores in each power domain
also is not necessary to be the same; and the voltage levels
of each 𝑉𝑑𝑑 power line are heterogeneous, how to select
the cores, power domain, and voltage islands and assign
the proper voltage level to each core to achieve the best
performance and energy saving.

III. THE ALGORITHMS

In this section, an algorithm, EALPM (Energy-Aware
Loop Parallelism Maximization), is designed to improve

the performance and energy saving by loop parallelism
maximization and voltage assignments for nested loops.

A. The EALPM Algorithm

Algorithm III.1 EALPM
Require: A heterogeneous multi-core platform with 𝑁

cores, 𝑀 independent tasks.
Ensure: Voltage assignment 𝐴 and the retiming 𝑟⃗, to

MIN(𝐸).
1: Divide the outside loop by using data parallelism so

that multiple cores execute different segments of a given
loop in parallel.

2: Use dependency migration algorithm [2] to find a retim-
ing function for a given dependence graph so that the
minimum non-zero edge weight in the retimed graph is
maximized.

3: Implement task parallelism, based on the number of
parts without dependencies among them.

4: Record the retime 𝑟⃗.
5: Based on the obtained new loop structure, implement

our voltage assignment algorithm VA. Assign proper
voltage to each core so that the total energy is mini-
mized.

6: Shut down the unused voltage islands and power do-
mains to reduce leakage energy.

7: Use ABB method to reduce leakage energy for active
cores.

8: Record the new assignment 𝐴.
9: Record 𝐸𝑚𝑖𝑛.

10: Output 𝐴, 𝑟⃗, and 𝐸𝑚𝑖𝑛.

The EALPM algorithm is shown in Algorithm III.1. We
first implement data parallelism for outside loop. Next, use
dependency migration algorithm [2] to find the maximum
loop parallelism at iteration level. Based on the obtained
loop structure, we do task parallelism. Based on the obtained
new loop structure, we implement our voltage assignment
algorithm, which is shown in Algorithm III.2. Then we
turn off the unused voltage islands and power domains in
any voltage island to reduce leakage energy. We also use
ABB to reduce leakage energy for active cores. Finally,
output the assignment 𝐴, retime 𝑟, and the minimal energy
consumption 𝐸𝑚𝑖𝑛.

The EALPM algorithm has several advantages: 1). Use
dependency migration algorithm to maximize iteration par-
allelism for a loop. 2). Exploit the task and data parallelism
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at system level. 3). Use voltage assignment to save dynamic
energy and power management to reduce leakage energy
while achieve maximum performance.

B. The VA Algorithm

Algorithm III.2 VA
Require: A heterogeneous multi-core platform with 𝑁

cores, 𝑀 independent tasks.
Ensure: Voltage assignment 𝐴.

1: Check core availability, how many cores are in active
mode and not being used, noted as 𝑁1.

2: if 𝑁1 < 𝑀 then
3: Activate cores until the total active cores are 𝑀 .
4: end if
5: if 𝑁 < 𝑀 then
6: Merge some tasks and activate all cores until 𝑁 ≥

𝑀 .
7: else
8: Predict the workload 𝑊𝑖, where 1 ≤ 𝑖 ≤ 𝑁 , for each

task.
9: Sort the tasks according to their workload in descend-

ing order.
10: Assign the task with highest load to the core with

highest possible voltage available.
11: Assign other tasks in the same power domain that

has cores already been assigned tasks, until the power
domain is full.

12: Assign other tasks in the same voltage island until
the voltage island is full.

13: Predict the execution time or finish time 𝑇 for the
core with the highest task load using the highest
voltage level.

14: Select the proper voltage level for each core so that
the execution time of each core 𝑡𝑖 ≤ 𝑇 , where 2 ≤

𝑖 ≤𝑀 .
15: Output the voltage assignment 𝐴, which consists of

voltage level of each core.
16: end if

When it comes to voltage assignment on a heterogeneous
multi-core platform, we develop algorithm VA, which is
shown in Algorithm III.2. First, we check how many cores
are in active mode. Then we arrange the number of active
cores to be the same as the number of tasks. If the total
number of cores is less than the number of tasks, we need
to merge some tasks. Next, predict the workload on each

core. Assign the task with the highest load to the core with
the highest possible voltage available and put other tasks
on the cores in the same domain and the same island. Then
we predict the execution time of the first selected core and
assign proper voltage for other cores so that these cores will
not finish early in order to reduce total energy consumption.
Finally, output the voltage assignment 𝐴.

IV. EXPERIMENTS

We conduct experiments with the EALPM algorithm on
a set of benchmarks including All-pole filter, Differential
Pulse-Code Modulation device (DPCM), Wave Digital filter
(WDF), Infinite Impulse filter (IIR), Floyd-Steinberg algo-
rithm (Floyd), and Two dimensional filter (2D). We build
a simulation framework to evaluate the effectiveness of our
approach. The experiments are performed on a Dell Optiplex
with a Intel Core 2 Quad 2.83 GHz processor and 3 GB
memory running Red Hat Linux 9.0.

We first conduct experiments focusing on six methods to
compare the total energy consumption. Method 1: Data par-
allelism; Method 2: Task parallelism Method 3: Both data
parallelism and task parallelism; Method 4: Data parallelism
with voltage assignment; Method 5: Task parallelism with
voltage assignment; Method 6: Our EALPM algorithm.

The experimental results for the six methods are shown
in Table I when the number of cores is 8. Entries “Med.1”
to “Med.6” represent the six methods we used in the exper-
iments. Column “E” represents the minimum total energy
consumption obtained from six different methods. Column
“% M1” to “% M5” represents the percentage of reduction
in total energy consumption, compared to the Method 6 (our
algorithm), respectively. The average reduction is shown in
the last row of the table.

The results show our EALPM can significantly improve
energy efficiency for multi-core architecture. Our algorithms
improve the energy reduction over other five methods.
For example, compared with the approach without using
voltage assignment (Med.3), EALPM shows an average
28.7% reduction in total energy consumption. With other
experiments, we observe that with more cores available,
the reduction ratio for the total energy consumption has
increased.

We compare the performance with four other methods.
Method 1: Program implementation without task parallelism
and data parallelism. Method 2: Data parallelism only.
Method 3: Task parallelism only. Method 4: Our EALPM
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Six Methods Energy Comparison with 8 cores
Bench. N. Med.1 % M1 Med.2 % M2 Med.3 % M3 Med.4 % M4 Med.5 % M5 Med.6

E(mJ) E(mJ) E(mJ) E(mJ) E(mJ) E(mJ)
IIR 160 426 38.5 448 41.5 361 27.4 329 20.4 349 24.9 262

DPCM 160 442 37.8 472 41.7 392 29.7 341 19.4 376 26.9 275
Floyd 160 452 39.6 468 41.7 381 28.3 347 21.3 355 23.1 273

All-pole 290 727 39.2 759 41.8 620 28.7 559 20.9 568 22.2 442
WDF(1) 40 1088 37.6 1145 40.7 952 28.7 853 20.4 881 22.9 679
WDF(2) 120 326 37.7 335 39.4 289 29.8 256 20.7 265 23.4 203
2D(1) 340 919 39.0 945 40.6 788 28.8 707 20.7 721 22.2 561
2D(2) 40 1251 38.0 1357 42.9 1076 28.0 957 19.0 1012 23.4 775

MDFG1 80 239 38.1 278 46.8 201 26.4 181 18.2 190 22.1 148
MDFG2 80 276 38.4 278 38.8 234 27.4 218 22.0 229 25.8 170

Average Reduction (%) 38.4 41.6 28.7 20.3 23.7

TABLE I

THE COMPARISON OF TOTAL ENERGY CONSUMPTION WITH SIX METHODS ON VARIOUS BENCHMARKS FOR 8 CORES.

Four Methods performance Comparison with 8 cores
Bench. N. M-1 M-2 % M1 M-3 % M1 M-4 % M1

T(mS)T(mS) T(mS) T(mS)
IIR 160 190 58 69.5 79 58.4 32 83.2

DPCM 160 179 46 74.3 71 60.3 24 86.6
Floyd 160 205 58 71.7 73 64.4 24 88.3

All-pole 290 311 86 72.3 115 63.0 37 88.1
WDF(1) 40 506 147 70.9 204 59.7 71 86.0
WDF(2) 120 140 43 69.3 58 58.6 21 85.0
2D(1) 340 402 124 69.2 165 59.0 51 87.3
2D(2) 40 501 158 68.5 215 57.1 77 84.6

MDFG1 80 102 36 64.7 40 60.8 12 88.2
MDFG2 80 124 31 75.0 48 61.3 15 87.9

Average Reduction (%) 70.5 60.3 86.5

TABLE II

THE COMPARISON OF PERFORMANCE WITH FOUR METHODS ON

VARIOUS BENCHMARKS FOR 8 CORES.

algorithm. Table II shows our experimental results. Col-
umn “Bench.” stands for the benchmarks we used in the
experiments. Column “N.” represents the number of nodes
of each filter benchmark. We have unfolded 10 times for
each benchmark in order to get large enough number of
nodes. Entries “ M-1” to “ M-4” represent the four methods
implemented in the experiments. Column “T” represents the
execution time obtained from six different methods. Column
“% M1” after each method represents the percentage of
reduction in execution time, compared to the Method 1
respectively. The last row shows the average reduction.

The results show that our EALPM can significantly
improve the performance for multi-core architectures. For
example, with 8 cores, EALPM shows an average 86.5% re-
duction of total execution time, compared with the approach
without using parallelism (M-1). Our further experiments
show that with more cores available, the reduction ratio for
the total execution time has increased.

V. CONCLUSION

In this paper, we studied the loop parallelism and voltage
assignment problem to maximize loop parallelism with
energy consideration on multidimensional nested loops. We
proposed a highly efficient algorithm, EALPM (Energy-
Aware Loop Parallelism Maximization) for applications with
loops. By combining loop transformation and voltage as-
signment, our algorithm improves both the performance
(with parallelism) and energy-saving (with voltage scaling)
for multidimensional DSP applications on heterogeneous
(also includes homogeneous) multi-core platforms. A wide
range of benchmarks have been tested in the experiments.
The experimental results showed that our algorithm signif-
icantly improves both performance and energy-saving for
applications with nested loops.
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