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Abstract—We present a multicore-enabled smart storage for
clusters in general and MapReduce clusters in particular. The
goal of this research is to improve performance of data-intensive
parallel applications on clusters by offloading data processing to
multicore processors in storage nodes. Compared with traditional
storage devices, next-generation disks will have computing capa-
bility to reduce computational load of host processors or CPUs.
With the advance of processor and memory technologies, smart
storage systems are promising devices to perform complex on-
disk operations. The proposed smart storage system can avoid
moving a huge amount of data back and forth between storage
nodes and computing nodes in a cluster. To enhance the perfor-
mance of data-intensive applications, we have designed a smart
storage system called Multicore-enabled Smart Storage (McSD),
in which a multicore processor is integrated in storage nodes. We
have implemented a programming framework for data-intensive
applications running on a computing system coupled with McSD.
The programming framework aims at balancing load between
computing nodes and multicore-enabled smart storage nodes.
To fully utilize multicore processors in smart storage nodes,
we have implemented the MapReduce model for McSDs to
handle parallel computing on a cluster. A prototype of McSD has
been implemented in a cluster connected by Gigabit Ethernet.
Experimental results show that McSD can significantly reduce the
execution times of three real-world applications - word count,
string matching, and matrix multiplication. We demonstrate
that the integration of multicore-enabled smart storage with
MapReduce clusters is a promising approach to improving overall
performance of data-intensive applications on clusters.

I. INTRODUCTION

Since large-scale and data-intensive applications have been
widely deployed, there is a growing demand for high-
performance storage systems to support data-intensive ap-
plications. Compared with traditional storage systems, next-
generation data storage will embrace computing capacity to
reduce computational load of host processors in computing
nodes. Existing hard disks have limited processing power,
which can only be used to handle on-disk scheduling and
physical resource management. With the advance of processor
and memory technologies, future smart storage systems are
promising devices to perform complex on-disk operations [18].

Smart disks (a.k.a., active disks), in which processors are
embedded, leverage computational power available in com-
modity disk drives to deal with application-level process-
ing [15]. Recently, smart disks coupled with embedded pro-
cessors have been proposed to address the needs of on-drive-

data-intensive workloads. In the past, single-core processors
were integrated to smart disks to improve I/O performance of
data-intensive applications by manipulating data directly on
the disks [6][8][10][18]. Smart disks avoid moving data back
and forth between storage devices and host processors. Since
there is no smart disk product on the market, we decided to
investigate smart storage nodes rather than smart disks in this
study.

For the past two decades, hardware designers have used
the rapidly increasing transistor speed made possible by sil-
icon technology advances to double performance every 18
months [2]. Unfortunately, approaches to increasing transistor
count and clock cycle crashed into the power wall recently;
increasing transistor count hits the power limit that a chip is
able to dissipate. The industry decided to replace single power-
inefficient processors with multi-core processors. There is an
increasing need to integrate multi-core processors with de-
vices and peripherals. Thanks to the escalating manufacturing
technology, it is feasible to embed multi-core processors into
storage nodes for high-performance computing. These demand
and trend motivate us to develop a programming framework
and a prototype for Multicore-enabled smart storage called
McSD for clusters in general and MapReduce clusters in
particular.

Architecture of energy-efficient processors on a single chip
does not necessary guarantee high performance. Thus, improv-
ing utilization of advanced multi-core processors has been
a thorny subject in computer systems research. Phoenix–an
implementation of the MapReduce model–automatically man-
ages thread creation, dynamic task scheduling, data partition-
ing, and fault tolerance in multicore processor systems [13].
Phoenix includes a programming API and an efficient runtime
system. Phoenix allows programmers to write functional-style
code that improves the utilization of multicore processors by
automatically parallelizing and scheduling. To fully utilize
multi-core processors in McSD, we incorporated Phoenix
into multicore-embedded smart disks. Note that MapReduce
is Google’s programming model for scalable parallel data
processing [5]. In addition to Phoenix, there exist a wide range
of MapReduce implementations tailored for various computing
platforms [1][7][14].

The difference between our McSD approach and conven-
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tional smart disks is two-fold. First, the focus of McSD is
smart storage nodes rather than smart disks. Second, the
goal of McSD is to take performance benefits of multi-core
processors not single-core processors embedded in storage
nodes.

Six New Features. When architecting a McSD smart stor-
age system in a high-performance cluster, the following six
features will be implemented:

• A two-layer cluster computing architecture contains host
computing nodes and smart storage nodes.

• Improved I/O performance is achieved by combining
processing capabilities of both computing and storage
nodes.

• The McSD storage system allows programmers to write
MapReduce-like code that can automatically offload data-
intensive computation to smart storage.

• Smart storage nodes can communicate with their host
computing nodes via a storage interface.

• A programming framework of McSDs allows smart
storage nodes to take full advantages from multi-core
processors in the storage nodes.

• The APIs and runtime environment in our McSD pro-
gramming framework automatically handles computation
offload, data partitioning, and load balancing.

We will show how to use the McSD programming frame-
work to implement a few real world applications like word-
count, string matching, and matrix multiplication.

Main Contributions. In summary, the four major contribu-
tions of this study are:

• A prototype of next-generation multicore-enabled smart
data storage.

• A programming framework, which include MapReduce-
like programming APIs and a runtime environment for
multicore-based smart storage in the context of clusters.

• Development of three benchmark applications to test
McSD for clusters.

• Single-application experimental results and multiple-
application performance evaluation.

In the following Section II, we review the background
information and previous related research that motivate and
inspire this study. In Section III, we describe the design
issues of the prototype of multicore-enabled smart storage.
Section IV presents implementation details of the McSD run-
time environment and McSD programming APIs. Experiment
results and performance evaluation are discussed in Section V.
Finally, Section VI concludes the paper with future research
directions.

II. SMART STORAGE AND MAPREDUCE

An increasing number of large-scale data-intensive appli-
cations impose performance demands on storage systems,
which are the performance bottleneck of various computing
platforms. One way to boost I/O performance is to embed
processors into hard disk drives, thereby offloading data-
intensive computation from host CPUs to hard disks. While

the processing capacity in today’s disk drives is to manage
on-disk scheduling and resource management, future disks can
be equipped with dedicated processors to perform complicated
data-intensive operations. We call disk drives in which proces-
sors are incorporated as smart disks or active disks.

A. From Smart Disks to Smart Storage

Five primary factors have catalyzed the evolution of stor-
age architectures: I/O-bound workloads, improved disk drive
attachment technologies, increased on-drive transistor density,
emergence of new interconnects, and the cost of storage
systems [6]. Existing smart disk prototypes consist of, from
hardware perspective, an embedded processor, a disk con-
troller, on-disk memory, local disk space, and a network
interface controller (NIC). From software perspective, a smart
disk is comprised of an embedded operating system, a database
engine, programming APIs and the like.

Unlike stand-alone PCs, smart disks do not contain I/O
components such as keyboard and display. Smart drives may
directly connect to their host processors through NICs. In our
prototype, smart disks or smart storage nodes are connected to
host CPUs using a file-alternation-monitor mechanism, which
allows a smart storage node to communicate with its host
computing node without relying on a keyboard and display
unit.

Single-core embedded smart disks have been implemented
in various forms. For example, in an active disk model
proposed by Uysal et al. , on-disk application processing
becomes possible because of large on-disk memory [18].
Another active disk model designed by Mustafa et al. largely
relies on stream-based programming, in which host-resident
code interacts with disk-resident code using streams and a
code-partitioning scheme [11]. Memik et al. developed a smart
disks architecture, where the operation bundling concept was
introduced to further optimize database query executions [10].
Chiu et al. investigated a fully distributed processor-embedded
distributed smart disks [4].

The term smart disk may be used interchangeably with
other terms such as intelligent disk (IDISK) [9], Smart-
STOR [8], processor-embedded disks [4], and semantically
smart disks [17]. Note that IDISK uses on-disk integrated
processor-in-memory to exploit emerging VLSI technolo-
gies [9]; SmartSTOR [8] consists of a processing unit coupled
to one or more disks [8]; and semantically smart disks [17]
contains various high-level functionalities.

Due to a combination of reasons, no smart disk product is
available on the market. If one has to investigate any research
issues of smart disks, he/he has to simulate smart disks. We
aimed at implementing a smart storage system for clusters and;
therefore, we decided to focus on smart storage nodes rather
than smart disks in this project.

B. Parallel Programming

The IT industry has improved the cost-performance of
sequential computing by about 100 billion times over the
past 60 years [12]. A high transistor density in multi-core
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Fig. 1. The work flow of MapReduce.

processors does not always guarantee great practical perfor-
mance on applications due to the lack of parallelism. There are
cases where a roughly 45% increase in processor transistors
have translated to roughly 10-20% increase in processing
power [16]. Therefore, an open issue addressed in this study is
how to enable data-intensive application to exploit parallelism
in smart disks coupled with embedded multi-core processors.
We believe that well-designed parallel programming APIs
must be implemented for future smart disks that can benefit
from multi-core processors.

OpenMP applications normally are non-trial because
OpenMP only provides low-level APIs. Another diffierence
between MapReduce and this model is the hardware for
which each of this platform has been designed. MapReduce
is supposed to work on commodity hardware, while interfaces
such as OpenMP are only efficient in shared-memory multi-
processor platforms.

C. The MapReduce Programming Model

MapReduce is a programming model developed by Google
for simplified data processing in data-intensive applications
running on large clusters [5]. Map and Reduce - two primitives
in MapReduce - are brought from the idea of functional
testing. When the Map function is called, user’s input data
is partitioned into M pieces, which is processed by one
copy of the program on each node in a cluster. One of the
program copy becomes a master program managing the entire
execution. In each MapReduce program, the Map function first
takes an input data specified by the users, and outputs a list
of intermediate key/value pairs (key, value). Then, the Reduce
function takes all intermediate values associated with the same
key and produces a list of result key/value pairs. The Reduce
function typically performs some kind of merging operation.
Finally, the output pairs are sorted by their key value.

Fig. 1 illustrates the work flow of the MapReduce model.
The main benefit MapReduce lies in its simplicity. Program-
mers only provide a simple description of an algorithm that
focuses on functionality and leaves actual parallelization and
concurrency management to a MapReduce runtime system.

Like the Google file system, MapReduce is not open
source software. Google only describes the MapReduce idea
without implementation details. Thus, various open source
implementations of MapReduce are available for different
computing platforms like clusters [1], multi-core systems [13],

multiprocessor systems [13], and graphics processing units
(GPU) [7].

Haddoop [1]. Hadoop is a Java software framework im-
plemented by Apache to support data-intensive distributed
applications. Inspired by Google’s MapReduce and the Google
file system, the Hadoop project created its own versions of
MapReduce and Hadoop Distributed File System. Hadoop
applications can be deployed easily by configuring some
variables–some paths and nodes; Hadoop defines one mas-
ter node that manages all systems and jobs, and other
worker nodes. Hadoop is so far the most complete quasi-
open-source version of MapReduce in the cluster arena.
Mars [7].MapReduce has been implemented on NVIDIA
GPUs using CUDA in the Mars project. Mars takes advantage
of GPUs by using the capability of massive threading. In the
Mars implementation, there are a large number of physically-
collocated mappers and reducers run in multiple threads. The
functions in Mars are classified in two categories: runtime
system functions and user define functions. Our McSD is
different from Mars in the sense that McSD automatically
coordinates data-processing activities between host CPUs and
multi-core processors embedded in smart disks. Phoenix [13].
Phoenix is an implementation of Google’s MapReduce for
shared-memory multi-core and multi-processor systems. There
are two categories of functions in Phoenix: the first group
is provided by the Phoenix runtime environment; the second
one is defined by programmers. Ranger et .al concluded
that Phoenix is a promising MapReduce implementation for
scalable performance on multi-core and multi-processor sys-
tems. Different from other MapReduce implementations on
clusters, Phoenix is independent of any parallelizing compiler.
In our study, we evaluated the suitability of the Phoenix
implementation for multicore-embedded smart disks.

D. Integrating MapReduce with McSD

OpenMP and MapReduce are widely deployed parallel
programming models for shared-memory systems supporting
many large-scale parallel applications [3]. Compared with
MapReduce, OpenMP is more generic and provides flexible
solutions for a wider variety of parallel computing problems.
When it comes to data-intensive applications, MapReduce is
normally better than OpenMP. Since the goal of this study
is to improve performance for data-intensive applications,
we seamlessly integrated smart storage or McSD with the
MapReduce framework.

III. DESIGN ISSUES

A growing number of data-intensive applications coupled
with advances in processors indicate that it is efficient, prof-
itable, and feasible to offload data-intensive computations from
CPUs to hard disks [15]. Our preliminary results show that we
can improve performance of cluster computing applications
by offloading computations from computing nodes to storage
nodes. To improve the performance of large data-intensive
applications, we designed McSD - a prototype of multicore-
enabled smart data storage. Different from the existing smart-
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disk solutions, McSD not only addresses the performance
needs of data-intensive applications using multi-core proces-
sors, but also focus on smart storage nodes rather than smart
disks.

Fig. 2 depicts the McSD prototype, where each smart
storage node contains a multicore-processor, memory, and a
SATA disk drive.

A. Design of the McSD Prototype

In our McSD prototype, we integrate multi-core processor,
a disk controller, main memory, a local disk drive, and a
network interface controller (NIC) into a smart storage node.
The storage interface of existing smart-disk prototypes (see
Section II-A for details on existing smart disks) is not well
designed, because the existing prototypes simply represented
a case where host CPUs and embedded processors are coordi-
nated through the network interfaces or NICs in smart disks.
To fully utilize the storage-interface in smart data storage,
we designed a communication mechanism similar to the file
alteration monitor. In our McSD prototype, a host computing
node communicates with a disk drive in McSD via its storage
interface rather than the NIC. In doing so, we made smart
disk prototypes cost-effective since no NIC is needed. Without
using NICs, the McSD prototype can adequately represent all
the important features of our proposed smart data storage. The
design details are described in the following two subsections.

B. A Testbed for McSD

Recall that although a few smart disk prototypes have been
developed, there is no off-the-shelf commodity smart disks.
Instead of simulating a smart storage system, we built a testbed
for the McSD prototype. Fig. 3 briefly outlines the McSD
testbed, where two computers are connected through the fast
Ethernet. The first computer in the testbed plays the role of
host computing node, whereas the second one performs as
the McSD smart storage node. The host computing node can
access the disks in the McSD node through the networked file
system or NFS, which allows a client computer to access files
on a remote server over a network interconnect. In our testbed
the host computing node is the client computer; the McSD
node is configured as an NFS server. We chose to use NFS
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Fig. 3. A testbed for the McSD prototype. A host computing node and an
McSD storage node are connected via a fast Ethernet switch. The host node
can access the disk drives in McSD through the networked file system or
NFS.
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Fig. 4. The programming framework for a host computing node supported
by a McSD smart storage node.

as an efficient means of connecting the host computing node
and the smart storage node, because data transfers between
the host and smart storage nodes are handled by NFS.

We run three real-world applications as benchmarks on
this testbed to evaluate the performance of the McSD pro-
totype. The benchmarks considered in our experiments (see
Section V) include word count, string matching, and matrix-
multiplication.

IV. IMPLEMENTATION DETAILS

A. Implementation of smartFAM

Fig. 5 illustrates the implementation of smartFAM - an
invocation mechanism that enables a host computing node to
trigger data-intensive processing modules in a McSD storage
node. smartFAM mainly contains two components: (1) the
inotify program - a Linux kernel subsystem that provides
file system event notification; and (2) a daemon program that
invokes on-node data-intensive operations or modules.

To make our McSD prototype closely resemble future
multicore-enabled smart storage, we connected the host node
with the McSD smart-storage node using the Linux network
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Fig. 5. The implementation of smartFAM - an invocation mechanism that
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file system or NFS. In the NFS configuration, the host node
plays a client role whereas the McSD node performs as a
file server. A log-file folder, created in NFS at the server
side (i.e., the McSD smart-storage node), can be accessed
by the host node via NFS. Each data-intensive processing
module/operation has a log file in the log-file folder. Thus,
when a new data-intensive module is preloaded to the McSD
node, a corresponding log-file is created. The log file of each
data-intensive module is an efficient channel for the host node
to communicate with the smart-storage node (McSD node).
For example, let us suppose that a data-intensive module in
the McSD node has input parameters. The host node can pass
the input parameters to the data-intensive module residing the
McSD node through the corresponding log file. Thus, the host
writes the input parameters to the log file that is monitored
and read by the data-intensive module. Below we address the
following two questions related to usage of log files in McSD:

• (1) How to pass input parameters from a host node to a
McSD storage node?

• (2) How to return results from a McSD storage node to
a host?

Passing input parameters from a host node to a McSD
smart-storage node. When an application running on the host
node offloads data-intensive computations to the McSD node,
the following five steps are performed so that the host node
can invoke a data-intensive module in the smart-storage node
via the module’s log file (see Fig. 5):
Step 1: The application on the host node writes input param-
eters of the module to its log file on in McSD. Note that NFS
handles communications between the host and McSD via log
files.
Step 2: The inotify program in the McSD node monitors all the
log files. When the data-intensive module’s log file in McSD
is changed by the host, inotify informs the Daemon program
in smartFAM of McSD.
Step 3: The Daemon program opens the module’s log file to

retrieve the input parameters passed from the host. Note that
this step is not required if no input parameter needs to be
transmitted from the host to the McSD node.
Step 4: The data-intensive module is invoked by the Daemon
program; the input parameters are passed from Daemon to the
module.
Step 5: Go to Step 1 is more data-intensive modules in the
McSD node are invoked by the application on the host.

Returning results from a McSD smart-storage node to
a host node. Results produced by a data-intensive module in
the McSD node must be returned to the module’s caller - a
calling application that invokes the module from the host node.
To achieve this goal, smartFAM takes the following four steps
(see Fig. 5):
Step 1: Results produced by the module in the McSD node
are written to the module’s log file.
Step 2: The inotify program in the host node monitors the log
file, checking whether or not the results have been generated
by McSD. After the module’s log file is modified by McSD
(i.e., the results are available in the log file), This inotify
program informs the Daemon program in the host node.
Step 3: The Daemon program in the host notifies the calling
application that the results from the McSD node are available
for further process.
Step 4: The host node accesses the module’s log file and obtain
the results from the McSD node. Note that this step can be
bypassed if no result should be returned from McSD to the
host.

B. Partitioning and Merging

A second implementation issue that has not been inves-
tigated in the existing smart-storage prototypes is how to
process large data sets that are too large to fit in on-node
memory. In one of our experiments, we observed that the
Phoenix runtime system does not support any application
whose required data size exceeds approximately 60% of a
computing node’s memory size. This is not a critical issue
for Phoenix, because Phoenix is a MapReduce framework on
shared-memory multi-core processor or multiple processors
systems where memory size are commonly larger than those
residing in smart storage nodes. On-node memory space in
smart storage nodes is typically small compared with front-
end high-performance computing nodes. Thus, before we
attempted to apply Phoenix in McSD smart disks, we had to
address this out-of-core issue - data required for computations
in McSD is too large to fit in McSD memory.

Our solution to the aforementioned out-of-core issue is to
partition a large data set into a number of small fragments that
can fit into on-node memory before calling a MapReduce pro-
cedure. Once a large data set is partitioned, the small fragments
can be repeatedly processed by the MapReduce procedure in
McSD. Intermediate results obtained in each iteration can be
merged to produce a final result. Our partitioning solution has
two distinct benefits:

• Supporting huge datasets whose size may exceed the
memory capacity of a McSD storage node.
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• Boosting performance of data-intensive applications (e.g.,
word-count) by improving the memory usage of McSD
(see Fig. 8 in Section V).

Because both input data sets and emitted intermediate data
are located in memory during the MapReduce stage, the
memory footprint is at least twice of input data size. The
partitioning solution, of course, is only applicable for data-
intensive applications whose input data can be partitioned. In
our experiments, we evaluated the impact of fragment size on
the performance of applications. Evidence (see Fig. 8 in Sec-
tion V) shows that data partitioning can improve performance
of certain data-intensive applications.

C. Incorporating the Partitioning Module into Phoenix

Fig. 6 depicts the work flow of the modified version of
Phoenix; it can be considered as a two-stage MapReduce pro-
cess. The Partition function is provided by the runtime system,
while the Merge function needs to be programmed by the user
to support different applications. Take an example of a Word-
count command: wordcount [data-file] [partition-size]. Frag-
ment sizes of every new partitions are determined by (1) the
number of [partition-size] provided by the programmer/system
and (2) the extra displacements from integrity-check function
in order to make sure the new partition is ended correctly.
If there is no [partition-size] parameter, the program will run
in native way. Otherwise, the number of [partition-size] can
be manually filled in by the programmer or automatically
determined by the runtime system (e.g., Phoenix). In order
to achieve a better performance, the empirical data or the
details of operator may be required for the automatic approach.
The integrity-check function will automatically return the
extra displacements by scanning from the starting point of
[partition-size] till the first space, return or the symbol defined
by the programmer. The reason we involved the integrity-
check procedure to the Partition function is there exists the
consistency issue of partitioned data files; the content of the
source data file could be broken in shatters (e.g. a word could

Start
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Starting Point ++

N

new Partition size
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draft number
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Fig. 7. The workflow diagram of integrity checking.

be cut and placed into two slitted files not on purpose). Fig. 7
describes the integrity-check procedure.

V. EVALUATIONS

A. Experimental Testbed

We performed our experiments on a 5-node cluster, whose
configuration is outlined in Table 1. There are three types of
nodes in the cluster: one of host computing node, one of smart
storage nodes, and three other general purpose computing
nodes. Operating system running on the cluster is Ubuntu
9.04 64-bit version. The nodes in the cluster are connected by
Ethernet adapters, Ethernet cables, and one 1Gbit switch. All
the general purpose computing nodes share disk space on the
host node through Network File System (NFS), while the host
node is sharing one folder on the McSD node. The processing
modules, extended Phoenix system and SmartFAM have been
set up on both the host and SD nodes. Then in order to
emulate the routine work, we run the Sandia Micro Benchmark
(SMB) among all the nodes except the McSD smart-storage
node. We choose MPICH2-1.0.7 as our the message passing
interface (MPI) on the cluster. All benchmarks are compiled
with gcc 4.4.1. We briefly describe the benchmarks running
on our testbed in the following sub-section.

• Word Count (WC): It counts the frequency of occur-
rence for each word in a set of files. The Map tasks
process different sections of the input files and return
intermediate data 〈key, value〉 that consist of a word
and a value of 1. Then the Reduce tasks add up the
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Fig. 8. Single Application Performance. Fig. 8(a) depicts speedups of partition-enabled Phoenix vs. original Phoenix and the sequential approach on both
duo-core and quad-core machines. Fig. 8(b) and Fig. 8(c) draws the growth curves of elapsed time on duo-core and quad-core machines. The data size is
scaling from 500MB to 1.25GB on Fig. 8(a) and from 500MB to 2GB on Fig. 8(b) and Fig. 8(c).

TABLE I
THE CONFIGURATION OF THE 5-NODE CLUSTER

Host SD Nodes ×3
CPU Intel Core2 Intel Core2 Intel

Quad Q9400 Duo E4400 Celeron 450
Memory 2GB

OS Ubuntu 9.04 Jaunty Jackalope 64bit version
Kernel version 2.6.28-15-generic

Network 1000Mbps

values for each identity word. Finally, the words are
sorted and printed out in accordance with the frequency
in decreasing order.

• String Match (SM): Each Map searches one line in the
“encrypt” file to check whether the target string from a
“keys” file is in the line. Neither sort or the reduce stage
is required.

• Matrix Multiplication (MM): Matrix multiplication is
widely applicable to analyze the relationship of two
documents. Each Map computes multiplication for a set
of rows of the output matrix. It outputs multiplication for
a row ID and column ID as the key and the corresponding
result as the value. The reduce task is just the identity
function.

• Sandia Micro Benchmark (SMB): It is developed by
Sandia National Laboratory to evaluate and test high-
performance networks and protocols. We use it in our
experiment to emulate the routine work.

B. Single-Application Performance

Fig. 8 shows the speedup achieved by using the Partition-
enabled programming model, relative to the no-partition ver-
sion and sequential implementation, respectively. In terms of
single application benchmarks, we observed that the traditional
Phoenix cannot support the Word-count and the String-match
for data size larger than 1.5G, because of the memory overflow.
From the Fig. 8, when the data size is in a reasonable interval
(say, less than half of the memory size), the traditional parallel
approach provides almost the same performance. However, in
terms of the Word-count, when the data size is huge (compared
with the memory size), the elapsed time of Partition-enabled
approach is only 1/6 of the traditional one. When comparing

with the sequential approach, both the benchmarks can achieve
a 2X speedup, which proves the fully utilization of duo-
core processor. Fig. 8(b) and Fig. 8(c) show the plots of
the execution time versus the size of the input data file
on the two SD platforms. From the figure, since we can
observe that the performance curve has linear-like growth, our
methodology provides scalability performance for its audience
objective. We can summarize that: (1) for the very data-
size sensitive applications, such as Word Count, the Partition
procedure can not only support data size which cannot fit in
the physical memory but also improve the performance; (2) for
the applications that are not very data-intensive, the Partition
model can only enhance their supportability of data-size range.
Of course, all those observations are based on the assumption
that the applications are partition-able; (3) the last but not
the least, the use of our Partition-enabled approach can fully
utilize the multicore processor in almost all subjects in this
test.

C. Multiple-Application Performance

When multiple applications are running concurrently–
following the McSD framework, the system should exhibit the
basic properties: (1) the system overall throughput should be
increased, and (2) the overall performance of the application
set should be improved. In order to evaluate our McSD exe-
cution framework, we create two multiple-application bench-
marks, each of which contains : a computation-intensive func-
tion and a data-intensive one. To explore how well our system
meets the performance expectations, we report two pairs of
application benchmarks: Matrix-multiplicity/Word-count and
Matrix-multiplicity/String-match. The first pair is very data-
intensive, or memory-consuming, since the memory footprint
of Word-Count is around three times of the input data size.
On the other hand, the memory footprint of String-Match is
around two times of the input data size. Thus, those two are
representatives of two levels of data-intensive applications.

For each pair of applications, we set up four scenarios
to execute the program: (1) the benchmarks running on the
traditional single-core SD mode (a combination of host and
single-core SD node), (2) the benchmarks running on the duo-
core embedded SD mode without Partition function, (3) the
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Fig. 9. Speedups of Matrix Multiplicity and Word-count. Trad SD - traditional smart storage (SD) with single-core processor embedded. DuoC SD-nopar
- duo-core processor embedded smart storage operating in a parallel way without the partitioning function. The benchmarks are running on the multicore host
node only in the Host-only scenario. The last one, Host-part, is partitioning-enabled on the Host node. Compared with the traditional smart storage (running
sequentially), our McSD improves the overall performance by 2x. With the data size increasing, the elapsed time of non-partitioned approaches (the DuoC-SD
and Host-only) can cost 16 to 18 times more than that of the McSD approach.
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Fig. 10. Speedups of Matrix-multiplicy and String-match. Compared with the traditional smart storage (SD) running sequentially, our McSD improves the
overall performance by 1.5x. When data size is increasing, McSD improves the performance of the non-partitioning approaches (the DuoC-SD and Host-only)
by 2x.

programs running on the host node only, and (4) the programs
follow the McSD execution framework; the host machine
handles the computation-intensive part and the SD machine
processes the on-node data-intensive function. Each of the
solutions performs three tests: parallel processing without
partition, parallel processing with partition and the sequential
solution.

Fig. 9 and Fig. 10 illustrate the performance improvement
of using the optimized approach, the parallel-enabled one
with 600MB partition, against the other scenarios. Fig. 9
and Fig. 10 show speedups on the pair of MM/WC and
MM/SM, respectively. We defined the performance speedup
to be the ratio of the elapsed time without the optimization
technique to that with the McSD technique. From both of
the figures, we observe a common point: compared with the

traditional (single-core processor equipped) SD, the McSD
(duo-core processor embedded) averagely improves the overall
performance by 2X for both two pairs of applications. Thus
it illustrates the utilization of the duo-core processor. Also,
the difference between those two sets of figures is obvious. In
terms of the MM/WC, the elapsed time of non-partitioned par-
allel approaches, host node only and McSD without Partition,
increase nonlinearity. When the data size exceeds a threshold,
the speedups averagely achieve 6.8X and 17.4X. On the other
hand, the McSD can only make slightly improvement when
the data size are 500MB and 750MB (below the threshold). In
contrary, the speedups of the MM/SM, which represents less
data-intensive applications, are both averagely 2X speedup.

As we can see, using our methodology gives better speedups
compared with the traditional SD (averagely 2X) and parallel
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processing without Partition (maximum to 17X). While the SD
being widely considered to be one of the heterogeneous com-
puting platforms, the frameworks like ours will be considered
to manage the system and improve the performance.

VI. CONCLUSION

Processor-enabled smart storage can improve I/O perfor-
mance of data-intensive applications by processing data di-
rectly using storage nodes, because smart nodes avoid moving
data back and forth between storage and host computing
nodes. Thanks to the escalating manufacturing technology, it is
possible to integrate multi-core processors into smart storage
nodes. In this study, we implemented a prototype called
McSD for multicore-enabled smart storage that can improve
performance of data-intensive applications by offloading data
processing to multicore processors employed in storage nodes
of computing clusters.

Our McSD system differs from conventional smart/active
storage in two ways. First, McSD is a smart storage nodes
rather than a smart disk. Second, McSD can leverage multi-
core processors in storage nodes to improve performance of
data-intensive applications running on clusters.

McSD along with its programming framework enables
programmers to write MapReduce-like code that can be au-
tomatically offload data-intensive computation to multicore
processors residing in smart storage nodes. The McSD pro-
gramming framework allows smart storage nodes to take full
advantages from embedded multi-core processors. The APIs
and a runtime environment in this programming framework
automatically handles computation offload, data partitioning,
and load balancing. The McSD prototype was implemented
in a testbed–a 5-node cluster containing both host comput-
ing nodes and McSD smart-storage nodes. Our experimental
results were taken by running three real-world applications
on the testbed. The tested data-intensive applications include
Word Count, String Matching, and Matrix Multiplication. Our
multicore-enabled smart storage system - McSD - significantly
reduces the execution time of the three applications. Overall,
we conclude that McSD is a promising approach to improving
I/O performance of data-intensive applications.

Our prototype for multcore-enabled smart storage was built
in a MapReduce cluster. The performance of the benchmark
applications largely depends on the testbed. Therefore, we will
upgrade our testbed (e.g., replace Ethernet with Infiniband) to
evaluate the impact of fast network interconnects on McSD.
Perhaps the most exciting future work lies in exploring (1) the
extensibility of data-processing modules and operations (i.e.
data-intensive applications and database operations) that are
preloaded into McSD smart-disk nodes, (2) the parallelisms
among multiple McSD smart disks, and (3) a mechanism in
McSD to support fault tolerance and improve reliability.
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