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EAD and PEBD: Two Energy-Aware Duplication
Scheduling Algorithms for Parallel Tasks
on Homogeneous Clusters

Ziliang Zong, Adam Manzanares, Xiaojun Ruan, and Xiao Qin, Senior Member, IEEE

Abstract—High-performance clusters have been widely deployed to solve challenging and rigorous scientific and engineering tasks.
On one hand, high performance is certainly an important consideration in designing clusters to run parallel applications. On the other
hand, the ever increasing energy cost requires us to effectively conserve energy in clusters. To achieve the goal of optimizing both
performance and energy efficiency in clusters, in this paper, we propose two energy-efficient duplication-based scheduling
algorithms—Energy-Aware Duplication (EAD) scheduling and Performance-Energy Balanced Duplication (PEBD) scheduling. Existing
duplication-based scheduling algorithms replicate all possible tasks to shorten schedule length without reducing energy consumption
caused by duplication. Our algorithms, in contrast, strive to balance schedule lengths and energy savings by judiciously replicating
predecessors of a task if the duplication can aid in performance without degrading energy efficiency. To illustrate the effectiveness of
EAD and PEBD, we compare them with a nonduplication algorithm, a traditional duplication-based algorithm, and the dynamic voltage
scaling (DVS) algorithm. Extensive experimental results using both synthetic benchmarks and real-world applications demonstrate that
our algorithms can effectively save energy with marginal performance degradation.

Index Terms—Homogeneous clusters, energy-aware scheduling, duplication algorithms.

1 INTRODUCTION

WITH the advent of powerful microprocessors and high-
speed interconnects, and the increasing demand of
computing capability, high-performance clusters have
served as primary and cost-effective infrastructures for
complicated scientific and commercial applications. Parallel
applications running on clusters are generally computation-
intensive and data-intensive in nature. Accordingly, effi-
cient parallel execution and prompt completion of massive
parallel tasks are essential and desirable.

Due to the high-power consumption of microprocessors,
networks, and storage disks, high-performance clusters
consume significant amounts of energy. For example, the
total power of a 360-Tflops high-performance cluster would
exceed 10 megawatts, possibly approaching 20 megawatts.
Ten megawatts is approximately equal to the amount of
power used in 11,000 US households [1]. The Environment
Protection Agency reported that, in 2006, the total energy
consumption of servers and data centers of the United
States was 61.4 billion KWh, which was almost equal to the
total power cost of 5.8 million US households [2].
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It is obvious that high performance and high energy cost
are two key features of modern clusters. Ignoring either of
them is unreasonable and unpractical. Unfortunately, pre-
vious research on clusters has been primarily focused on
performance improvement. Nowadays, high energy cost has
become a salient constraint of clusters. Designing energy-
efficient and environmental friendly clusters is highly
desirable. In this paper, we design novel scheduling algo-
rithms to achieve the goal of maximizing performance and
energy efficiency in clusters. More specifically, we propose
two energy-aware duplication scheduling algorithms—the
Energy-Aware Duplication (EAD) and Performance-Energy
Balanced Duplication (PEBD) scheduling algorithms.

Task duplication strategies have been proved to be an
efficient strategy to improve the performance of scheduling
parallel tasks with precedence constraints [3], [4], [5]. This is
mainly because unnecessary communication delay among
multiple processors can be eliminated through task dupli-
cations, thereby reducing overall communication overheads
in clusters. However, most existing duplication-based
scheduling algorithms replicate all possible tasks to shorten
schedule length without considering energy consumption
caused by making replicas. In other words, the negative
impact of task duplications was ignored in the previous
studies. In contrast, our algorithms strive to make trade-off
between schedule lengths and energy savings by judi-
ciously replicating predecessors of a task if the replicas can
improve performance without noticeably increasing energy.

To save energy, clusters can be built using low-
frequency, low-power processors with modest perfor-
mance. In doing so, performance might be more efficiently
enhanced through parallelism than through using higher
power, higher frequency processors. Green Destiny at
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Los Alamos National Laboratory makes use of this
approach to consume three times less energy per unit than
the Accelerated Strategic Computing Initiative (ASCI)
Q machine [6]. The other successful commercial cluster
using this idea is the IBM Blue Gene/L supercomputer [7].
However, this approach may sacrifice too much per-node
performance to achieve their low-power goals. For example,
because Green Destiny uses more power-efficient micro-
processors, it is approximately 15 times slower per node
compared with high-performance nodes [6]. Using low-
power and low-frequency chips succeeds only if users can
improve performance by scaling up to a large number of
processors. Unfortunately, many commercial clusters are
not large scale in terms of the number of computing nodes.

Alternatively, one can build clusters using power-hungry
and high-performance processors coupled with smart power
management mechanisms. Clusters designed using this
approach are usually called power-scalable clusters. In
power-scalable clusters, the power level will be scaled down
when clusters are not fully utilized and scaled up when
clusters are busy. Dynamic Voltage and Frequency Scaling
or DVES is one of the most effective strategies to reduce
energy consumption in power-scalable clusters. For exam-
ple, Intel developed the SpeedStep technology [8] and AMD
developed the PowerNow! and Cool'n’Quiet technology [9].
While DVFS technologies have made important contribu-
tions in building energy-efficient clusters, most of them are
only capable of saving energy in processors.

Increasing evidences have shown that in addition to
processors, high-speed interconnections consume signifi-
cant amounts of energy in clusters. For example, it is
observed that interconnect consumes 33 percent of the total
energy in an Avici switch [10], whereas routers and links
consume 37 percent of the total power budget in a Mellanox
server blade [12]. This situation is getting worse with the
emergence of next generation high-speed interconnections
like Gigabit Ethernet, Infiniband, Myrinet, and QsNet'. For
instance, measurements have shown that a 1 Gbps Ethernet
consume about 4 W more energy than 100 Mbps Ethernet
[13]. A 10 Gbps Ethernet may consume 10 to 20 W more
energy in average [13]. Lack of energy conservation
technology for cluster interconnects becomes a severe
problem because, without such technology, reducing en-
ergy consumption caused by communication-intensive
parallel applications is almost impossible.

In this paper, we investigate the possibility of saving
energy through power-aware duplication-based scheduling
for both processors and interconnects. Our algorithms
leverage DVFS to save energy dissipation in processors.
Rather than adjusting the voltage to the best fit to current
workloads, our algorithms force processors to operate at the
highest voltage and frequency levels as long as there is a
task waiting in the processing queue and the input datum
of this task is ready. Our idea of conserving energy is to
immediately turn processors to the lowest voltage once no
task is waiting or no task is ready for execution. This policy
ensures that tasks can be executed as fast as possible.
Meanwhile, tasks on the critical path will be duplicated
under the condition that no significant energy overhead is
introduced by the replicas. Duplications can avoid the
performance degradation caused by waiting messages. The
rationale behind our approach is twofold. First, energy
overhead incurred by task replicas could be offset by energy
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savings in interconnects and by shortening schedule length.
Second, the overall performance will be improved by the
virtue of replicas.

The rest of the paper is organized as follows: In Section 2,
we present related work. Next, Section 3 introduces
mathematical models including a system model, a task
model, and an energy consumption model. In Section 4, we
present the energy-aware scheduling strategies. Experi-
mental environment and simulation results are demon-
strated in Section 5. Finally, Section 6 provides the
concluding remarks and future research directions.

2 ReLATED WORK

Since many parallel applications running in clusters require
intensive data processing and data communication, schedul-
ing strategies deployed in clusters have a large impact on
overall system performance. Basically, parallel scheduling
strategies can be classified to three primary categories, called
priority-based scheduling, cluster-based scheduling, and
duplication-based scheduling, respectively. Priority-based
scheduling involves the assignment of priorities to tasks and
then maps those tasks to processors based upon assigned
priorities [14]. Cluster-based scheduling algorithms cluster
as many intercommunicating tasks as possible in a group
and allocate it to the same processor, thereby eliminating
communication overheads [15]. The basic idea of duplica-
tion-based scheduling is to replicate as many as predecessor
tasks in the critical paths provided that the schedule length
can be shortened. Duplication scheduling outperforms other
scheduling algorithms in most cases, especially when
communication time dominates the execution time of
parallel applications. However, the performance improve-
ment increases energy consumption because many tasks are
duplicated and thus executed more than once by multiple
processors. To address this problem, we propose two energy-
aware duplication algorithms (EAD and PEBD) in this paper.
Instead of duplicating all performance-oriented tasks, our
algorithms replicate tasks with the consideration of both
performance improvement and energy cost.

There has been a large body of previous studies
investigating power-aware techniques to reduce energy
consumption in processor and memory resources [16], [17],
[18], [19] in the late 90’s. Dynamic power management is a
design methodology aiming to achieve specified perfor-
mance with minimum number of active components or a
minimum load on such components [20]. Dynamic power
management consists of a collection of energy-efficient
techniques that adaptively turn off cluster components or
bring performance down when the components are idle or
partially unexploited. For example, based on the observa-
tion of past idle and busy periods, predictive shutdown
policies can make power management decisions before a
new idle period starts [21].

Researchers have focused on energy-aware algorithms for
power-scalable clusters. Among these algorithms, Dynamic
Voltage Scaling (DVS) technology [22], [23], [24], [25], [26],
[27] has been widely exploited to make processors energy-
efficient in both portable and nonportable computing
systems. Dynamic Frequency Scaling (also known as CPU
throttling) is another similar technique in which a processor
runs at a less-than-maximum frequency when it is not fully
utilized in order to conserve power [23]. Very recently, many
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studies have been reported in utilizing the Dynamic Voltage
and Frequency Scaling (DVFS) technology to reduce power
dissipations in clusters and high-performance computing
platforms [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. Results have shown that these proposed schemes can
achieve high energy efficiency for processors, indicating that
DVES is capable of saving significant amount of energy for
computation-intensive applications. The benefits of DVFS
may diminish when it comes to communication-intensive
applications, because the energy consumed by interconnects
dominates the total power consumption.

To address the above problem, researchers in Princeton
University investigated the possibility of introducing DVS
technology to interconnections [35]. Shang et al. proposed
the architectural model for applying DVS to links. Soteriou
and Peh investigated the potential of carrying DVS links to
the extreme—dynamically turning links on/off in response
to communication traffic variance [37]. Gunaratne et al.
investigated Adaptive Link Rate (ALR) as a means of
reducing the energy consumption of a typical Ethernet link
by adaptively varying the link data rate in accordance with
utilization [38]. Their simulation results demonstrated that
applying DVS to interconnections can achieve noticeable
energy savings. Their approaches heavily rely on hardware
support, e.g., network equipments (Network Interface
Cards and Switches) with various link rates. Unfortunately,
interconnects with multiple link rate and link frequency are
rarely used, especially for high-speed interconnections like
Gigabit Ethernet, Infiniband, Myrinet, and QsNetH. Further-
more, recent studies have shown that power consumption
in clusters is independent of link utilization. For example,
Gunaratne et al. have found that idle and fully utilized links
consume about the same amount of power in Ethernet [38].
Zamani et al. also stated that the Myrinet-2000 equipment
does not have power management technique and the
network energy consumed by interconnects remains un-
changed regardless of the network traffic [39].

One of the feasible approaches to conserving power
consumption caused by interconnects is to make task
duplication. Compared with existing energy-efficient tech-
niques, duplication-based strategies have their unique
advantages. First, task replicas can avoid communication
overheads among tasks, thereby improving performance
(see, for example, [3], [4], [5]). Second, as for communication-
intensive applications, huge energy consumption in inter-
connects can be reduced. We will address this point in the
following sections in detail. Third, the duplication strategies
can be seamlessly integrated with the DVS technology to
reduce energy dissipations in processors. Last but not the
least, the duplication-based schemes can be used in combina-
tion with the Adaptive Link Rate technology if the required
network devices are available on the market in the future.

3 MATHEMATICAL MODELS

In this section, we describe mathematical models used to
represent clusters, precedence-constrained parallel tasks,
and energy consumption in processors and interconnects.

3.1 Cluster Model

A cluster in this study is characterized by a set P =
{py,P2,-- -, Pm} Of computational nodes (hereinafter referred
to as nodes) connected by high-speed interconnects. It is
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assumed that the computational nodes are homogeneous in
nature, meaning that all processors are identical in their
capabilities. Similarly, the underlying interconnection is
assumed to be homogeneous and, thus, communication
overhead of a message with fixed data size between any
pair of nodes is considered to be the same. Each node
communicates with other nodes through message passing,
and the communication time between two precedence-
constrained tasks assigned to the same node is negligible.
To simplify the cluster model without loss of generality, we
assume that the cluster system is fault-free and the page
fault service time of each task is integrated into its execution
time. With respect to energy conservation, energy con-
sumption rate of each node in the system is measured by
Joule per unit time. Each interconnection link is character-
ized by its energy consumption rate that heavily relies on
data size and the transmission rate of the link.

3.2 Task Model

Parallel applications with a set of precedence-constrained
tasks can be represented in form of a Directed Acyclic Graph
(DAG) [40]. In this paper, a parallel application running
in clusters is modeled as a vector (V, E), where V =
{vy,va,..., vy} represents a set of precedence-constrained
parallel tasks, and E denotes a set of messages representing
communications and precedence constraints among parallel
tasks. It is assumed that all tasks in V are nonpreemptive and
indivisible work units. For each task in V, t; is defined as the
required time to compute v;,1 <1i < n. Similarly, e; =
(vi,v;) € E is defined as a message transmitted from task v;
to v;, and ¢;; is the required time of passing the message
e;jj € E. Please note that ¢;; is set to zero if v; and v; are
assigned to the same computational node. We assume in this
study that there is only one entry task and one exit task for
parallel applications with a set of precedence-constrained
tasks. The assumption is reasonable because in case of
multiple entry or exit tasks exist, the multiple tasks can
always be connected through a dummy task with zero
computation cost and zero communication cost messages. A
task allocation matrix (e.g., X) is an n x m binary matrix
reflecting a mapping of n precedence-constrained parallel
tasks to m computational nodes in a cluster. Element z;; in X
is “1” if task v; is assigned to node p; and is “0”, otherwise.

3.3 Energy Consumption Model

We use a divide-and-conquer approach to derive the energy
consumption models for processors and interconnections.

Let en; be the energy consumption caused by task v;
running on a computational node, of which the energy
consumption rate is PNjg,. The energy dissipation of task
v; can be expressed as (1).

en; = PNhigh X ti. (1)

Given a parallel application with a task set V' and allocation
matrix X, we can calculate the energy consumed by
executing all the tasks in V' using (2).

14 n
EN/M',gh = Zeni = Z (PNhi,gh . ti)
i=1 i=1
n (2)
= PNhigh Zti.
i=1
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Let PN,u, be the power of a computational node when it
is not executing a task, and f; be the completion time of
task t;. The energy consumed by an inactive node is a
product of the low-energy consumption rate PN, and an
idle period. Thus, we can use (3) to obtain the energy
consumed by the jth computational node in a cluster when
the node is sitting idle.

ENJ

low

- PNlow . <II’1&X ft (3)

n
§ Tij * ’L'

i=1

where max!" | (f;) is the schedule length, and max (f;) —
i @i - t; is the total idle time on the jth node. The total
energy consumption of all the idle nodes is

- i(%‘ : ti))

1=1

m. n
E E IU i .

Jj=1 i=

m m

ENigw =Y enly, = PNiow - ) (rgfélx(fi)

=1 =1

= PNy - <m max f7

(4)

Consequently, the total energy consumption of the
parallel application running on the cluster can be derived
from (2) and (4) as

n
EN = ENhigh + ENigw = PNyign » _ti
=1

m

3

(5)
1 (i tz‘)) :

Please note that this energy consumption model is
compatible with the DVFS technology. In DVFES, processors
may have several voltage and frequency levels; scheduling
algorithms may choose the best fit voltage to conserve
energy. In that case, PNz, can be replaced with PNy it
in the model.

To calculate the energy consumptions of interconnects, we
denote el;; as the energy consumed by the transmission of
message (t;,t;) € E. We can compute the energy consump-
tion of the message as a product of its communication time
and the power PLy;g, of the link when it is active:

+ PNlUw . <m . H{élx(fL) -
=

=1 i=

6l7'j = PL}”;gh X Cjj-

(6)

The cluster interconnect, in this study, is supposed to be
homogeneous, which implies that all messages are trans-
mitted over the network interconnects at the same
transmission rate. The energy consumed by a network link
between p, and p, is a cumulative energy consumption
caused by all messages transmitted over the link. Therefore,
the link’s energy consumption is obtained by (7), where L,
is a set of messages delivered on the link.

Loy = {Ve,;j cF 1<a,b< m|mm =1 NTjp = 1}
ELyy = Y elij= Y (PLuig - cij)
€ij€Lap €ij€Lap (7)
n n
= Z Z (Zia - 2o - PLigh - Cij)-
=1 j=Ti
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The energy consumption of the whole interconnection
network is derived from (8) as the summation of all the
links” energy consumption. Thus, we have

m m

ELh’igh = Z Z

a=1 b=1b#a

ab
ELthh

W w m m 8)
:Z Z Z Z (ia - @56 - PLuign - cij).-

i=1 j=1ji a=1 b=1ba

Similarly, we can express energy consumed by a link
when it is working in the low-power mode (e.g., idle mode)
as a product of the low-power consumption rate and the
period of the link working in this mode. Thus, we have

= PLi - (m:éX(ﬁ)—i i (l’m'fjb'cij)) )

i=1 =Ly

ELab

low

where PLy,, is the power consumption rate of the link
when it is in the low-power mode, and max}(f;) —
S puy” (@iq - T - ¢ij) is the total time of the link stays
in thls mode.

Now, we can express energy incurred by the whole
interconnection network during the low-power periods as

m m

ELigw=»_ Y ELp,

a=1 b=1b#a

m m

= Z Z PLlow

a=1 b=1b#a

3
=

(m%X(fi) - 4(% & Cz’j))'

(10)

Therefore, total energy consumption exhibited by the
cluster interconnect is derived from (8) and (10) as

EL = ELpigh + ELjgw. (11)

Note that in our experiments, PLy;,, and PLy,, of some
types of interconnects may be identical, i.e., PLpignh = PLigy-
That is because latest studies have shown that idle and fully
utilized high-speed interconnects consume almost the same
amount of energy in clusters [38], [39]. For example, there is
no power management mechanism in Myrinet-2000; the
network energy consumed by Myrinet-2000 switches
remains unchanged regardless of network traffics [39]. We
consider PLy;y, and PLy,, in our model to make the model
compatible with future interconnects coupled with the
adaptive link rate and dynamic power management
techniques.

Finally, the total energy consumption of the cluster
executing the application can be derived from (5) and (11) as

E=EN+EL. (12)

4 ENERGY-AWARE DUPLICATION STRATEGIES

In this section, we present two energy-aware duplication
strategies, called EAD and PEBD, for scheduling parallel
applications with precedence constraints. The objective of the
twoscheduling strategies is to shorten schedule lengths while
optimizing energy consumption of clusters. The scheduling
problem studied in this paper has been proved to be NP-hard
[41]. Therefore, the proposed two scheduling algorithms are
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TABLE 1
Important Notations and Parameters

Notation Definition \
EST(v;) Earliest start time of task v;

ECT(v;) Earliest completion time of task v;

FP(v;) Favorite predecessor of task v;
LACT(v) Latest allowable completion time of task v;
LAST(v;) Latest allowable start time of task v;

heuristic in the sense that they only can produce suboptimal
solutions. The EAD and PEBD algorithms consist of three
major steps delineated in Sections 4.1-4.3.

4.1 Generate Original Task Scheduling Sequence
Precedence constraints of a set of parallel tasks have to be
guaranteed by executing predecessor tasks before successor
tasks. To achieve this goal, the first step in our algorithms is
to generate an ordered task sequence using the concept of
level. The level of each task is defined as the computation
time from current task to the exit task. There are alternative
ways to generate the task sequence for a DAG, we use a
similar approach proposed in [4] to define the level L(v;) of
task v; as below:

ti, if successor(i) = @,
L(v;) = { max (level(k)) + t;, otherwise. (13)
k € succ(i)

The levels of other tasks can be calculated in a bottom-up
fashion by recursively applying the second term on the
right-hand side of (13). Once we obtain the levels, tasks will
be sorted in ascending order of the levels and the sorted
tasks form the original task-scheduling sequence.

4.2 Duplication Parameters Calculation

The second phase in the EAD and PEBD algorithms is to
calculate important parameters, which the algorithms rely
on to make duplication decision. The important notation
and parameters are listed in Table 1. Note that similar
notation was used by Ranaweera and Agrawal in [4].

The earliest start time of the entry task is O (see the first
term on the right side of (14)). The earliest start times of all the
other tasks can be calculated in a top-down manner by
recursively applying the second term on the right side of (14).

EST(UL)
0, if predecessor(i) = @,

glé% <Ckz€néii<#l(ECT(vj), ECT(vy) + ck,;)> , otherwise.
(14)

The earliest completion time of task v; is expressed as the
summation of its earliest start time and execution time.
Thus, we have

ECT(%) = EST(UZ') + ti. (15)

Allocating task v; and its favorite predecessor F'P(v;) on
the same computational node can lead to a shorter schedule
length. As such, the favorite predecessor FP(v;) is defined
as below:
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FP(v;) = vj,where Vej; € E, ey; € E, j# k|ECT (v))

(16)
+ cji > ECT(’Uk) + Cp;.-

As shown by the first term on the right-hand side of (17),
the latest allowable completion time of the exit task equals
to its earliest completion time. The latest allowable
completion times of all the other tasks are calculated in a
top-down manner by recursively applying the second term
on the right-hand side of (17).

ECT(v;), if successor(i) = P,
LACT (1) min ( ming, cp ., 2rpw,) (LAST(v)) — cij),
min (LAST(U,-))) , otherwise.
e;;€E,v;=FP(v;) !

(17)

The latest allowable start time of task v; is derived from its
latest allowable completion time and execution time. Hence,
the LAST (v;) can be written as

4.3 Energy-Aware Task Duplication and Allocation

4.3.1 The EAD Algorithm

Given a parallel application presented in form of a DAG,
the EAD algorithm allocates each parallel task to a
computational node in a way to aggressively shorten the
schedule length of the DAG while conserving energy
consumption. Fig. 1 shows the pseudocode of the EAD
algorithm, which aims to provide the greatest energy
savings when it reaches the point to duplicate a task. Most
existing duplication-based scheduling schemes merely
optimize schedule lengths without addressing the issue of
energy conservation. As such, the existing duplication-
based approaches tend to yield minimized schedule lengths
at the cost of high energy consumption. To make trade-offs
between energy savings and schedule lengths, we design
the EAD algorithm in which task duplications are strictly
forbidden if the duplications do not exhibit energy
conservation (see steps 9-10). In other words, duplications
are not allowed if they result in a significant increase in
energy consumption (e.g., the increase exceeds a threshold).
Consequently, the EAD algorithm ensures that performance
is optimized through task duplication with little energy
consumption.

Before this phase starts, phase 1 sorts all the tasks in a
waiting queue, followed by phase 2 to calculate the
important parameters. In phase 3, EAD strives to group
communication-intensive parallel tasks together and have
them allocated to the same computational node. Once
multiple task groups are constructed, each group of tasks is
assigned to a different node in the cluster. The process of
grouping tasks is repeated from the first task in the queue
by performing a depth-first style search, which traces the
path from the first task to the entry task. Steps 5 and 6
choose a favorite predecessor if it has not been allocated a
computational node. Otherwise, EAD may or may not
replicate the favorite predecessor on the current node. For
example, we assume that v; is the favorite predecessor of
the current task v;, and v; has been allocated to another
node. If duplicating v; on the current node to which v; is
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Phase 3 of EAD Algorithm

1. v = first waiting task of scheduling queue;

2. i=0;

3. assignvto Pj;

4. while (not all tasks are allocated to computational nodes) do

5. u=FP();

6. if (u has already been assigned to another processor) then

7. if (LAST(v) - LACT(u)<c,,) then /* if duplicate u, we can
shorten the schedule length */

8. moreenergy = en, — el,,; /*energy increase*/

9. if (moreenergy < threshold /) then /* increased energy less
than our threshold*/

10. assign u to P;; /*duplicate u*/

11. if v has another predecessor z # u has not yet been allocated
to any node then

12. u=z

13. else

14. if u is entry task then

15. u = the next task that has not yet been assigned to a node;

16. i++;

17. else

18. for another predecessor z of v, z # u,

19. if (ECT(u)+cc,, = ECT(z) + cc,,) and z hasn’t been
allocated) then

20. u = z; /* do not duplicate™/

21.  else

22. for another predecessor z of v, z# u,

23. if (ECT(u)+cc,, = ECT(z) + cc,,) and z hasn’t been allocated)
then

24. u = z; /* do not duplicate™/

25. else allocate u to P;;

26. V=u;

27. if vis entry task then

28. v =the next task that has not yet been allocated to a computa-
tional node;

29.  i++;

30. assignvto Pj;

31. return schedule list, schedule length and energy consumption;

Phase 3 of PEBD Algorithm

v = first waiting task of scheduling queue;
i=0;
assign vto Pj;
while (not all tasks are allocated to computational nodes) do

u=FP(v),

if (u has already been assigned to another node) then

if (LAST(v) - LACT(u)<c,,) then /* if duplicate u, we can
shorten the execution time*/
moreenergy = en, — el,,; /*energy increase*/

9. lesstime = LACT(u) + c,, -LAST(v); /* schedule length is
reduced */

W N =

Noane

*®

10.  cost ratio = moreenergy / lesstime;  /*value of ratio: the
smaller the better*/

11. if (ratio < threshold %) then /* significantly shorten schedule
length */

12. assign u to P;; /*duplicate u*/

13. if v has another predecessor v # u has not yet been assigned
to any node then

14. u=v,

15. else

16. if u is entry task then

17. u = the next task that has not yet been allocated to a
computational node;

18. i++;

19.  else

20. for another predecessor z of v, 7 # u,

21. if (ECT(u)+cc,, = ECI(z) + cc,) and z has not been
allocated) then

22. u = z; /*do not duplicate*/

23.  else

24. for another predecessor z of v, z # u,

25. if (ECT(u)+cc,, = ECT(z) + cc,) and z has not been
allocated) then

26. u = z; /*do not duplicate*/

27. else assign uto P;;

28. v=u;

29. if vis entry task then

30. v =the next task that has not yet been allocated;
31, i++;
32. allocate v to P;;

33. return schedule list, schedule length and energy consumption

Fig. 1. Pseudocode of phase 3 in the EAD and PEBD algorithms.

allocated can improve performance without sacrificing
energy conservation, Step 12 makes a duplication of v;.

The generation of a task group terminates once the path
reaches the entry task. The next task group starts from the
first unassigned task in the queue. If all the tasks are assigned
to the computation nodes, then the algorithm terminates.

4.3.2 The PEBD Algorithm

The third phase of the PEBD algorithm is similar as that of
EAD except that PEBD seamlessly integrate the approach to
minimizing schedule lengths with the process of energy
optimization (see Fig. 1). Unlike EAD, the development of
PEBD is motivated by the needs of making the right trade-
off between performance and energy conservation. Thus,
the PEBD algorithm is geared to efficiently reduce schedule
lengths while providing the greatest energy savings. Energy
consumption incurred by duplicating a task involves
judging whether the duplication is profitable or not. To
facilitate the construction of PEBD, we introduce a concept
of cost ratio of a duplication, which is defined as the ratio
between the energy saving and schedule length reduction
(see Step 10). While the energy saving of the duplication is

obtained in Step 8, the reduction in schedule length is
computed in Step 9. The PEBD algorithm is, of course,
conducive to maintaining cost ratios at a low level, thereby
efficiently shortening schedule lengths with low-energy
consumption. This feature is accomplished by Steps 11-12,
which duplicate a task in case the cost ratio of such
duplication is smaller than a given threshold.

4.4 Time Complexity Analysis

In this section, we will analyze the time complexity of the
EAD and PEBD algorithms.

Theorem 1. Given a parallel application with multiple precedence-
constrained tasks, the time complexity of EAD and PEBD to
make scheduling decisions is O(2|E| + |V|(1g |V| + 1) + h|V]),
where E is the number of messages, V' is the number of parallel
tasks, and h is the height of the DAG.

Proof. The EAD and PEBD algorithms perform the three
main phases, respectively, described in Sections 4.1-4.3. In
the first phase, EAD and PEBD traverse all the tasks of the
DAG to compute the levels of the tasks. The time
complexity to calculate the levels is O(|E|), where |E| is
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the number of messages. This is because all the messages
have to be examined in the worst case. It takes O(|V [log| V)
time to sort the tasks in the nonincreasing order of the
levels, where | V| is the number of tasks. Therefore, the time
complexity of phase 1 is O(|E| + |V |log|V]). O

The second phase is performed to obtain all the
important parameters like EST, ECT, FP, LACT, and LAST.
Phase 2 calculates these parameters by applying the depth-
first search with the complexity of O(|V| + |EJ).

Recall that, in phase 3, the tasks are allocated to the
computational nodes. First, all the tasks are checked and
allocated to one or more nodes in the while loop based on
duplication strategies. In the worst case, all the tasks in the
critical path must be duplicated, meaning that the time
complexity is O(h|V|) time, where h is the height of the DAG.

Consequently, the overall time complexities of EAD and
PEBD are O(2|E|+ |V|(Ig|V|+ 1)+ h|V]). Since parallel
applications tend to have high parallelism, the time
complexity of EAD and PEBD is approximate to O(VIg|V]).

5 ENERGY-PERFORMANCE EVALUATION

This section presents the comprehensive simulation results
in terms of power-performance efficiency by comparing the
proposed EAD and PEBD algorithms with the three existing
approaches, namely the Modified Critical Path Scheduling
(MCP) algorithm [42], the Task Duplication Scheduling
(TDS) algorithm [4], and the DVS algorithm [27], [43]. We
chose both synthetic DAGs and real-world applications to
evaluate performance and energy efficiency of the five
algorithms. MCP and TDS are two well-known perfor-
mance-oriented algorithms; DVS is one of the most effective
approaches to reducing energy consumption.

In this section, we first briefly introduce the three
baseline algorithms. In Section 5.2, we discuss the hardware
configurations used in our simulator. Next, we justify
system parameters and explain the simulator in Section 5.3.
Finally, in Sections 5.4-5.7, we investigate the impacts of
processors, interconnects, applications and Communica-
tion-Computation-Ratio (CCR) on performance and energy
efficiency of the algorithms.

5.1 Existing and Baseline Algorithms

Now we briefly describe the three baseline algor-
ithms—MCP, TDS, and DVS. Note that the goal of MCP
and TDS is to improve performance, whereas DVS aims at
saving energy.

e MCP [42]. MCP was proposed to optimize the
scheduling of parallel processes in a complicated
multiprocessing environment. In this programming
environment, all parallel processes have to exchange
data with each other through message passing,
which is very similar to communication mechanisms
for parallel tasks running in clusters. The key step of
MCP is to identify tasks with the most profound
impacts on performance improvement and apply the
as-soon-as-possible binding strategy to them. These
tasks are marked as critical path tasks, which are
given higher priority for execution.

e TDS [4]. TDS is another critical-path-based schedul-
ing algorithm, which attempts to generate the
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shortest schedule length. The fundamental differ-
ence between TDS and MCP is that TDS duplicates
tasks in critical path if the duplication can further
improve performance. In MCP, the tasks in critical
path have higher priority to obtain system resources
for as-soon-as-possible execution, but all tasks are
executed only once. Similarly, TDS allocates all tasks
that are in a critical path to the same processor.
However, if tasks have already been dispatched to
other processors, TDS will duplicate the tasks to
potentially shorten scheduling lengths. In other
words, tasks in TDS may be executed more than
once if task replicas can aid in performance
improvement.

e DVS [27], [43]. DVS is an energy-aware scheduling
algorithm for power-scalable clusters, where voltage
of processors can be dynamically adjusted. DVS
conserves energy by scaling down the processor
voltages when processor is underutilized or idle. To
avoid potential performance degradation, DVS has
to exploit unbalanced workloads among processors
so that the processor voltages can be scaled to the
best-fit status according to workload conditions.
Thus, increasing overall execution time can be
prevented as tasks are executed “just in time.” There
are two conditions under which DVS achieves good
energy-performance efficiency. First, processors
must have slack times, which is time spent in
waiting messages from other tasks. Second, the
workload of processors is unbalanced. Therefore,
the integration of DVS and MCP works better than
the combination of DVS and TDS, because duplica-
tions not only eliminate most of the slack times but
also result in balanced workloads.

5.2 Hardware Configuration Profiles

To quantitatively evaluate the energy efficiency and
performance of our algorithms, we have experimented
with five different types of processors and four different
types of network interconnects. We outline the detailed
hardware configuration profiles and summarize the char-
acteristics of each type of processor and interconnect.

5.2.1 Processor Configuration Profiles

Five types of processors used in our studies include AMD
Athlon 64 X2 4600+ with 85W TDP, AMD Athlon 64 X2
4600+ with 65W TDP, AMD Athlon 64 X2 3800+ with
35W TDP, Intel Core 2 Duo E6300 processor, and Intel
Pentium M 1.4 GHz processor. Among these processors,
three AMD processors and Intel Core 2 Duo E6300 are high-
performance processors with different power consumption
rates. Fig. 2 demonstrates the power consumption rate of
each processor in idle and busy working mode [44].

The Intel Pentium M processor aims to conserve power
with modest performance. It uses third-generation Speed-
Step technology to lower their clock speeds and core
voltages. Consequently, Pentium M is capable of delivering
acceptable performance if it is necessary while consuming
less energy. Pentium M can shut down internal components
such as unused segments of L2 cache to draw even less
power. Although Intel Pentium M is designed for embedded
systems and mobile devices, it also can be used in dense
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Fig. 2. Energy consumption parameters for processors in different working modes. (a) Power consumption rate in idle mode. (b) Power consumption

rate in busy mode.

clustered server environments [45], [46]. Pentium M’s clock
speed scales between 600 MHz and 1.4 GHz; its voltage
varies between 0.96V and 1.48V. This processor allows us to
apply DVS to save energy. Table 2 summarizes the dynamic
voltages and frequencies of Intel Pentium M processor.

5.2.2 Interconnection Configuration Profiles

To investigate the impacts of interconnects on power-
performance efficiency, we consider four typical high-
speed network interconnects: Gigabit Ethernet, Infiniband,
Myrinet, and QsNet''. These four types of interconnects
with different power-performance profiles are widely used
in real-world clusters. The features of the network
interconnects are outlined as follows:

1. Gigabit Ethernet is a high-speed interconnect sup-
porting full duplex links communication for com-
puting nodes connected by switches. In our
configuration profile for Gigabit Ethernet, we use
Cisco Catalyst 2960G-24TC [47] as the switch and
Intel PRO/1000 MT Dual Port Server Adapter [48] as
the network interface card (NIC).

2. Infiniband is a switched fabric communications link
primarily used in high-performance computing. For
the infiniband configuration, the switch considered
is Mellanox InfiniScaleTM III SDR [49] and NIC is
Mellanox ConnectXTM IB Dual Copper Card [50].

3. Myrinet is a high-speed local area networking system
designed by Myricom to be used as an interconnect
between multiple machines to form computer
clusters. The switch and NIC used for the Myrinet
configuration are M3-4SW32-16Q Quad 32-Port
Myrinet-2000 Switch Line Card [51] and Two-Port
Myrinet-Fiber /PCI-X Network Interface Card [52].

4. Q@sNet!! is a high-performance interconnect for
supercomputer systems. The combination of high
bandwidth, low latency, and scalability has made
QsNet'" the network choice for many of the world’s
fastest computer systems. For the configuration of
QsNet!, we choose E-Series Stand-alone switches
QS8A [53] as the switch and QM509 (PCle) [54] as
the NIC.

Table 3 summarizes the configuration profiles for each
type of interconnection. The power consumption rates
(busy and idle) for switches in Gigabit Ethernet, Infiniband,
and Myrinet are identical, because dynamic power manage-
ment is not employed in these three network interconnects.

However, power management for QsNet'' switch is avail-
able (e.g., 42 W in busy mode and 36 W in idle mode). In
terms of network speed, Myrinet serves as the standard
network and we compare the message delay of other three
interconnections over Myrinet. The detailed performance
and energy efficiency of these interconnects can be found in
[39]. The number of switches used in each interconnection
may vary and it is decided by the processor number
required and the ports number of switches. More specific,
switch number = m#ﬁm + 1. For example, given a
parallel application requiring 30 processors, the number of
switches served in Gigabit Ethernet, Infiniband, Myrinet,
and QsNet™ will be 2, 2, 1, and 4, respectively.

5.3 Simulator and Parameter Spaces

Schedule length and energy consumption are the two metrics
used in our simulations to evaluate the performance and
energy efficiency of the five algorithms. The schedule length
indicates time spent in completing a parallel application. The
energy consumption consists of two parts—processor energy
consumption and network energy consumption.

A basic yet important rule applied in our simulations is
Once Tuning One Parameter (OTOP). In each simulation
experiment, we only change one parameter and keep the
other parameters fixed. Tuning one parameter at a time
allows us to clearly observe its impact on performance and
energy efficiency of clusters.

The important parameters tuned in our simulations
include processor type, interconnection type, and applica-
tion type. Different processors and interconnects have
various energy consumption profiles and latencies. We
simulated two real-world parallel applications—the Robot
Control application (with 88 tasks and 131 edges) and the
fpppp application (with 334 tasks and 1,145 edges). The

TABLE 2
Dynamic Voltages and Frequencies of
Intel Pentium M 1.4 GHz Processor

Frequency Voltage

1.4GHz 1.484V
1.2GHz 1.436V
1.0GHz 1.308V
800MHz 1.180V
600MHz 0.956V
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TABLE 3
Summaries of Network Configuration Profiles
Network Switch Power Switch Power NIC Port # per Message Delay
(busy) (idle) Power Switch over Myrinet
Gigabit Ethernet 15W 5W 5SW 24 13
Infiniband 25 W 25 W 10.6 W 24 0.9
Mpyrinet 552 W 552 W 93 W 32 1
QsNet" 2w 36 W 12W 8 1.73

detailed information regarding these applications can be
found at the Standard Task Graph website [55]. We also
considered a large number of parallel applications gener-
ated by our synthetic parallel tasks generator.
Communication-Computation-Ratio (CCR) is an impor-
tant parameter to represent the characteristic of a parallel
application. CCR measures the ratio of communication time
and computation time. A small CCR value means the
application is computation-intensive; a large CCR value
indicates that the application is communication-intensive.
Generally speaking, an application running on a fixed
number of processors and a certain type of interconnect has
a specific CCR. However, CCR of the application may change
when it is running on different processors and interconnects.
Thus, we varied CCR in a reasonable range of 0.1 to 10.

5.4 Overall Performance-Energy Efficiency

Let us compare the overall performance-energy efficiency of
the proposed EAD and PEBD algorithms against DVS, TDS,
and MCP. Using QsNet"' network, we tested four applica-
tions, among which robot control and fpppp are real-world
applications, random1 and random?2 are synthetic parallel
applications with 500 tasks.

We observe from Figs. 3a and 3b that TDS, EAD, and
PEBD not only have the best performance, but also are the
most energy-efficient algorithms for the robot control
application. DVS has similar performance as MCP; DVS is
more energy-efficient than MCP. EAD and PEBD are better
than DVS in terms of both performance and energy savings.
For example, EAD and PEBD improve the performance and
energy efficiency of DVS by 10 and 6 percent, respectively.
When it comes to MCP, the improvements are 10 percent in
performance and 9 percent in energy efficiency, respectively.

Figs. 3c and 3d show that for the fpppp application, all
five algorithms have similar performance. TDS is the least
energy-efficient algorithm, whereas DVS is the most energy-
efficient one. With respect to energy consumption, our
algorithms are close to MCP. EAD and PEBD are slightly
more energy-efficient than TDS, but they are two percent less
energy-efficient than DVS.

The energy efficiency of the five algorithms are affected
by the applications, because 1) robot control and fpppp have
totally different DAGs and parallelism degrees and 2) the
robot control is communication-intensive while fpppp is
computation-intensive. For computation-intensive applica-
tions where CPU time dominates performance, task duplica-
tions simply pay extra energy overheads without boosting
performance. In this experiment, our algorithms exhibit
good capability of making a good balance between energy
efficiency and performance.

Figs. 3e, 3f, 3g, and 3h show experimental results of two
synthetic parallel applications. The results are consistent
with those plotted in Figs. 3a, 3b, 3c, and 3d. Thus, the
performance and energy efficiency of TDS are the best for
communication-intensive applications, whereas DVS is
likely to be the best choice for computation-intensive
applications. Importantly, our EAD and PEBD are the only
algorithms that maintain good performance and high
energy efficiency for both computation-intensive and
communication-intensive parallel applications.

5.5 Impact of Processors
Now we investigate the impacts of processors on the
energy efficiency of cluster computing systems. To intui-
tively show energy consumption contributed by processors,
we break down the total energy into two parts—CPU
energy and network energy. In this experiment, we
consider DVS-enabled processors as well as DVS-disabled
processors. The DVS-disabled processors examined include
AMD Athlon 64 X2 4600+ with 85W TDP, AMD Athlon 64
X2 4600+ with 65W TDP, AMD Athlon 64 X2 3800+ with
35W TDP, and Intel Core 2 Duo E6300 processor. Unlike the
other processors, the Intel Pentium M processor is a DVS-
enabled one, because it allows voltage and frequency to be
adjusted on the fly based on dynamic workload conditions.
Figs. 4a and 4b show the total energy consumption and
energy dissipation in the processors for the fpppp applica-
tion. The first observation is that for all algorithms, Athlon
35W consumes the least energy while Core 2 duo consumes
the most energy. The second observation is that the energy
consumed by the processors dominates the total energy
dissipation in the cluster, because the total energy consump-
tion curves (see Fig. 4b) are very similar to the CPU energy
curves (see Fig. 4a). This trend can be explained by taking a
look at the power of these two CPUs. The power of Athlon
35Wis47 and 11 W when it is busy and idle; the busy and idle
power rates of Core 2 duo are 44 and 26 W. Although they
almost have the same power rate when CPU is busy, the gap
between their idle powers is 15 W. Therefore, Athlon 35W can
save a huge amount of energy provided that applications
offer enough opportunities for it to transit into the idle mode.
Figs. 4c and 4d show the energy consumption trend for a
synthetic application, which has a very similar DAG as that
of fpppp but with higher CCR. In this case, Athlon 35W
still consumes less energy than Core 2 duo processor.
However, the total energy consumed by the Athlon 35W
cluster exceeds the total energy consumed by the Core 2
duo cluster. This result indicates that the total energy in
fpppp is dominated by the network interconnects, because
the application is communication-intensive with the high
CCR value.
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Fig. 3. Overall performance-energy efficiency comparisons. (a) Schedule length of robot control. (b) Energy consumption of robot control.
(c) Schedule length of fpppp. (d) Energy consumption of fpppp. (e) Schedule length of random 1 (ccr = 5). (f) Energy consumption of random 1
(cer = 5). (g) Schedule length of random 2 (ccr = 0.1). (h) Energy consumption of random 2 (ccr = 0.1).

Fig. 5 demonstrates the energy consumption incurred by
two synthetic applications with 500 tasks on DVS-enabled
processors. The first application is communication-intensive
and the second one is computation-intensive. An obvious
observation is that DVS is beneficial to save energy in
processors for both computation-intensive and communica-
tion-intensive applications. The impact of DVS, however,
may not be strong enough to dominate the total energy
consumption. For example, Figs. 5a, 5b, and 5c show that
DVS consumes much less energy in processors, but this
advantage is leveraged in the network interconnects.
Although our algorithms are not as good as DVS in terms
of saving energy in processors, ours do conserve energy in

networks by the virtue of task replicas, which lead to
potential total energy savings for parallel applications with
high CCR values. For applications with low CCRs, DVS is
likely to be the best energy-efficient algorithm in most cases
as CPU energy dominates total energy in clusters.

5.6 Impact of Interconnections

Processors and interconnections are two decisive factors
making up of the energy-performance profiles of clusters. We
have discussed the impact of processors in Section 5.5. In this
section, we show the impact of interconnections on perfor-
mance and energy efficiency. Our experimental results
plotted in Fig. 6 are based on QsNet", Myrinet, Infiniband,
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Fig. 5. Energy impact of DVS-enabled Intel Pentium M processor.

and Gigabit Ethernet, which are widely used interconnects in

real-world clusters. Please refer to Section 5.2.2 for detailed

information regarding these four types of interconnections.
We assume that the Intel Pentium M processors are used in

the simulated clusters. We did not test any non-DVS-enabled
processors because they do not support DVS. We use the
robot control application rather than the fpppp application
because robot control is communication-intensive. In doing

so, we can highlight energy savings in network interconnects.
To make fair comparison, we fixed all system parameters
except for those of the four types of interconnections.

Figs. 6a and 6b reveal that the overall performance and
energy efficiency of clusters equipped with the four inter-
connections. The result shows that regardless of the schedul-
ing algorithms, the schedule lengths of the application
running on a cluster with Ethernet is much longer than the
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application on the same clusters with the other three types of
interconnections. Accordingly, Ethernet consumes much
more energy due to increased communication times.

A second observation drawn from Figs. 6a and 6b is that
Myrinet and Infiniband have similar performance and
energy efficiency. Myrinet and Infiniband are slightly better
than QsNet in terms of schedule lengths and energy
savings. The power differences among the four intercon-
nects have marginal impact on energy efficiency. However,
the differences among network latencies noticeably affect
both performance and energy conservation. The latency of
Ethernet is the largest among those of the four interconnec-
tions. Infiniband, on the other hand, has the shortest
latency. The result implicates that scheduling algorithms
can leverage interconnects with low network latencies to
achieve high performance and energy efficiency. This
implication is especially true for communication-intensive
applications, because low network latencies can reduce
communication times, which, in turn, lead to shortened
schedule lengths and saved power.

Figs. 6¢c, 6d, 6e, and 6f show energy-performance
comparison between Myrinet and Ethernet. We see from
these figures that TDS and our algorithms are better than
MCP and DVS with respect to both performance and energy
savings. Although DVS has similar performance as that of
MCP, DVS is more energy-efficient than MCP. The perfor-
mance-energy improvements yielded by our algorithms
vary as we deploy different interconnections to the cluster.
For example, EAD improves performance by 18.36 percent
and energy efficiency by 5.58 percent over DVS when
Myrinet is employed. The performance and energy effi-
ciency improvement of EAD over DVS become 14.68 and
12.74 percent if Ethernet is deployed in the cluster. Although
performance and energy efficiency of EAD and PEBD are
remarkably similar in many cases, they are distinct under
some workload conditions (see, for example, Fig. 6d).

5.7 Impact of Communication-Computation-Ratio

Communication-Computation-Ratio measures the total time
spent on computation and communication. In this set of
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ength comparison for different CCRs. (b) Energy consumption comparison

for different CCRs. (c) Dynamic voltage scaling traces when CCR = 0.1. (d) Dynamic voltage scaling traces when CCR = 5.

experiments, we investigate the impact of CCR on perfor-
mance and energy efficiency of parallel applications running
on clusters. More generally speaking, CCR of an application
is fixed for a given cluster computing platform. To analyze
the impact of CCR on energy efficiency and performance, we
vary the CCR of a synthetic application with 500 tasks.

Figs. 7a and 7b depict schedule lengths and energy
consumption of the five scheduling algorithms. Two ob-
servations are evident from the analysis. First, when CCRs
aresmall, DVSis slightly more energy-efficient than EAD and
PEBD. The energy efficiency of our algorithms is noticeably
better than those of MCP and TDS. Second, when CCR is
increased to 10, EAD and PEBD are substantially better than
MCP and DVS in terms of both schedule length and energy
conservation. For example, the performance improvements
over DVS and MCP are 27.36 and 24.12 percent when CCR is
set to 5 and 10, respectively. EAD and PEBD improve energy
efficiency by 20.1 percent over MCP and by 16 percent over
DVS. These improvements are consistent with the improve-
ments achieved by our algorithms when the robot control

and fpppp applications are scheduled. The implication of this
result is that EAD and PEBD are conducive to saving energy
caused by communication-intensive parallel applications on
clusters.

Figs. 7c and 7d record the voltage trace for the DVS-
enabled processors when DVS is applied. Fig. 7c shows that
the workload of the first application provides reasonable
opportunities for DVS to conserve energy by dynamically
adjusting voltage levels. The voltage varies in all levels
between the lowest and the highest voltage levels. In contrast,
Fig. 7d shows that the workload of the second application
leaves no further room for DVS to save energy. The processor
remains the lowest level of voltage in the majority of time,
because in this case the schedule length depends on how fast
messages can be passed rather than how fast tasks can be
executed. The results plotted in Figs. 7c and 7d empirically
validate our argument that DVS is an efficient algorithm to
conserve energy of computation-intensive parallel applica-
tions on clusters.
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6 CONCLUSIONS

In this paper, we have addressed the issue of scheduling and
allocating parallel tasks running on homogeneous clusters
with an objective of improving both performance and energy
efficiency. To achieve this goal, we proposed two energya-
ware duplication-based scheduling algorithms, namely the
Energy-Aware Duplication (EAD) algorithm and the Perfor-
mance-Energy Balanced Duplication (PEBD) algorithm.

In addition to presenting EAD and PEBD, we built
mathematical models to describe a cluster computing frame-
work, parallel applications with precedence constraints, and
energy dissipations in clusters. To demonstrate the effec-
tiveness and practicality of the proposed duplication-based
scheduling algorithms, we conducted extensive experiments
using both synthetic and real-world parallel applications
running on a simulated cluster. The empirical results
illustrate that EAD and PEBD are capable of substantially
improving energy efficiency and performance of a cluster
running communication-intensive parallel applications. Our
novel scheduling algorithms can archive the overall perfor-
mance-energy improvement over the existing solutions by
up to 20 percent. The drawback of our approaches is that
when it comes to computation-intensive applications, EAD
and PEBD are slight less energy-efficient than the DVS
technique. This shortcoming can be eliminated by using DVS
to schedule computation-intensive parallel applications.

Future studies in this research can be performed in the
following directions. First, we will extend our algorithms to
multidimensional computing resources from which energy
conservation can be achieved. In this study, we primarily
considered the energy consumption of processors and
interconnections. Memory access and 1/0O activities will be
investigated in our future studies. Second, we will modify
the EAD and PEBD algorithms to handle parallel applica-
tions on heterogeneous clusters, where computational
nodes have different processing capabilities and network
interconnects may have various performance.

7 AVAILABILITY

The executable binaries and source code, along with the
documentation for experimentation, will be freely avail-
able at http://www.mcs.sdsmt.edu/zzong/software/
scheduling html.
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