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1 Data Grids: Supporting
Data-Intensive Applications in
Wide Area Networks

Xiao Qin* and Hong Jiang†

*Department of Computer Science
New Mexico Institute of Mining and Technology
801 Leroy Place, Socorro, New Mexico 87801-4796

†Department of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115

1.1 INTRODUCTION

A grid is a collection of geographically dispersed computing resources, providing
a large virtual computing system to users. The objective of a data grid system is
two-fold. First, to integrate heterogeneous data archives stored in a large number
of geographically distributed sites into a single virtual data management system.
Second, to provide diverse services to fit the needs of high-performance distributed
and data-intensive computing. There are four commonly used kinds of resources in
grids: computation, storage, communications, and software. In what follows, we
briefly introduced the storage resources.

Storage is viewed as the second most commonly used resource in a grid. The grid that
presents an integrated view of storage is coined as "Data Grid". Memory, hard disk,
and other permanent storage media are referred to as storage resources. In this study
we are particularly interested in secondary storage systems in grids, since second
storage is 1000 times slower than main memory attached to a processor. Throughout
this chapter, we only address the issues of data grid with respect to secondary storage.
Many Networked file systems, which exhibit security and reliability features, have
been widely applied to data grid. These file systems include: Network File System
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6 DATA GRIDS: SUPPORTING DATA-INTENSIVE APPLICATIONS

(NFS) [28] , Distributed File System (DFS), Andrew File System (AFS) [19], General
Parallel File System (GPFS), and Parallel Virtual File System (PVFS) [16][44].

The amount of scientific data generated by simulations or collected from large-
scale experiments is generally large, and such data tends to be geographically stored
across wide-area networks for the sake of large-scale collaborations. The notion of
computational grid has been proposed for several years, mainly focusing on effective
usage of global computational and network resources in a wide area network/Internet
environment. However, the performance of a computational grid, where the effective
usage of storage resources is ignored, will be degraded substantially if vast majority
of applications running in the grid are data-intensive. To overcome this problem,
various techniques have been developed and incorporated into a so-called data grid
infrastructure. In this chapter we will take a close look at these techniques presented
in the literature, and point out some open issues in data grid research.

The rest of the chapter is organized as follows. Section 1.2 reviews three major data
grid services. In Section 1.3, techniques for achieving high performance in data grids
are described in detail. Security issue in data grid is briefly reviewed in Section 1.4.
Section 1.5 identifies several open issues, and discusses the potential solutions to the
open problems. Finally, Section 1.6 concludes the chapter by summarizing the main
open problems and preliminary solutions.

1.2 DATA GRID SERVICES

In this section we focus on three essential servicesm: metadata service, data access
service, and performance measurement.

1.2.1 Metadata Services for Data Grid Systems

The Metadata of a data grid system is the management information regarding to the
data grid. The metadata includes file instances, the contents of file instances, and a
variety of storage systems in the data grid. The goal of metadata service is to facilitate
an efficient means of naming, creating and retrieving the metadata of data grid [13].
There are two types of metadata: application metadata and fabric metadata. While
the former defines the logical structure of information represented by data files (e.g.
XML [10]), the latter corresponds to information related to the characteristics of data
grids.

Since a data grid consists of a large number of storage resources geographically
dispersed over a large-scale distributed environment, an essential requirement of data
grids is the capability of scaling up to accommodate a large number of users. Wahl et
al. have proposed a so-called Lightweight Directory Access Protocol (LDAP) [41],
which achieves a high scalability by applying a hierarchical naming structure along
with rich data models. Fitzgerald et al. have developed a distributed directory
service for general grid metadata, which is applied to represent the metadata of data
grids [17]. Baru et al. proposed a metadata catalog (MCAT) for a storage resource
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broker [4]. MCAT not only distinguishes logical name space from physical name
space, but also provides the specification of a logical collection hierarchy, thereby
achieving a high scalability. In addition, performance is improved in MCAT by
introducing containers to aggregate small files.

Chervenak et al. recently developed a prototype Metadata Service (MCS) for data
grids, where metadata is classified into two categories: logical and physical file
metadata [14]. A logical file name in this prototype represents a unique identifier
for a data content, whereas a physical file name denotes an identifier for a physical
content on storage system. Unlike MCAT mentioned earlier, the services in MCS
are dedicated to describing files, and the physical file properties are not covered by
MCS. While MCAT utilizes a proprietary data exchange format to communicate with
storage resource broker servers, MCS employs XML interface [10] to communicate
with clients.

1.2.2 Data Access Services for Data grid Systems

Data stored and retrieved by a data grid may reside, by design, in different sites on
different storage devices. For this reason, data grids have to provide a global view of
data for applications running on the grids [13]. Data access services are required to be
compatible with traditional file systems and, as a consequence, applications that are
not originally designed for grid environments can run on a grid without complicated
modifications.

Globus, serving as an infrastructure for grid computing, provides access to remote
files through x-gass, ftp or HTTP protocols [18]. White et al. have proposed the
Legion I/O model that provides a remote access capability [42]. To allow end users
to exploit context space and manipulate context structures, Legion also offers some
command line utilities, which are similar to those in a Unix File System. Patten
and Hawick have proposed a Distributed Active Resource Architecture (DARC)
that enables the development of portable, extensible, and adaptive storage services
optimized for end users’ requirements [24].

1.2.3 Performance Measurement in Data Grid

Since multiple resources may affect one another across time and space, performance
problems (e.g. low throughput and high latency) might be imposed by a combination
of resources. Thus, it is important and non-trival to diagnose performance problems
in accordance with performance measurements provided by monitors. With a mon-
itoring service in place, one can analyze the monitoring data from different point of
views. The objective of the monitoring service is to observe performance bottlenecks,
which are likely to occur in any components of the data grid.

Previous studies have demonstratively shown that monitoring at application level is an
effective approach to both performance analysis and application debugging [9][39].
For example, Snodgrass has incorporated relational databases into a monitoring
system to monitor complex systems [29].
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GMA (Grid Monitoring Architecture) embraces the key components of a grid mon-
itoring system along with some essential interactions [38]. The data model used in
the Network Weather Service [34] has been extended by Lee et al. to fulfil the special
needs of monitoring data archives in grid environments [21]. More specifically, Lee
et al. has proposed a relational monitoring data archive that is designed to efficiently
handle high volume streams of monitoring data [21].

1.3 HIGH PERFORMANCE DATA GRID

We now turn our attention to the issues related to data replication, scheduling, and
data movement, which must be addressed in order to achieve high performance and
scalability in data grids.

1.3.1 Data Replication

A large body of work has been found on data replication for distributed applications
[11][32][35]. The existing techniques supporting data replication in data grids can
be divided into four camps, namely, (1) Architecture and management for data
replication, (2) Data replication placement, (3) Data replication selection, and (4)
Data consistency.

 

    3. Replica Manager  

    2.  Re plica  Catalogue  

    1.    File Transfer  

    4. Replica Selection  

Fig. 1.1 Architecture of a data Replication Service in a data grid system.

Architecture of a data replication service
A general high-level architecture with four layers for data replication services of a
data grid system is depicted in Figure 1.1 [13]. We describe each layer as follows:

1. File transfer layer consists of file transfer protocols such as: FTP, HTTP, and
GridFTP [3]. Note that GridFTP is an extended version of FTP.

2. The replica catalogues [3] layer is leveraged to map logical file names to
physical files.

3. The replica manager layer’s functionalities include create, move, modify and
delete replicas in a data grid. Once a file is copied from one site to another by
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the replica manger layer and registered in the replica catalogue, the file can be
retrieved by any application running on arbitrary site in the grid.

4. The replica selection layer is responsible for choosing the most appropriate
replica from those copies geographically dispersed across grids. The selections
of replication policies largely depend on read and write accesses to data that
can be classified into the three categories: Read-only data, writable data with
well-defined file ownership, and writable data with varying writers.

Data Replication Management
We first take a look at replication policies designed for read-only data. A pilot project
called the Grid Data Management Pilot (GDMP) has been launched to develop a
prototype for replication management within a data grid environment [27]. In the
GDMP software, a secure replication of database files has been used, and a high-level
replica catalog interface is implemented by using the native objectivity federation
catalogue.

More broadly, replications can be optionally implemented at different levels of gran-
ularity, such as file level and object level [31]. Realizing that file replications in
a data analysis application are potentially inefficient, Stockinger et al. have fully
implemented object replication in a data grid prototype using Globus Data Grid
tools [31].

Foster et al. recently developed a general framework, which defines a parameterized
set of basic mechanism to create a variety of replica location services [15]. By con-
figuring system parameters dynamically, one is able to tune system performance by
means of considering the tradeoff among reliability and communication overhead,
and storage update/access costs.

Data Replication Placement
In a recent study [25], several replication selection strategies for managing large data
set have been proposed and evaluated. Unlike static replications, dynamic replica-
tion approaches automatically add and delete replicas in accordance with changing
workload, thereby sustaining high performance even in the face of diverse data access
patterns [25].

Data Replication Selection
Once data replicas are generated and stored at multiple sites according to a variety
of replication placement strategies discussed above, the performance of data grid can
be noticeably improved by choosing optimized replica location for each data access.

Replica selection is a high level service that helps grid applications to choose a
replica based on system performance and data access features. Vazhkudai et al. [40]
have designed and implemented a replica selection service that uses information with
respect to replica location as well as application’s specific requirements to determine
a replica among all replica alternatives.

Data Consistency in Data Grid Systems
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The data replication techniques reviewed above mainly aim at maintaining replica-
tion for read-only files, thereby avoiding data consistency problems. In general, local
consistency at each site is completely guaranteed by database management systems
(DBMS), whereas global consistency in data grid systems needs to be maintained by
a so-called grid consistency service.

There have been extensive studies of data consistency in distributed environments [33][43].
The main target of the consistency model proposed by Sun et al. [33] is real-time
cooperative editing systems that allow multi-user, physically dispersed people, to
view and edit a shared document at the same time over networks. To address the
issue of grid data consistency maintenance, Düllmann et al. proposed a consistency
service [23], which is supported by existing data grid services.

To maintain the basic consistency level, a replication operation must be manipulated
as a database read transaction [23]. Thus, a read lock on a file has to be obtained
before a site is ready to produce a new replica of the file. The site releases the read
lock when the replica has been successfully duplicated. Likewise, the consistency
service rests on write locks when update operations are issued on a set of replicas.
All data replication techniques discussed above are summarized in Table 1.1.

Table 1.1 Summary of Data Replication Techniques

Researchers Granularity Data Type Consistency Technique

Samar et al. File Read Only Noa Subscription and partial
replication model

Vazhkudai et al. File Read Only No Replication selection
Stockinger et al. File/Object Read Only Nob Object replication
Chervenak et al. File Read Only Yesc Replication location

service
Ranganathan File Read Only No Replication placement
et al.
Lamehamedi File Read Only No Replication placement
et al.
Mullmann et al. File Read/Write Yes Consistency service
Sun et al. String Read/Write Yes Three novel properties

aProducer decides when to publish new files.
bConsumer decides when to replicate objects.
cRelaxed consistency for metadata.

1.3.2 Scheduling in Data grid Systems

Previous research has shown that scheduling is a fundamental approach to achieving
good performance for grid applications [1][7] [30][35]. However, these approaches
do not take into account distributed data constraints.
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Scheduling schemes designed for data-intensive jobs have generally been classified
into two major categories: moving data to job and moving job to data. To reduce the
frequency of remote data access and the amount of transferred data, data replication
can be an optimization technique as we discussed in Section 1.3.1.

Thain et al. developed a system where execution sites band together into I/O com-
munities [36]. Each I/O community comprises several CPUs and storage devices that
provide storing and retrieving data services both for local and remote jobs. To enable
jobs to declare constraints on storage devices within I/O communities, Thain et al.
extended ClassAds [36] that are currently used in Condor system [22] to describe
jobs’ requirements in a distributed system. A single ClassAd is a list of (attribute,
value) pairs, where value can be either atomic or complex expressions. Figure 1.2
illustrates three different kinds of ClassAd [36].

Type = "job" Type = "machine" Type = "storage"
TargetType = "machine" TargetType = "job" Name = "machine"
Cmd = "sim.exe" Name = "raven" HasCMSData = true
Owner = "thain" Opsys = "linux" CMSDataPath =
Requirements = Requirements = "/cmsdata"
(Owner = "thain") && (Onwer = "thain")

NearestStorage.HasCMSData NearestStorage =
(Name="turkey")&&
(Type = "storage")

Fig. 1.2 Examples of job ClassAd, Machine ClassAd, and Storage ClassAd.

To minimize remote data access overheads, Basney et al. have invented a so-called
execution domain framework to define an affinity between CPU and data resources
in the grid [5]. By applying the framework to the Condor system, data-intensive jobs
can be scheduled to run on CPUs that have access to required data.

To gain an efficient execution of parameter sweep applications on the grid, Casanova
et al. have studied four adaptive scheduling algorithms that consider distributed data
storage [12]. The proposed algorithms are heuristic yet effective in environments
where some computing nodes are best for some tasks but not for others. The key idea
behind these scheduling algorithms is to judiciously place files for maximum reuse.
These scheduling algorithms have been implemented in a user-level grid middleware,
which centrally handles task scheduling.

Ranganathan and Foster have proposed a distributed scheduling framework where
each site consists of an external scheduler, a local scheduler, and a dataset sched-
uler [26]. The external scheduler of a site is responsible for dispatching the submitted
jobs to an appropriate site, which can either be one with the least load or the one
where required data have been staged. The functionality of the local scheduler is to
decide the order in which jobs are executed at the site. The dataset scheduler makes
decisions on when and where to replicate data.
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1.3.3 Data Movement

In a computational grid, data movement mechanisms play an important role in achiev-
ing high system performance. This is driven by two requirements imposed by both
grid applications and data grid itself. First, applications need to access data that is not
located at the site where the computation is performed. Second, replication services
are responsible for managing replicas by means of copying and moving data through
networks.

To fulfill the above two requirements, Bester et al. have proposed a data movement
and access service called Global Access to Secondary Storage (GASS) [8]. The
service not only incorporates data movement strategies that are geared for the common
I/O patterns of grid applications, but also supports programmer management of data
movement. The performance evaluation shows that GASS is an efficient approach to
data movement in grid environments.

Thain et al. have developed a data movement system called Kangaroo, which im-
proves reliability as well as throughput of grid applications by hiding network storage
devices behind memory and disk buffer [37]. More specifically, the approach relies on
Kangaroo’s ability to overlap CPU and I/O processing intervals by using background
processes to move data and handle errors.

1.4 SECURITY ISSUE

With the usage of different machines in a Grid, the issue of security, which has
been provided by most existing data grids [13][27][42], becomes one of the prime
concerns. In principle, traditional security techniques, such as encryption and access
control, can be conservatively applied to a grid. For example, a user has to be
authenticated and authorized before contacting any remote site.

Due to the space limits, in what follows, we only review two intriguing issues in
security addressed in GDMP [27], namely, the main security issues of sensitivity of
data and unauthorized use of network bandwidth to transfer huge files. Specifically,
the security module of GDMP server, based on the Globus Security Service (GSS)
API, offers functions to acquire credentials, initiate context establishment on client
side and accept context requests on server side, encrypting and decrypting messages
and client authorization. Consequently, the security module protects a site from any
undesired file transfers and rejects any unauthorized requests.

1.5 OPEN ISSUES

Although a variety of techniques have been proposed to achieve high performance
in data grids, there are still some open issues to be addressed. This section lists the
open issues related to high performance data grid.
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1.5.1 Application Replication

Although some efforts have been made to replicate actual data accessed by grid appli-
cations, little attention has been paid to replicating frequently used grid applications
across the grid. Once a scheduling scheme decides to move an application towards
its data, a replication selection policy for applications can be developed to choose the
most appropriate application copy in the grid. There are three reasons that motivate
us to distinguish application code from actual data:

• Foremost, an executable code of an application at one site might not be able
to run on another site. One can straightforwardly tackle this problem by using
a java-programming environment, which becomes increasingly popular [2].
However, a large number of existing scientific applications have been developed
in FORTRAN, C or other programming languages. To solve this problem, one
can have the source code moved to destination sites and obtain the executable
code by compiling the source code at the destination sites.

• The application replication techniques provide efficient support to a parallel-
shared-nothing architecture. For example, a well-designed partition algorithm
can be used to dynamically and effectively divide data among the proces-
sors where the processing application has been staged to achieve maximum
parallelism.

• It is reasonably assumed that data can be stored at any site, provided that it
has registered as a member of a data grid. Unfortunately, this assumption
is not practical for applications since some sites might not be able to fulfill
applications’ hardware or/and software requirements.

To facilitate a parallel computing environment in computational grids, one of the
future directions can be studying an application replica service, which includes
application replica management and application selection. The application replica
management is designed to duplicate, remove, and update copies of application
instances, as well as to maintain the consistency among the replicas. The application
selection service is devised to choose an optimized location where an application
replica has been stored to run the job.

1.5.2 Consistency Maintenance

In Section 1.3.1, we have discussed the requirements of consistency maintenance
imposed by scientific data and metadata. We believe that the proposed application
replication services make the consistency maintenance even more complex. This is
because in order to obtain high scalability, it is appealing to offer the services in a
distributed fashion. In addition, a group of programmers are allowed to collaborate
with one another to develop some large-scale applications in a grid environment, and
grid applications are likely to be periodically upgraded.
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We realize that from the summary of data replication techniques given in Table 1.1,
most existing consistency models in data grid work well for read only data, but
much less attention has been devoted to the consistency issues for data that needs to
be written multiple times. In a data grid environment, many datasets are multiple-
written in nature. When a group of programmers collaboratively develop a large-scale
scientific applications on the grid, some programmers might be working on the same
source code, implying that the code not only needs to be written multiple times
but also likely to be written concurrently by several programmers. Therefore, it
will be interesting to develop a relaxed consistency model to effectively handle the
consistency problems in multiple-written data discussed above.

1.5.3 Asynchronized Data Movement

The impact of data movement on the performance of local site is enormous, and
this is especially true if the volume of transferred data is huge or data movements
occur frequently. To alleviate such a burden resulting from data movements, a future
direction is to study a new way of moving data without sacrificing the performance
of applications running on local sites. In particular, a protocol can be designed
to move asynchronized data if the load of source site and destination site is below
a certain threshold. Compared with existing data movement approaches that treat
synchronized and asynchronized equally,our potential solution is expected to improve
the performance of data grids when I/O and network load at each site is bursting in
nature.

1.5.4 Prefecthing Synchronized Data

We notice that data prefetching schemes for synchronized data have caught little
attention. We believe that data prefetching technique, which complements the new
data movement approaches presented in Section 1.3.3, can optimize the performance
of data grids in case where required data is moved towards to a remote site where its
job resides.

By using ClassAd language to explicitly define applications’ required files, a static
prefectching scheme can make these files available before applications need to access
them. As one of the possible future directions, a new prefetching algorithm, which is
able to dynamically predict files, will be developed to establish correlations among
files based on a statistic model. This new dynamic prefetching algorithm actively
provides grid applications with files by shipping required files in advance before
applications are locally loading the files.

1.5.5 Data Replication

As can be seen from Table 1.1, the idea of replicating frequently accessed data on
multiple sites has been eagerly pursued. The drawback of most existing replication
techniques is that as replication granularity is file, a large file might be replicated even
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if only a small portion of the file is frequently accessed. This problem is analogous
to false sharing in distributed shared memory system. To provide a potential solution
to tackle this problem, one can investigates a new data model, where the replication
granularity can be dynamically adjusted according to benefits gained from replicas
and overheads of generating replications.

Interestingly, there is no clear consensus on developing caching algorithms with
efficient disk cache replacement policies in the context of data grids. As a result,
there is a distinct need to study a caching algorithm, in which files cached on local
disks are viewed as temporary replicas. The main difference between cached files
and regular replicas is that files in disk cache might be removed when disk cache is
unable to accommodate newly arrived files.

1.6 CONCLUSIONS

We have reviewed a number of data grid services and various techniques for improving
the performance of data grid. Additionally, the issue of security in data grid has been
briefly discussed. Five open issues and the possible future directions are summarized
as below.

1. While a significant amount of data grid research has been done in data repli-
cation, the idea of replicating frequently used grid applications across the
grid has received little attention. One possible future work is to develop a
new application replica service, which can be built on top of data replication
service.

2. It is noticed that most consistency models in existing data grids have not
addressed consistency issues for multiple-written data. As one of the future
directions, one can develop a relaxed consistency model to effectively handle
the consistency problems for a number of common file access patterns including
multiple-written pattern.

3. There is a distinct need to study a new way of moving data at a time when
both source and destination sites are lightly loaded, thereby achieving better
performance in data grid without sacrificing the performance of applications
running on local sites.

4. A fourth interesting future direction is to design a new prefetching algorithm
that can dynamically predicate files that are likely to be retrieved.

5. Last but not least, one of the possible future directions is to study a file-
caching algorithm, where the replication granularity of a new data model
can be dynamically tuned in accordance with the benefits and overheads of
generating replicas.
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