42

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

Communication-Aware Load Balancing
for Parallel Applications on Clusters

Xiao Qin, Senior Member, IEEE, Hong Jiang, Member, IEEE,
Adam Manzanares, Student Member, IEEE, Xiaojun Ruan, Student Member, IEEE, and
Shu Yin, Student Member, IEEE

Abstract—Cluster computing has emerged as a primary and cost-effective platform for running parallel applications, including
communication-intensive applications that transfer a large amount of data among the nodes of a cluster via the interconnection
network. Conventional load balancers have proven effective in increasing the utilization of CPU, memory, and disk 1/O resources in a
cluster. However, most of the existing load-balancing schemes ignore network resources, leaving an opportunity to improve the
effective bandwidth of networks on clusters running parallel applications. For this reason, we propose a communication-aware load-
balancing technique that is capable of improving the performance of communication-intensive applications by increasing the effective
utilization of networks in cluster environments. To facilitate the proposed load-balancing scheme, we introduce a behavior model for
parallel applications with large requirements of network, CPU, memory, and disk I/O resources. Our load-balancing scheme can make
full use of this model to quickly and accurately determine the load induced by a variety of parallel applications. Simulation results
generated from a diverse set of both synthetic bulk synchronous and real parallel applications on a cluster show that our scheme
significantly improves the performance, in terms of slowdown and turn-around time, over existing schemes by up to 206 percent (with
an average of 74 percent) and 235 percent (with an average of 82 percent), respectively.

Index Terms—Cluster, communication-aware computing, parallel computing, load balancing.

<+

1 INTRODUCTION

SIGNIFICANT cost advantages, combined with rapid ad-
vances in middleware and interconnect technologies,
have made clusters a primary and fast growing platform for
high-performance scientific computing. Scheduling [6] and
load balancing [18], [19] are two key techniques used to
improve the performance of clusters for scientific applica-
tions by fully utilizing machines with idle or underutilized
resources. A number of distributed load-balancing schemes
for clusters have been developed, primarily considering a
variety of resources, including the CPU [13], memory [1],
disk I/O [18], or a combination of CPU and memory
resources [31]. These approaches have proven effective in
increasing the utilization of resources in clusters, assuming
that network interconnects are not potential bottlenecks in
clusters. However, a recent study demonstrated that the
need to move data from one component to another in
clusters is likely to result in a major performance bottleneck
[10], [23], indicating that data movement through the
interconnection of a cluster can become a primary bottle-
neck. Thus, if the opportunity for improving effective

o X. Qin, A. Manzanares, X. Ruan, and S. Yin are with the Department of
Computer Science and Software Engineering, Shelby Center for Engineer-
ing Technology, Samuel Ginn College of Engineering, Auburn University,
AL 36849-5347.

E-mail: {xqin, acm0008, xzr0001, szy0001}@auburn.edu.

e H. Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, 103 Schorr Center, 1101 T Street, Lincoln,
NE 68588-0150. E-mail: xietao@nmt.edu.

Manuscript received 31 July 2008; revised 20 Mar. 2008; accepted 21 May
2009; published online 23 July 2009.

Recommended for acceptance by F. Lombardi.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-07-0387.
Digital Object Identifier no. 10.1109/TC.2009.108.

0018-9340/10/$26.00 © 2010 IEEE

bandwidth of networks is fully exploited, the performance
of parallel jobs on clusters could be enhanced.

A large number of scientific applications have been
implemented for execution on clusters and more are under-
way. Many scientific applications are inherently computa-
tionally and communicationally intensive [8]. Examples of
such applications include 3D perspective rendering, mole-
cular dynamics simulation, quantum chemical reaction
dynamics simulations, and 2D fluid flow using the vortex
method, to name just a few [8]. The above bottleneck
becomes more severe if the resources of a cluster are time/
space-shared among multiple scientific applications and the
communication load is not evenly distributed among the
cluster nodes. Furthermore, the performance gap between
the effective speed of CPU and network resources continues
to grow at a faster pace, which raises a need for increasing the
utilization of networks on clusters using various techniques.

The main motivation for our study is to improve the
efficiency and usability of networks in cluster computing
environments with high communication demands. The
effort to improve the utilization of networks can be classified
into hardware and software approaches. In this paper, we
focus on an approach designed at the software level. In
particular, we develop a communication-aware load-balan-
cing scheme (referred to as COM-aware) to achieve high
effective bandwidth communication without requiring any
additional hardware. Our approach can substantially im-
prove the performance of parallel applications running on a
large-scale, time/space-shared cluster, where a number of
parallel jobs share various resources. COM-aware load
balancing enables a cluster to utilize most idle, or under-
utilized, network resources while keeping the usage of other
types of resources reasonably high. We propose a behavioral

Published by the IEEE Computer Society

QIN ET AL.: COMMUNICATION-AWARE LOAD BALANCING FOR PARALLEL APPLICATIONS ON CLUSTERS 43

model for parallel applications to capture the typical
characteristics of various requirements of CPU, memory,
network, and disk I/O resources.

Typical load-balancing approaches that only focus on
maximizing the utilization of one type of resource are not
sufficient for a wide range of applications. Increasing
evidence shows that high-performance computing requires
clusters to be capable of executing multiple types of
applications submitted by users [20], [26], [31] simulta-
neously. For this reason, the COM-aware scheme is
designed in a way that delivers high performance under a
large variety of workload scenarios, in order to provide one
possible solution to the problem.

The rest of the paper is organized as follows: Section 2
presents a summary of related work. Section 3 introduces an
application behavioral model and a system model that aim at
capturing the resource requirements for applications and the
simulated cluster environment. Section 4 presents our
communication-aware load-balancing scheme. Section 5
introduces the simulation model and the methods used for
gathering the data for performance evaluation. Section 6
summarizes the performance evaluation of the proposed
scheme by simulating a cluster running both synthetic bulk
synchronous and real-world communication-intensive par-
allel applications. Finally, Section 7 summarizes the main
contributions of this paper and comments on future research.

2 RELATED WORK

In general, load-balancing techniques fall into to categories:
centralized load balancing and distributed load balancing.
Centralized schemes typically require a head node that is
responsible for handling the load distribution. As the cluster
size scales up, the head node quickly becomes a bottleneck,
causing a significant performance degradation. To solve this
scalability problem, the workload of the load balancer can be
delegated to multiple nodes in a cluster, hence the notion of
distributed dynamic load balancing. In addition, a centra-
lized scheme has the potential problem of poor reliability
because permanent failures of the central load balancer can
result in a complete failure of the load-balancing mechan-
ism. Therefore, the focus of this paper is on designing a
decentralized communication-aware load balancer for
time-/space-shared (i.e., nondedicated) clusters.

There is a large body of established research focusing on
the issue of distributed load balancing for CPU and memory
resources. For example, Harchol-Balter and Downey [13]
developed a CPU-based preemptive migration policy that
was shown to be more effective than nonpreemptive
migration policies. Zhang et al. [31] studied load-sharing
policies that consider both CPU and memory services
among the nodes. Although these schemes can effectively
utilize memory and/or CPU resources at each node in the
system, none of them has considered the effective usage of
I/0 or network resources.

In our previous paper, we proposed an I/O-aware load-
balancing scheme to meet the needs of a cluster system with a
variety of workload conditions [18]. This approach is able to
balance implicit disk I/O load as well as that of explicit disk
I/0. This is due to the fact that when the memory space is
unable to meet the memory requirements of the jobs running

on a node, a large number of page faults will exist, which in
turn, will lead to a heavy implicit I/O load. Additionally, we
have extended the above I/O-aware load-balancing strategy
from three different perspectives. First, we have incorporated
preemptive job migration to further improve the system
performance over nonpreemptive schemes [19]. Second, we
have developed an approach for hiding the heterogeneity of
resources, especially that of I/O resources [21]. Third, we
have devised two simple yet effective load-balancing
schemes for parallel I/O-intensive jobs running on clusters
[20]. All the above approaches are effective under workloads
without high communication intensity and balancing the
communication load is not considered.

A communication-sensitive load balancer has been
proposed by Cruz and Park [7]. The balancer uses runtime
communication patterns between processes to balance the
load. Orduna et al. have proposed a criterion to measure the
quality of network resource allocation to parallel applica-
tions [17]. Based exclusively on this criterion, they have
developed a scheduling algorithm to fully utilize the
available network bandwidth. Our proposed scheme is
different from their work in that our scheme attempts to
simultaneously balance two different kinds of I/O load,
namely, communication and disk I/0O.

Many researchers have shown that message-passing
architectures and programming interfaces are useful tools
to develop parallel applications. Brightwell et al. have
implemented the Portals message-passing interface on a
commodity PC Linux cluster [3]. For higher level message-
passing layers, Portals can reduce the overhead for receiving
messages due to the availability of programmable NICs
with significant processing power. Buntinas et al. have
designed and implemented an application-bypass broadcast
operation, which is independent of the application running
at a process to make progress [4]. The approach presented in
this paper can be considered complementary to the existing
message-passing techniques in the sense that an additional
performance improvement can be achieved by combining
our communication-aware load-balancing technique with
the Portals MPI and the application-bypass broadcast.

3 SyYSTEM MODELS AND ASSUMPTIONS

Since the communication and I/O demands of applications
may not be known in advance, in this section, we introduce
an application model, which aims at capturing the typical
characteristics of the communication, disk I/0O, and CPU
activity within a parallel application. The parameters of the
model for a parallel application can be obtained by
repeatedly executing the application offline for multiple
inputs. Alternatively, a light weight and online profiler can
be used to monitor the application behavior, thereby
updating the model. Note that the model is used in our
trace-driven simulations.

Because the Message Passing Interface (MPI) specification
simplifies many complex issues for scientific application
development, application designers and developers have
adopted the MPI programming model [30], [28] as the
de facto standard for parallel programming on clusters.
Consequently, the development of numerous scientific
applications for clusters has been largely based on MPI [12].

44
Master 4’@ Node 1
Node 2
Slavel | | Slave2 | I Slave3
| I ’—>O Node 3
pO Node 4
(a)
Master
time
| Slavel | | Slave2 | Slave3
Master
(b)
Fig. 1. SPMD application model. A master-Slave communication

topology. (a) Four processes are allocated to four nodes. (b) The
master periodically communicates to and from the slaves.

In the MPI-based application model, large data sets are
decomposed across a group of nodes in a cluster. Processes
(the terms process and task are used interchangeably
throughout this paper) in a parallel application communicate
with one another through the message-passing interface
(Fig. 1). In this study, we focus on a bulk-synchronous style of
communication, which has been used in the popular Bulk-
Synchronous Parallel model [9], [27], [22] and conforms with
the MPI style of interprocess communication patterns. This
model is a good fit for a variety of bulk-synchronous parallel
applications, especially MPI-based parallel programs, in
which a master creates a group of slave processes across a
set of nodes in a cluster (Fig. 1a). The slave processes
concurrently compute during a computation phase, and
then, processes will be synchronized at a barrier so that
messages can be exchanged among these processes during
the communication phase (Fig. 1b).

To design a load-balancing scheme that improves the
effective usage of network resources in a cluster, we have to
find a way to quantitatively measure the communication
requirements of parallel applications. Based on the com-
munication requirements of all the applications running on
the cluster, we can estimate the communication load of
each node.

In what follows, we introduce an application behavioral
model, which captures the load of CPU, network, and disk
I/0O resources generated by a parallel application. This
model is important because the load-balancing scheme
proposed in Section 4 makes full use of the model to quickly
calculate the load induced by parallel applications running
on the system. Our model is reasonably general in the sense
that it is applicable for both communication and I/O-
intensive parallel applications. Let N be the number of
phases for a process (slave task) of a parallel job running on
a node, and T; be the execution time of the ith phase. T; can
be obtained by the following equation, where T, Téon,

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

|:| CPU time I: Communication time - Disk I/O time

time
[HN [1T [T
| | | | |
Phases 7" T’ 7 T

Fig. 2. Example for the application behavior model. Number of phases is
N=4.

and T}, are the times spent using CPU, communication,
and disk I/O resources:

T' = Tepy + Teon + Thigk: (1)

Therefore, the total execution time of the process is
estimated as T = Zjvzl T . Let Ropy, Reowm, and Rpig, be
the requirements of CPU, communication, and disk I/0O,
and these requirements can be quantitatively measured as:

N N
Repr =Y Tipys Roow =Y Thoy, and

i=1 i=1

N (2)
Rpisk =) Tpi,

i=1

An example of the above notation is illustrated in Fig. 2,
which is for demonstrative purposes only. In this example,
the process has four phases. In the first phase, the
application spends a large fraction of time reading data
from the disk. The second phase spends a small amount of
time on computation and the rest on communication. Thus,
phase two is communication-intensive. The third phase is
composed of balanced CPU and communication require-
ments. The last phase is I/O-intensive in the sense that it
spends a large fraction of time writing data to the disk.

We are now in a position to derive the execution time
model for a parallel job (the terms job, application, and
program are used interchangeably) running on a dedicated
cluster environment. Given a parallel job with p identical
processes, the execution time of the job can be calculated as:

N

T, =5+ Z {MAXY_, (T;CPU + T;.COM + T;,Disk) I
=1

(3)

where T} o.py;, T} cops and T ;. denote the execution time of
process j in the ith phase on the three prospective resources.
The first term on the right-hand side of the equation
represents the execution time of sequential components
including synchronization delay and computation time in
the master process; the second term corresponds to the
execution time of parallel components. Disk IO times
depend on the IO access rate, average 10 data size, disk
seek and rotation time, and the Disk transfer rate. Therefore,
we do not assume by any means that the disk I/O times are
fixed.

Let s,cru, spcom, and s, pi denote the sequential
components execution time on CPU, communication, and
disk I/O accesses, thus:

(4)

Sp = Sp,crU + Sp,com t+ Sp,Disk-

QIN ET AL.: COMMUNICATION-AWARE LOAD BALANCING FOR PARALLEL APPLICATIONS ON CLUSTERS 45

Our goal is to model a nondedicated cluster, where each
job has a home node that it prefers for execution [15]. This is
because either the input data of a job has been stored in the
home node, or the job was created on its home node. When
a parallel job is submitted to its home node, the load
balancer allocates the job to a group of nodes with the least
load. If the load balancer finds the local node to be heavily
loaded, an eligible process will be migrated to a node with
the lightest load.

A cluster in the most general form is composed of a set of
nodes each containing a combination of multiple resource
types, such as CPU, memory, network, and disk. Each node
has a load balancer that is responsible for balancing the load
of available resources. The load balancer periodically
receives reasonably up-to-date global load information
from the resource monitor [14], [25]. When the number of
communicating nodes in the system becomes large or when
the system load is heavy, the communication overhead
tends to be excessive. To reduce this undesirable overhead,
Shin and Chang proposed the notion of buddy sets and
preferred lists [24].

The network in our model provides full connectivity in the
sense that any two nodes are connected through either a
physical link or a virtual link. This assumption is arguably
reasonable for modern interconnection networks (e.g., Myr-
inet [2] and InfiniBand [29]) that are widely used in high-
performance clusters. Both Myrinet and Infiniband networks
provide pseudofull connectivity, allowing simultaneous
transfers between any pair of nodes.

We assume that the CPU and memory burden placed by
data communication is relatively low, and consequently, the
CPU and memory load (due to data communication) is not
considered. This assumption is reasonable since the com-
munication can be directly handled by the network inter-
face controllers without the local CPUs intervention or the
buffer in the main memory [11].

4 COMMUNICATION-AWARE LOAD BALANCING

In this section, we propose a dynamic, communication-
aware load-balancing scheme for nondedicated clusters.
Each node in the cluster serves multiple processes in a time-
sharing fashion so that these processes can dynamically
share the cluster resources. To facilitate our load-balancing
technique, we need to measure the communication load
imposed by these processes.

Let a parallel job formed by p processes be represented by
to,t1,,tp—1, and where ni is the node to which ¢; is assigned.
Without loss of generality, we assume that ¢, is a master
process, and t;(0 < j < p) is a slave process. Let L;,coum
denote the communication load induced by ¢;, which can be
computed with the following formula, where T7 ., is the
same as the one used in (3):

N
1

E T comrs

=1

Lipcom =140,

7 7& O,TL]‘ 7é N,
j?é07nj:n07 (5)

N
Z Tycom» J7=0.

1<k<p,np#n; i=1

The first term on the right-hand side of the equation
corresponds to the communication load of a slave process t;
when the process t; and its master process are allocated to
different nodes. The second term represents a case where
the slave and its master process are running on the same
node, and therefore, the slave process exhibits no commu-
nication load. Similarly, the third term on the right-hand
side of the (5) measures the network traffic in and out of the
master node, which is the summation of the communication
load of the slave processes that are assigned to nodes other
than the master node.

Intuitively, the communication load on node i, L; coum,
can be calculated as the cumulative load of all the processes
currently running on the node. Thus, L;com can be
estimated as follows:

Li,COM: Z Lj,p,CO]\J- (6)

Y jinj=i

Given a parallel job arriving at a node, the load-balancing
scheme attempts to balance the communication load by
allocating the jobs processes to a group of nodes with a
lower utilization of network resources. Before dispatching
the processes to the selected remote nodes, the following
two criterions must be satisfied to avoid useless migrations:

Criterion 1. Let nodes ¢ and j be the home node and
candidate remote node for process t, the communication
load discrepancy between nodes i and j is greater than
t’s communication load.

Criterion 1 guarantees that the load on the home node
will be effectively reduced without making other nodes
overloaded. We can formally express this criterion as:

(Licom — Ljcom) > Lipconm. (1)

Criterion 2. Let nodes ¢ and j be the home node and
candidate remote node for process ¢, then the estimated
response time of ¢ on node j is less than its local execution.
Hence, we have the following inequality, where R and R/
are the estimated response time of ¢ on nodes i and j,

respectively. Ri:‘fmq is the migration cost for process t:

The migration cost R;;,,, is the time interval between the
initiation and the completion of ¢s migration, which is
comprised of a fixed cost for running ¢ at the remote node j
and the process transfer time that largely depends on the
process size and the available network bandwidth mea-
sured by the resource monitor.

It is a known fact that, in practice, clusters are likely to
have a mixed workload with memory, I/O, and commu-
nication-intensive applications. Therefore, our communica-
tion-aware load-balancing approach is designed in such a
way to achieve high performance under a wide spectrum of
workload conditions by considering multiple application
types. Specifically, to sustain high and consistent perfor-
mance when the communication load becomes relatively
low or well balanced, our scheme additionally and
simultaneously considers disk I/O and CPU resources. In
other words, the ultimate goal of our scheme is to balance
three different resources simultaneously under a wide
spectrum of workload conditions. In practice, one resource

46

if (Li,coM = MAX(Lx,C()M > Lx,CFU > Lz,Dlsk)) begin

if (the submitted job is communication-intensive) begin
node i makes an effort to balance the communication load;
else if (the submitted job is I/O-intensive) begin
node i keeps disk I/O resources well balanced;
else if (the submitted job is CPU-intensive)
balance CPU resources;
end
end
else if (the workload is memory-intensive) begin
Balance memory resources;
else if (the submitted job is I/O-intensive) begin
node i keeps disk I/0 resources well balanced;
else if (the submitted job is CPU-intensive)
balance CPU resources;
end
end
end

Fig. 3. Pseudocode of the communication-aware load-balancing
scheme.

is likely to become a bottleneck if the fraction of the
execution time spent on this resource is substantially higher
than that on the other two resources. For this reason, our
scheme envisions a type of resource that exhibits higher
load than that of any other resources as the first-class
resource, and the scheme attempts to first balance the first-
class resource. Let L; cpyy and L; p;s, be the load of node ¢ in
terms of CPU and disk I/O activities. The pseudocode of
our communication-aware scheme is presented in Fig. 3.

5 PERFORMANCE EVALUATION

To evaluate the performance of the proposed load-balan-
cing scheme, we have conducted extensive trace-driven
simulations. This section describes our simulation model,
workload conditions, and performance metrics.

A 32-node cluster was simulated under a variety of
workload conditions. Before presenting the workload and
performance metrics in detail, we briefly describe the
simulation model first. To study dynamic load balancing,
Harchol-Balter and Downey [13] have implemented a
simulator of a distributed system with six nodes, where a
CPU-based load-balancing policy is studied. Zhang et al.
[31] extended the simulator by incorporating memory
recourses. We have added new features to this simulator.
First, the new communication-aware load-balancing scheme
is implemented. Second, a fully connected network is
simulated and the size of the simulated cluster is now
variable. The simulated cluster is configured using the
various parameters listed in Table 1. The parameters for
CPU, memory, disk, and network interconnect are chosen in
such a way that they resemble a typical cluster node.

It is well understood that the performance of a cluster
system is affected by the workload submitted to the system.
Therefore, designing a realistic workload plays an important

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010
role in our performance evaluation. To evaluate the perfor-
mance impacts of the communication-aware load-balancing
scheme, we extrapolate traces from those reported in [12],
[30]. It is noted that the original traces are obtained by
recording information regarding job submissions to one
workstation at different time intervals [13]. In particular, the
traces in our experiments consist of the arrival time, arrival
node, requested memory size, actual running time, I/O
access rate, average I/O data size, message arrival rate, the
average message size, and the number of tasks in each
parallel job. To simulate a multiuser time-sharing environ-
ment, the traces contain a collection of parallel jobs. Without
loss of generality, we first consider a bulk-synchronous style
of communication (See Section 3), where the time interval
between two consecutive synchronization phases is deter-
mined by the message arrival rate. The experimental results
reported in Section 6.5 validate our argument that the
communication-aware load-balancing scheme can also be
applied to communication-intensive applications with a
variety of communication patterns.

For jobs that contain communication requirements,
messages issued by each task are modeled as a Poisson
Process with a mean message arrival rate. The message size
is randomly generated according to a Gamma distribution
with a mean size of 512 Kbyte, which reflects typical data
characteristics for many applications, such as 3D perspec-
tive rendering [16]. The durations and memory require-
ments of the jobs are defined in the trace files, and the
communication requirement of each job is randomly
generated. Although this simplification deflates any corre-
lations between communication requirements and other job
characteristics, we still are able to manipulate the commu-
nication requirements as an input parameter and examine
the impact that changing communicational intensity has on
the system performance (See Sections 6.1 and 6.3). To
validate the results based on synthetic parallel applications,
we simulate five real scientific applications [8] which have
various computation, memory, disk I/O, and communica-
tion requirements (See Section 6.5).

The goal of the proposed load-balancing scheme is to
improve the performance of submitted jobs as such; we
need to choose good metrics to intuitively capture the
performance of jobs running on a cluster. The first
performance metric considered in our experiments is the
job turn-around time [5]. The turn-around time of a job is the
time elapsed between the jobs submission and its comple-
tion. The turn-around time is a natural metric for the job
performance due to its ability to reflect a users view of how
long a job takes to complete.

A second important performance metric to be introduced
in our study is slowdown. The slowdown of a parallel job
running on a nondedicated cluster is a commonly used

TABLE 1
System Characteristics

Parameter Values Assumed Paremeter Values Assumed
CPU Speed 1000 MIPS Time slice of CPU time sharing 10 ms
RAM Size 1 Gbytes (Gegabytes) Context switch time 0.1 ms
Network Bandwidth 1Gbps Disk seek time and rotation time 8.0 ms

Page fault service time 8.1 ms (millisecond)

Disk transfer rate 40 Mbytes/Sec.

QIN ET AL.: COMMUNICATION-AWARE LOAD BALANCING FOR PARALLEL Al

PPLICATIONS ON CLUSTERS 47

70 Mean Slowdown 60 Mean Slowdown 50 Mean Slowdown
EICPU-aware ~
60 B MEM-aware =0 E 1(\:/11;;1{/[?‘:;1;@ 40 E I(EAII’EII]\/_Iaware‘
50 OIO0-aware - re ——
OCOM-aware 40 B10-aware OIO-aware
o OCOM-aware 30 OCOM-aware

4

8

r of

6 10 12 14 16

6
Numbe:

8
Number of tasks in each job

(@)

10 12 14
tasks in each job

(b)

16

8
Number of tasks

10 12 14

in each job

16

(©

Fig. 4. Mean slowdown versus number of tasks. (a) Message arrival rate = 0.1 No./ms. (b) Message arrival rate = 0.3 No./ms. (c) Message arrival

rate = 0.5 No./ms.

metric for measuring the performance of the job [13]. The
slowdown of a job is defined by: S, = T} /T, , where T} is the
job’s turn-around time in a resource-shared setting and 7, is
the turn-around time of running in the same system but
without any resource sharing. Note that Tp can be estimated
by either using (3) (See Section 3) or offline execution using
multiple inputs, and Tzl) can be measured at runtime.

6 EXPERIMENTAL RESULTS

To empirically evaluate the performance of our commu-
nication-aware load-balancing scheme (referred to as COM-
aware), we compared COM-aware against three existing
load balancers that can achieve high CPU, memory, and
disk I/0O utilizations, respectively. We refer to the existing
load-balancing policies as the CPU-aware [13], MEM-aware
[31], and I/O-aware [20] load balancers.

This section presents experimental results obtained from
feeding a simulated cluster of 32 nodes with various traces
that reflect a wide range of workload conditions. First, the
performance under communication-intensive workload si-
tuations is studied. Second, we investigate the impact of
varying the network bandwidth and message size para-
meters have on the performance of the simulated cluster.
Third, we measure the performance of the cluster under
mixed workload conditions with I/O, memory, and commu-
nication-intensive applications. Finally, we simulate several
real-world communication-intensive parallel applications to
validate the results from the synthetic application cases.

6.1 Communication-Intensive Workloads

In the first experiment, we intend to stress the communica-
tion-intensive workload by setting the message arrival rate
at values of 0.1, 0.3, and 0.5 No./ms, respectively. Both page

Mean Tumm-around Time (Sec.)

Mean Tum-around Time (Sec.)

fault rate and I/O access rate are set at a low value of
0.01 No./Sec. This workload reflects a scenario where jobs
have high communication-to-computation ratios.

Figs. 4 and 5 plot the mean slowdown and turn-around
time (measured in Seconds) as a function of the number of
tasks in each parallel job. Each graph in Figs. 4 and 5 reports
the results for communication-intensive jobs running on a
cluster of 32 nodes using four different load-balancing
schemes. These figures indicate that all of the load-
balancing schemes experience an increase in the mean
slowdown and turn-around time when the number of tasks
in a job increases. This is because when the CPU, memory,
and disk I/O demands are fixed and at the same time the
number of tasks in each parallel job is increased, it will lead
to high communication demands. This causes longer wait-
ing times for sending and receiving data.

Importantly, we observe from Figs. 4 and 5 that the
COM-aware load balancer is significantly better than the
CPU-aware, MEM-aware, and IO-aware load balancers
under the communication-intensive workload situation.
For example, when each parallel job consists of 16 tasks
and the message arrival rate is 0.5 No./ms, the COM-aware
approach improves the performance, in terms of mean
slowdown, over the CPU-aware, MEM-aware, and
IO-aware schemes by more than 174, 182, and 206 percent,
respectively. We attribute this result to the fact that the
CPU-aware, MEM-aware, and IO-aware schemes only
balance the CPU, memory, and disk I/O resources,
respectively. Thus, these schemes totally ignore the imbal-
anced communication load resulting from communication-
intensive parallel applications.

A third observation drawn from Figs. 4 and 5 is that
when most parallel applications running on the cluster are
of a small-scale, the COM-aware scheme only marginally

Mean Tum-around Time (Sec.)

40 EICPU-aware
CPU-aware B MEM-aware
B MEM-aware 30 OIO-aware

OIO-aware OCOM-aware

EICPU-aware
B MEM-aware
OI10-aware

OCOM-aware

OCOM-aware

8 10 12
Number of tasksineachjob

(@)

8
Number of tasksineach job

(b)

Fig. 5. Mean turn-around time versus number of tasks.
arrival rate = 0.5 No./ms.

10 2 2

8
Number of tasksineachjob

()

0

(a) Message arrival rate = 0.1 No./ms. (b) Message arrival rate = 0.3 No./ms. (c) Message

48

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

Mean Tum-around Time (Sec.) l00 1+ Mean Tum-around Time (Sec.) 40 + Mean Tum-around Time (Sec.)
800 1 | EICPU-aware EICPU-aware
1 - EICPU-aware
E%\é?al\‘/)[v—aarv:are 80 B MEM-aware 30 + | mMEM-aware
600 1 [OCOM-aware OI0-aware OIO-aware
OCOM-aware
20 +
10 4
0 A

4

6 8 10 12 14
Number of tasks in each job

(@)

16 6 8

Fig. 6. Mean turn-around time versus network bandwidth. (a) Message B
Bandwidth = 1 Gbps.

outperforms the CPU-aware and MEM-aware load bal-
ancers. For example, if the number of tasks in each parallel
job is 4 and the message arrival rate is set to 0.1 No./ms, the
performance gains in terms of mean slowdown and turn-
around time achieved by the COM-aware scheme are as low
as 3 and 4 percent, respectively. When parallel applications
in the system are scaled up, the performance gap between
the COM-aware and the three other schemes quickly
increases. The implication of this performance gap is that
large-scale parallel applications with high communication
demands can greatly benefit from the proposed load-
balancing technique.

6.2 Varying Network Bandwidth

While the first experiment assumes that all messages are
transmitted over a network at an effective rate of 1 Gbps,
the second set of results is obtained by varying the network
bandwidth of the cluster. As a result, we will investigate
the impact of network bandwidth on the performance of
the four load-balancing schemes. In order to explore this
issue, we set the network bandwidth to 10 Mbps, 100 Mbps,
and 1 Gbps. Since the mean slowdown metric has similar
patterns as compared to the mean turn-around time, Fig. 6
only shows the performance with respect to the turn-
around time for the CPU-aware, MEM-aware, IO-aware,
and COM-aware policies.

As shown in Fig. 6, the mean turn-around time of the
four policies shares a common trait that the turn-around
time is inversely proportional to network bandwidth. This
result can be explained by the fact that when the
communication demands are fixed, increasing the network
bandwidth effectively reduces the communication-intensive
applications time spent transmitting data. In addition, a

Mean Turn-around Time

40 60

30 4 B CPU-aware

m MEM-aware

B CPU-aware
m MEM-aware
10-aware

COM-aware

20 4

8

Number of tasks in each job

(@)

10 12 14 16

Number of

Fig. 7. Mean turn-around time versus message size. Message size is (a)

Number of tasks in each job

(b)

Mean Turn-around Time

8 10 12 14
Number of tasks in each job

©

andwidth = 10 Mbps. (b) Message Bandwidth = 100 Mbps. (c) Message

16

10 12 14 16

high network bandwidth results in less synchronization
time among tasks of a parallel job and low migration costs
in these four load-balancing policies. Fig. 6 further reveals
that the performance improvement achieved by COM-
aware becomes more pronounced when the network
bandwidth is high. For example, if the network bandwidth
of the cluster is set to 10 Mbps, 100 Mbps, and 1 Gbps, the
average performance improvements gained by the COM-
aware load balancer over the three existing policies are 61.4,
116.1, and 182.9 percent, respectively.

6.3 Varying Average Message Size

Communication load depends on the message arrival rate
and the average message size, which, in turn, depends on
the communication patterns. The purpose of this experiment
is to show the impact that varying the average message size
has on the performance of the four load-balancing schemes.
Fig. 7 shows that the mean turn-around time increases as the
average message size increases. This is caused by the fact
that as the message arrival rate is unchanged, a large
average message size yields high network utilization in the
system, causing longer waiting times on message transmis-
sions. A second observation in Fig. 7 is that the benefits of
the COM-aware scheme become increasingly pronounced
when communication-intensive applications running on the
cluster send and receive larger data messages. This is
because the larger the average message size, the higher the
network utilization, which, in turn, results in longer waiting
times in network queues.

6.4 Workload with a Mix of Job Types

In the results provided in Sections 6.1, 6.2, and 6.3, memory
and I/O-intensive jobs are omitted because the focus of the

00 + Mean Tum-around Time (Sec.)
g0 1 ElCPU-aware
B MEM-aware
60 1 OI0-aware
O COM-aware

10

6
Number of tasks in each job

©

8 10 12 14 16

tasks in each job

(b)

512 KB, (b) 2 MB, and (c) 5 MB.

QIN ET AL.: COMMUNICATION-AWARE LOAD BALANCING FOR PARALLEL APPLICATIONS ON CLUSTERS 49

120 + Mean Slowdown

100 A EICPU-aware
W MEM-aware
OIO-aware

80 OCOM-aware

60 +

40 -

20

0 -

0 10 20 30 40 50 60 70 80 90 100
Percentage of communication-intensive jobs (%)

@

70 + Mean Tum-around Time (Sec.)
60 EICPU-aware
W MEM-aware
50 OIO0-aware
O COM-aware

0 10 20 30 40 50 60 70 80 90 100
Percentage of comnmnication-intensive jobs (%)

(b)

Fig. 8. Performance versus percentage of communication-intensive jobs. (a) Slowdown. (b) Turn-around time.

previous experiments is on communication-intensive
workloads. However, the results obtained for workloads
with only communication-intensive jobs are not always
valid for clusters where multiple types of jobs are
submitted. Clusters may have to execute a mix of job types,
and different job types in the system affect the performance
of each other. Therefore, in this section, we measure the
impact of the proposed scheme on a cluster of 32 nodes
where memory and I/O-intensive jobs are submitted along
with communication-intensive jobs. Again, we compare the
mean slowdown and turn-around time of the COM-aware
scheme against the three existing load-balancing policies.
The message arrival rate and network bandwidth in this
experiment are set to 0.1 No./ms and 1 Gbps.

Fig. 8 shows the mean slowdown and turn-around time as
functions of the percentage of communication-intensive jobs.
Itisnoted that the 11 traces in Fig. 8 contain a collection of /O
and communication-intensive jobs. In general, the results
show that our COM-aware policy performs the best in all
cases. In particular, both the COM-aware and IO-aware
policies noticeably outperform the CPU-aware and MEM-
aware policies when the workload is I/O-intensive. This
indicates that the COM-aware load balancer can maintain the
same level of performance as the IO-aware scheme for I/O-
intensive applications.

Interestingly, Fig. 8 shows that the performance im-
provement of I0-aware, over CPU-aware and MEM-aware
strategies, consistently decreases with the increase in the
percentage of communication-intensive jobs. The reason for

EICPU-aware
W MEM-aware
OI0-aware

O COM-aware

Mean Slowdown

0 10 20 30 40 50 60 70 80 90 100
Percentage of comnmunication-intensive jobs (%%)

(@

this is that the IO-aware load balancer does not view
network devices as important components of clusters even
when the vast majority of parallel applications have high
communication demands. In contrast, the mean slowdown
and turn-around time of the COM-aware scheme are not
sensitive to the percentage of communication-intensive jobs.

We now turn to study another mixed workload consist-
ing of memory and communication-intensive jobs. Fig. 9
shows the mean slowdown and turn-around time as a
function of the percentage of communication-intensive jobs.
Again, the first observation is that the COM-aware policy
performs the best in all cases. When the workload is
memory-intensive, the performance of COM-aware scheme
is very close to that of the MEM-aware scheme, and the
MEM-aware strategy is better than the CPU-aware and
IO-aware strategies if the percentage of communication-
intensive jobs is less than 40 percent. This implies that the
CPU-aware and IO-aware schemes are not suitable for
applications with high memory demands. This is because
both the MEM-aware and COM-aware schemes make an
effort to achieve high usage of global memory.

The results also show that the performance of the MEM-
aware load balancer is worse than that of the CPU and
COM-aware load balancers when the percentage of com-
munication-intensive jobs is larger than 40 percent. The
results are expected because the MEM-aware scheme does
not attempt to share network resources among the different
nodes. We have obtained similar results under other
workloads containing a mix of CPU, memory, I/O, and

Mean Turn-around Time (Sec.)

140 + [ECPU-aware
5 W MEM-aware

120 + | OIO-aware

0 COM-aware

0O 10 20 30 40 50 60 70 80 90 100
Percentage of commmunication-intensive jobs (%)

(b)

Fig. 9. Performance versus percentage of communication-intensive jobs. (a) Slowdown. (b) Turn-around time.

50

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

TABLE 2
Descriptions of Real Communication-Intensive Applications
Application Description
Render This application integrates a 6000x 6000 pixel 24-bit color image with 16-bits of elevation
data per pixel to obtain 480x640 pixel 24-bit output images.
Molecular This application is used to compute properties for liquids and polymers.
Semi This application is a 3-D semiconductor device simulator.
React This application is used to predict the behavior of chemical reactions.
Vortex This application models the evolution of vortices in a 2-dimensional fluid.
ALL The workload of a cluster where all the five applications are submitted.

communication-intensive jobs. Due to the space limitations,
we present a subset of our results in this section.

6.5 Experiments on Real Parallel Applications

To validate the experimental results based on the synthetic
parallel applications, we simulate five real communication-
intensive parallel applications [8]. In this section, we
evaluate the impact the COM-aware load balancer has on
five real communication-intensive applications, which have
different computation, disk I/O, and communication pat-
terns. To simulate the previously mentioned communica-
tion-intensive applications, we generated six job traces
where the arrival patterns of the jobs are extrapolated from
traces collected from the University of California at Berkeley
[13]. Each of the five traces consist of one type of real
application described in Table 2, whereas the sixth trace is a
collection of the five different types of applications. A
32-node cluster is simulated to run the applications.

Fig. 10a shows the mean slowdown of the simulated
applications running on the cluster using the four load-
balancing policies. It is observed from Fig. 10 that the
COM-aware load-balancing approach works quite well for
all communication-intensive applications. In the case of
executing a single application, the COM-aware scheme
exhibits a performance improvement of up to 75.9 percent
(with an average of 42.2 percent, See Fig. 10b) in mean
slowdown over the three existing policies. Note that the
percentage improvement over the CPU-aware scheme
can be calculated using the following equation,
1-— (MSC()M/]WSCPU)/ where MScoy and MScpy are the
mean slowdowns of the communication-aware and CPU-
aware load balancers. We can use a similar way to derive
the improvements over the MEM-aware and I/O-aware

Mean Slowdown

30T EICPU-aware
B MEM-aware
OI0-aware
OCOM-aware

T,

Molecular

= Em

Vortex All

Render

Semi React

@

schemes. The performance gain of the COM-aware load
balancer is mainly attributed to the effective usage of
network resources in addition to the CPU, memory, and
I/0 resources in the cluster.

7 CONCLUSIONS

This paper has introduced a behavioral model for parallel
applications with large requirements of network, CPU, and
disk I/O resources. The model is particularly beneficial to
clusters where resource demands of applications may not be
known in advance. Thus, load balancers can make full use of
this model to quickly and accurately determine the load
induced by a variety of parallel applications. Furthermore,
we have addressed the issue of improving the effective
bandwidth of networks on clusters at the software level
without requiring any additional hardware. Specifically, we
have proposed a dynamic communication-aware load-
balancing scheme, referred to as COM-aware, for nondedi-
cated clusters where the resources of the cluster are shared
among multiple parallel applications being executed con-
currently. A simple yet efficient means of measuring
communication load imposed by processes has been
presented. We have reported the preliminary simulation
results obtained on both synthetic bulk synchronous and
real parallel applications. The experimental results show
that the COM-aware approach can improve the performance
over the three existing schemes by up to 206 and 235 percent,
in terms of slowdown and turn-around time, respectively,
under workloads with high communication demands. If the
workload is memory-intensive or I/O-intensive in nature,
COM-aware strategy dynamically and adaptively considers
the memory or disks as first-class resources in clusters,

EICPU-aware
B MEM-aware
OIO0-aware

)
80.00% + Improvement (%)

60.00% +

40.00% +

20.00% +

0.00%

Vortex All

React

(b)

Render Molecular Semi

Fig. 10. (a) Slowdowns of real applications. (b) Performance improvements.

QIN ET AL.: COMMUNICATION-AWARE LOAD BALANCING FOR PARALLEL APPLICATIONS ON CLUSTERS 51

thereby sustaining the same level of performance as the
existing memory-aware and I/O-aware schemes.

The experimental results presented in this paper largely
depend on the simulator. As a future research direction, we
will develop a prototype of the communication-aware load
balancer. We will compare results obtained from the
prototype with those reported from the simulator.

ACKNOWLEDGMENTS

The work reported in this paper was supported by the US
National Science Foundation under Grants CCF-0845257
(CAREER), CNS-0757778 (CSR), CCF-0742187 (CPA), CCF-
0621526 (HECURA), CNS-0831502 (CyberTrust), OCI-
0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFES), as well as Auburn University under a startup
grant and a gift (Number 2005-04-070) from the Intel
Corporation. The source code of the ioBalanceSim simulator
is available at www.eng.auburn.edu/~xqin/software/
ioBalanceSim.

REFERENCES

[1] A. Acharya and S. Setia, “Availability and Utility of Idle Memory
in Workstation Clusters,” Proc. ACM SIGMETRICS, pp. 35-46,
1999.

[2] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-Per-Second Local
Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb. 1995.

[3] R.Brightwell, B. Lawry, A.B. MacCabe, and R. Riesen, “Portals 3.0:
Protocol Building Blocks for Low Overhead Communication,”
Proc. 16th Int’l Parallel and Distributed Processing Symp. (IPDPS '02),
pp. 164-173, 2002.

[4] D. Buntinas, D.K. Panda, and R. Brightwell, “Application-Bypas
Broadcast in MPICH over GM,” Proc. Third Int’'l Symp. Cluster
Computing and the Grid (CCGRID '03), pp. 2-9, 2003.

[S] W. Cirne and F. Berman, “When the Herd Is Smart: Aggregate
Behavior in the Selection of Job Request,” IEEE Trans. Parallel and
Distributed Systems, vol. 14, no. 2, pp. 181-192, Feb. 2003.

[6] J. Cohen, E. Jeannot, N. Padoy, and F. Wagner, “Messages
Scheduling for Parallel Data Redistribution between Clusters,”
IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 10,
pp- 1163-1175, Oct. 2006.

[71 J. Cruz and K. Park, “Towards Communication-Sensitive Load
Balancing,” Proc. 21st Int’l Conf. Distributed Computing Systems,
pp- 731-734, Apr. 2001.

[8] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Archi-
tectural Requirements of Parallel Scientific Applications with
Explicit Communication,” Proc. 20th Ann. Int’l Symp. Computer
Architecture (ISCA "93), pp. 2-13, 1993.

[9] A.C.Dusseau, R.H. Arpaci, and D.E. Culler, “Effective Distributed
Scheduling of Parallel Workloads,” Proc. ACM SIGMETRICS,
Pp- 25-36, 1996.

[10] W.-C. Feng, J. (Gus) Hurwitz, H. Newman, S. Ravot, R.L. Cottrell,
O. Martin, F. Coccetti, C. Jin, X. (David) Wei, and S. Low,
“Optimizing 10-Gigabit Ethernet for Networks of Workstations,
Clusters, and Grids: A Case Study,” Proc. 2003 ACM/IEEE Conf.
Supercomputing (SC '03), p. 50, 2003.

[11] P. Geoffray, “OPIOM: Off-Processor I/O with Myrinet,” Future
Generation Computer Systems, vol. 18, no. 4, pp. 491-499, 2002.

[12] W. Grop and E. Lusk, “The Message Passing Interface(MPI)
Standard,” Argonne Nat’l Lab, 2001.

[13] M. Harchol-Balter and A.B. Downey, “Exploiting Process Lifetime
Distributions for Dynamic Load Balancing,” ACM Trans. Computer
Systems, vol. 15, no. 3, pp. 253-285, 1997.

[14] C.H. Hsu and J.W. Liu, “Dynamic Load Balancing Algorithms in
Homogeneous Distributed Systems,” Proc. Sixth Int’l Conf.
Distributed Computing Systems, pp. 216-223, May 1986.

[15] R. Lavi and A. Barak, “The Home Model and Competitive
Algorithms for Load Balancing in a Computing Cluster,” Proc.
21st Int’l Conf. Distributed Computing Systems (ICDCS 01), pp. 127-
134, 2001.

[16] P. Li and D. Curkendall, “Parallel 3-D Perspective Rendering,”
Proc. First Int’l Delta Applications Workshop, pp. 52-58, 1992.

[17] J.M. Orduna, V. Arnau, A. Ruiz, R. Valero, and]J. Duato, “On the
Design of Communication-Aware Task Scheduling Strategies for
Heterogeneous Systems,” Proc. 2000 Int’l Conf. Parallel Processing
(ICPP "00), pp. 391-398, 2000.

[18] X.Qin, “Design and Analysis of a Load Balancing Strategy in Data
Grids,” Future Generation Computer Systems, vol. 23, no. 1, pp. 132-
137, 2007.

[19] X. Qin, “Performance Comparisons of Load Balancing Algorithms
for I/O-Intensive Workloads on Clusters,”]. Network Computer
Application, vol. 31, no. 1, pp. 32-46, 2008.

[20] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Towards Load
Balancing Support for I/O-Intensive Parallel Jobs in a Cluster of
Workstations,” Proc. IEEE Int’l Conf. Cluster Computing, Dec. 2003.

[21] X. Qin, Y. Jiang, H. Zhu, and D. Swanson, “Dynamic Load
Balancing for I/O-Intensive Tasks on Heterogeneous Clusters,”
Proc. 10th Int’l Conf. High Performance Computing (HiPC '03), Dec.
2003.

[22] K.D. Ryu and J.K. Hollingsworth, “Exploiting Fine-Grained Idle
Periods in Networks of Workstations,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 7, pp. 683-698, July 2000.

[23] L. Schaelicke and A.L. Davis, “Design Trade Offs for User-Level
I/O Architectures,” IEEE Trans. Computers, vol. 55, no. 8,
pp- 962-973, Aug. 2006.

[24] K.G. Shin and Y.-C. Chang, “Load Sharing in Distributed Real-
Time Systems with State-Change Broadcasts,” IEEE Trans.
Computers, vol. 38, no. 8, pp. 1124-1142, Aug. 1989.

[25] J.A. Stankovic, “Simulations of Three Adaptive, Decentralized
Controlled, Job Scheduling Algorithms,” Computer Networks and
ISDN Systems, vol. 8, no. 3, pp. 199-217, 1984.

[26] M. Surdeanu, D.I. Moldovan, and S.M. Harabagiu, “Performance
Analysis of a Distributed Question/Answering System,” IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 6, pp. 579-596,
June 2002.

[27] L.G. Valiant, “A Bridging Model for Parallel Computation,”
Comm. ACM, vol. 33, no. 8, pp. 103-111, 1990.

[28] J.S. Vetter and F. Mueller, “Communication Characteristics of
Large-Scale Scientific Applications for Contemporary Cluster
Architectures,” |. Parallel and Distributed Computing, vol. 63,
no. 9, pp. 853-865, 2003.

[29]].S. Vetter and F. Mueller, “High Performance Implementation of
MPI Datatype Communication over Infiniband,” Proc. Int'l Parallel
and Distributed Processing Symp., Apr. 2004.

[30] J.S. Vetter and A. Yoo, “An Empirical Performance Evaluation of
Scalable Scientific Applications,” Proc. 2002 ACM/IEEE Conf.
Supercomputing (SC '02), pp 1-18, 2002.

[31] X.-D. Zhang, L. Xiao, and Y.-X. Qu, “Improving Distributed
Workload Performance by Sharing Both CPU and Memory
Resources,” Proc. 20th Int’l Conf. Distributed Computing Systems
(ICDCS '00), pp. 233-241, 2000.

Xiao Qin received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology in 1992 and 1999,
respectively, and the PhD degree in computer
science from the University of Nebraska-Lin-
coln in 2004. Currently, he is an assistant
professor in the Department of Computer
Science and Software Engineering at Auburn
University. Prior to joining Auburn University in
2007, he had been an assistant professor with
New Mexico Institute of Mining and Technology (New Mexico Tech) for
three years. He received the US National Science Foundation (NSF)
CAREER Award in 2009. In 2007, he received an NSF CPA Award
and an NSF CSR Award. His research interests include parallel and
distributed systems, storage systems, fault tolerance, real-time
systems, and performance evaluation. His research is supported by
the (NSF), Auburn University, and Intel Corporation. He had served as
a subject area editor of the IEEE Distributed System Online (2000-
2001). He has been on the program committees of various interna-
tional conferences, including IEEE Cluster, IEEE IPCCC, and ICPP.
He is a senior member of the IEEE.

52

Hong Jiang received the BS degree in compu-
ter engineering from Huazhong University of
Science and Technology, Wuhan, China, in
1982, the MAS degree in computer engineering
from the University of Toronto, Canada, in 1987,
and the PhD degree in computer science from
the Texas A&M University, College Station, in
1991. Since August 1991, he has been at the
University of Nebraska-Lincoln, where he served
as the vice chair of the Department of Computer
Science and Engineering (CSE) from 2001 to 2007 and is a professor of
CSE. His present research interests include computer architecture,
computer storage systems and parallel I/O, parallel/distributed comput-
ing, cluster and Grid computing, performance evaluation, real-time
systems, middleware, and distributed systems for distance education.
He serves as an associate editor of the IEEE Transactions on Parallel
and Distributed Systems. He has more than 150 publications in major
journals and international Conferences in these areas, including the
IEEE-TPDS, IEEE-TC, JPDC, ISCA, FAST, ICDCS, OOPLAS, ECOOP,
ICS, HPDC, ICPP, etc., and his research has been supported by the
US National Science Foundation (NSF), DOD, and the State of
Nebraska. He is a member of the ACM, the IEEE, the IEEE Computer
Society, and the ACM SIGARCH.

Adam Manzanares received the BS degree in
computer science from the New Mexico Institute
of Mining and Technology, United States, in
2006. He is currently working toward the PhD
degree at the Department of Computer Science
and Software Engineering, Auburn University.
During the Summers of 2002-2007, he has
worked as a student intern at the Los Alamos
National Laboratory. His research interests
include energy-efficient computing, modeling
and simulation, and high-performance computing. He is a student
member of the IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

Xiaojun Ruan received the BS degree in
computer science from Shandong University in
2005. He is currently working toward the PhD
degree at the Department of Computer Science
and Software Engineering, Auburn University.
His research interests are in parallel and dis-
tributed systems, storage systems, real-time
computing, performance evaluation, and fault
tolerance. His research interests focus on high-
performance parallel cluster computing, storage
system, and distributed system. He is a student member of the IEEE.

Shu Yin received the BS degree in communica-
tion engineering and the MS degree in signal
and information processing from Wuhan Uni-
versity of Technology (WUT) in 2006 and 2008,
respectively. He is currently working toward the
PhD degree at the Department of Computer
Science and Software Engineering, Auburn
University. His research interests include sto-
rage systems, reliability modeling, fault toler-
ance, energy-efficient computing, and wireless
communications. He is a student member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

