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Abstract—In this paper, we present thermal-aware file assign-
ment technique called TIGER for reducing cooling cost of storage
clusters in data centers. TIGER first calculates the thresholds of
disks in each node based on its contribution to heat recirculation
in a data center. Next, TIGER assigns files to data nodes
according to calculated thresholds. We evaluated performance
of TIGER in terms of both cooling energy conservation and
response time of a storage cluster. Our results confirm that
TIGER reduces cooling-power requirements for clusters by
offering about 10 to 15 percent cooling energy savings without
significantly degrading I/O performance.

I. INTRODUCTION

Thermal management for power-dense storage clusters can
address cooling problems in today’s data centers. In this
paper, we show that thermal-aware file assignment policies
can significantly reduce cooling cost of data center by lowering
peak inlet temperatures of storage clusters.

The following three factors make thermal-aware file assign-
ment desirabe and practical for storage clusters:
• the high cooling cost of large scale data centers,
• the rapid heat recirculation caused by data nodes in

storage clusters, and
• the ability of file assignment policies to manage utiliza-

tion of data nodes based on I/O access patterns.
Data nodes in storage clusters are typically configured with

low power processors and RAID arrays containing multiple
(4 to 32) disks. Modern storage systems account for almost
27% of total energy consumption [4]. Energy and cooling cost
caused by data nodes motivate us to study file assignment
solutions that can reduce inlet temperatures of data nodes.

The recirculation of hot air from the outlet of data nodes
back to their inlets inevitably raise inlet temperatures and may
cause hot spots [8], which forces computer room air conditions
to continuously work at lower temperatures, increasing cooling
cost. The goal of this study is to minimize heat recirculation
and cooling cost, thereby increasing energy efficiency of data
centers housing storage clusters.

Disks have non-negligible thermal impact on data nodes [2].
We developed thermal model to estimate the inlet temperature
of storage servers based on processor and disks utilizations.
We compared response time and cooling cost of storage
systems managed by three data placement strategies, among
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which one can noticeably reduce cooling cost of storage
systems in data centers. In this paper, we aim to develop a
file placement scheme- TIGER - to offer tradeoffs between
performance and thermal profile in storage clusters.

At the core of our TIGER approach, peak inlet temperatures
of data nodes are reduced by the virtue of thermal-aware file
assignment. The file assignment process relies on I/O loads
thresholds that can be derived in two steps. First, TIGER ap-
plies cross-intereference coefficients to calculate contributions
of each node to the heat recirculation of an entire storage
clusters. Next, TIGER calculates the load thresholds of disks in
each data nodes based on its contribution to heat recirculation.

II. MODELING

A. Power Model

Clusters in a data center are comprised of both computing
nodes and data nodes. The terms data nodes and storage nodes
are used interchangeably throughout this paper. Let Pcomp be
the power consumed by computing nodes and Pstorage be
the power consumed by storage nodes, which is nothing but
summation of power consumed by each data node. Therefore,
total power consumption PC of cluster in data center can be
calculated by:

PC = Pcomp +
N∑
i=1

Pnode
i . (1)

where, Pnode
i is power consumption of ith data node.

The power consumption Pnode
i in equation 1 can be derived

from (1) a fixed amount of power P base consumed by node i’s
hardware (e.g., fans) other than processor and disks, (2) power
P cpu consumed by node i’s CPU and power P d consumed
by disks residing in the node, which is summation of power
consumption by each disk in residing in the node. Thus we
can calculate Pnode

i as:

PNode
i = P base

i + PCPU
i +

Di∑
j=1

P d
i,j (2)

where, P d
i,j is power consumed by jth disk in ith data node

and Di is total number of disks in ith data node.
In what follows, we model the power consumption P d

i,j

of disk j in storage node i. Disks have three modes of



operations: active, idle and sleep, each of which has a specific
power requirement. We denote the power consumed by a
single disk in the active, idle and in the sleep mode as
P d,active, P d,idle, P d,sleep, respectively. Power overhead is
incurred when disks are transitioning among the mode (e.g.,
from the sleep mode to active or vice versa). We denote the
power required to spin down a disk as PSdown

and power
needed to spin up the disks as PSup

. Given a time interval T ,
let tactivei,j , tidlei,j , and tsleepi,j represent time periods when disk
j in node i is active, idle, and sleep, respectively. We denote
N t

i,j as the number of power-state transitions. Now, we model
the disk power consumption P d

i,j as:

P d
i,j =

1

T

(
tactivei,j × P d,active

i,j + tidlei,j × P
d,idle
i,j

+tsleepi,j × P d,sleep
i,j +

N t
i,j

2

(
PSdown

+ PSup

))
(3)

B. Heat Recirculation Model

Handful of models have been proposed to characterize the
heat recirculation in data centers [3] [6] [9]. All those models
are well investigated and well validated and they predict the
inlet temperature of nodes in cluster with reasonable accuracy.
We used the model proposed by Gupta et al. [9], which
characterized heat recirculation by a cross-interference matrix
An×n = αi,j , where αi,j denotes fraction of its outlet heat
node i contributes to node j. Therefore, according to the
model proposed in [9], the vector of inlet temperature can
be calculated by:

tin = tsup +
[
(K −AᵀK)

−1 −K−1
]
p. (4)

where, tin is the vector of inlet temperatures Tin, tsup is vector
of supply temperature of CRAC Tsup, p is vector of power
consumption of each node Pnode. Kn×n is a diagonal matrix
of thermodynamic constants Ki:

Ki = ρaicp (5)

where, ρ is the air density (in grams per cubic meter), ai is the
airflow rate (in cubic meters per seconds) of the node i, and
cp is the specific heat of the air (in joules per gram Kelvin).

C. Cooling Cost Model

Heat recirculation and node power consumption lead to
an increase of inlet temperature. To control the raised inlet
temperatures below redline, a cooling system is applied.
Temperature of the air supplied by the cooling system is
adjusted according to the maximum inlet temperature. Supply
temperature Tsup affects the efficiency of the cooling system.
The efficiency of cooling system is quantified in terms of
Coefficient of Performance (COP) [5] [8] (see (6) below).

COP (Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (6)

COP increases when supply temperature goes up; increasing
supply temperatures results in high cooling efficiency. (7)

shows how to derive cooling cost from COP.

PAC =
PC

COP (Tsup)
(7)

where PC is the total power consumed by the storage nodes
in data center [8].

III. TIGER : THERMAL AWARE FILE ASSIGNMENT FOR
DATA CENTERS

A. Basic Ideas

The goal of TIGER is place a set of m files to a group of N
nodes in such a way to reduce cooling cost of a data center.
The service time si and access rate λi of file fi are provided
by a file access predictor (see, for example, [1]). The algorithm
is comprised of two phases. In the first phase, thresholds for
disk utilization is determined (see Section III-B). In the second
phase, files are assigned to storage nodes until the threshold
is reached (see Section III-C).

In the process of calculating the disk utilization thresh-
old, we take into account both performance and thermal
management. To improve I/O performance, we apply a load
balancing strategy to uniformly distribute I/O load among all
the disks. When it comes to thermal management, we follow
the principle that workload placed on the node should be in-
versely proportional to the contribution of the node in the heat
recirculation in a data center. To place workload uniformly
according to this principle, one has to ensure that all the nodes
should contribute equally in heat recirculation. Achieving this
goal may be difficult and; therefore, it normally useful to have
a calibration phase, where we adjust the calculated threshold
according to each node’s contribution in the heat recirculation.

During the file assignment procedure, the list of nodes
are sorted in the increasing order of their heat-recirculation
contribution. For each node in the list, files are assigned to
each disk on the node until the threshold has been reached.
We keep doing this until either the node list is empty or there
are no files remaining. If the node list is empty and there are
some files remaining, then we will start from the first node
in the node list and keep assigning files until either utilization
reaches 90% or all files have been assigned.

B. Disk Utilization threshold calculation

Now we discuss how to calculate disk utilization threshold
to be used in the second phase of our approach. Recall that the
utilization threshold is introduced to guide the file assignment
procedure, which affects node power consumption that make
significant impacts on the outlet and inlet temperatures.

As mentioned earlier, we first calculate the threshold using
the load balancing strategy. The utilization of the disk di is
increased by ui due to the allocation of file fi. The utilization
ui is a product of service time si and access rate λi of the
file. Therefore:

ui = si ∗ λi (8)

Our file assignment algorithm aims to distribute the total
utilization U generated by all the files to D disks. We use
the greedy algorithm to uniformly balance load among all



the available disks. Disk utilization threshold UTh
avg can be

calculated using the following expression:

UTh
avg =

1

D

m∑
i=1

si × λi (9)

This average threshold can be adjusted according to each
node’s contribution in the heat recirculation of the data center.
We characterize the heat recirculation as cross-interference
coefficient. Then, the total contribution of node in the heat
recirculation of a data center can be considered as sum of all
the cross-interference coefficients of the node normalized over
sum of all the cross-interference coefficients of all the nodes.
Therefore,

Si =

∑n
j=1 αi,j

Stotal
(10)

where, Stotal is sum of all the cross interference coefficients
of all the nodes in a cluster.

Ideally, uniformly distributing workload makes all the nodes
identical in terms of heat recirculation. Thus, we have:

Si = Savg, ∀i ∈ N (11)

where N is set of all nodes and Savg = 1
n .

Although the above expression shows the best case, (11)
does not hold for most of the nodes in the data center. In real-
world scenarios, a node’s contribution to heat recirculation
might be either higher or lower than the average contribution
Savg . This leads us to discuss the following two cases.

Case 1: Si > Savg

This case holds for most nodes that are nearer to the floor
surface. We calculate the normalized difference between Si

and Savg (see (12)) and decrease the threshold for the disks
in node i by the normalized difference.

∆S =
Si − Savg

Savg
(12)

UTh
i = UTh

avg −
(
∆S × UTh

avg

)
(13)

Case 2: Si < Savg

This case holds for most of the nodes nearer to the ceiling.
As these nodes contribute less to the total heat recirculation
of the data center, we place more workload on these nodes.
We calculate the normalized difference (see (14)) between
Savg and Si; the disk utilization threshold for these node is
increased by the normalized difference.

∆S =
Savg − Si

Savg
(14)

UTh
high = UTh

avg +
(
∆S × UTh

avg

)
(15)

UTh
i =


UTh
high if U threshold

high < 1.0

1.0 if U threshold
high > 1.0

(16)

C. Tiger: Algorithm

The Tiger algorithm solves the thermal management prob-
lem by applying thermal-aware file assignment in data centers.
Tiger relies on file access patterns and the amount of heat
recirculation to make file placement decisions.

Algorithm 1: TIGER(file info, node info)
1: U ← 0
2: for fi ∈ m do
3: U ← U + si × λi
4: end for
5: UTh

avg ← 1
DU

6: Stotal ← 0
7: for node i = 1→ N do
8: Si ←

∑n
j=0 αij

9: Stotal ← Stotal + Si

10: end for
11: Savg ← 1

N
12: sort the nodes according to Si

13: k ← 0
14: for all node i ∈ sorted list do
15: Si ← Si

Stotal

16: if Si > Savg then
17: Calculate threshold using equation ( 13)
18: end if
19: if Si < Savg then
20: Calculate threshold using equation ( 16)
21: else
22: UTh

i ← UTh
avg

23: end if
24: for all disk j ∈ Di do
25: while Uj < UTh

i do
26: assign file fk to disk j
27: Uj ← Uj + (λk × sk)
28: k ← k + 1
29: end while
30: end for
31: end for
32: if k < m then
33: {still some files are remaining}
34: Start from the first node of the sorted list,
35: keep assigning files to the disk in the node until the

utilization of the disks reaches 0.9
36: Repeat line 35 for consequent nodes in the sorted list

until k=m.
37: end if

Prior to making any file placement decision, Tiger calculates
the average disk utilization threshold UTh

avg (see lines 2-5),
thereby using the greed method to uniformly distribute I/O
load among available disks. After the initial assignment is
complete, Tiger computes three important factors (i.e., Savg ,
Si, and Stotal, which are used to calibrate the disk utilization
threshold of each node(see lines 6-11). Next, Tiger sorts the
list of nodes in an ascending order of their heat recirculation



contribution Si (see line 12). Tiger then picks the first node
from the sorted node list, and adjusts the disk utilization
threshold for all the disks in the selected node depending upon
the values of S and Savg (see lines 14-23). Finally, Tiger
assigns files to each disk in the selected node until either the
threshold is reached or the disk’s free capacity becomes empty
(lines 25-29). Tiger repeatedly performs steps 14-29 until all
the files are placed to the disks.

If the node list is empty and there are some files remaining,
then we will start from the first node in the node list and keep
assigning files until either utilization reaches 90% or all files
have been assigned(lines 34-36).

IV. EVALUATION

A. Baseline Algorithms

To evaluate TIGER’s system performance, we choose the
following two baseline algorithms to compare against TIGER.
The first one is a greedy load-balancing algorithm; the second
one is the coolest Inlet algorithm.

1) The Greedy Load-balancing Algorithm: The greedy load
balancing algorithm uniformly distribute I/O load among all
available disks in data nodes. For fair comparisons, a predic-
tion module offers the greedy algorithm with the service time
si and access rate λi of each file (i.e., file fi). The greedy
algorithm calculates the total I/O load caused by requests
accessing all the files. The algorithm then uniformly distributes
the I/O load to all the disks.

2) Coolest Inlet [8]: This algorithm distributes workload
based on inlet temperatures of nodes. It places more workload
on the nodes with lower inlet temperature. For example,
the threshold of nodes is inversely proportional to the inlet
temperature of the nodes. The files are assigned to the disks
upto its threshold, which is identical for all the disks in a node.

B. Experimental Setup

We use a simulator written in C for our simulation study.
For most of the tests, the data center contains 2 rows of 5
racks each. A rack contains 5 chassis(or nodes), each of which
contains six 1U RAID arrays. Every RAID array contains a
RAID controller (no processor) and 4 hot swappable disks and
draws 118 W power when no disks are attached. Therefore,
we have:

P idle
a = 118W (17)

C. Thermal Impact of Energy Efficient Disks

1) Scenario 1: Figure 1 shows the results for the best case
scenario. In this case, we assume that an efficient energy
saving algorithm is used so that when the disks are not in
active mode, they are spun down to the sleep mode. The power
consumed by a disk have three components: power consumed
by the disk in the active mode, power consumed by the disk in
the sleep mode, and the power consumed by the disk to make
transitions between different states. Therefore, Equation 3 is
simplified to:

P d
i,j =

1

T

(
tactivej × P d,active

i,j + tsleepj × P d,sleep
i,j

+
N t

j

2

(
PSdown

+ PSup

))
(18)

We observe from both Figure 1(a) and 1(b) that TIGER
conserves more cooling energy than the other two algorithms.
The difference in the performance is substantial (almost
15%) for data center utilization between 30-60% diminishing
towards the two extreme ends. This is because, with data
center utilization between 30-60%, there is great opportunity
to unbalance the workload in order to achieve thermal benefits.
Towards the both extreme cases, there is not much room
available for unbalancing the workload to achieve thermal
benefits.

2) Scenario 2: Figure 2 shows the results for the case where
no energy efficient techniques are used to spin up and spin
down the disks. This is the worst case scenario in terms of
energy savings. The disk would be either in one of the two
states - active or idle. There are no transitions from the active
mode to the sleep mode and vice versa. Then, no extra power
is consumed for transitions. Therefore, Equation 3 becomes:

P d
i,j =

1

T

(
tactivej × P d,active

i,j + tidlej × P d,idle
i,j

)
(19)

From Figure 2 we can see that though the TIGER outper-
forms the other two algorithms, the differences among the
three solutions are very small. The pwe discrepancy between
the active mode and the idle mode is almost negligible. There-
fore, the distribution of power among the nodes in the data
center does not vary much due to the workload distribution.
Also, as the idle disks consume nearly equal power as the
active disks, the overall power consumption in the data center
is very high. This power feature results in high cooling cost
for scenario 2.

V. RELATED WORK

Thermal-aware workload placement strategies were pro-
posed in recent studies [7] [8], which indicate that energy
efficiency of CRAC can be improved by reducing the peak
temperature in data center. For example, both a generic algo-
rithm [8] and sequential quadratic programming approach [7]
were developed to manage workload in a way to reduce the
maximum inlet temperatures. Reducing the negative impact
of heat recirculation is a new step towards saving cooling
energy. For example, Moore et al. designed two approaches,
ZBD and MinHR [5]. The ZBD scheme that uses paoching at
where the effect of the heat recirculation is ovserved whereas
MinHR manages workload in a way that each pod in a
data center generates same amount of heat to minimize heat
recirculation [5]. Wang et al. proposed a way of calculating
heat generated by jobs, which are sorted in descending order
of their hotness [10]. All the above strategies focused on
computing nodes and used linear power model driven by CPU
utilization. Unlike these techniques, our TIGER approach aims
to reduce heat recirculation through file assignment.
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Fig. 1: Comparison of algorithms under scenario 1: When disk is not active, it is always turned down in sleep mode.
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Fig. 2: Comparison of algorithms under scenario 2: When disk is not active, it is always in idle state.

VI. CONCLUSION

In this paper, we proposed and implemented TIGER, a file
assignment approach to reducing cooling energy requirements
of data centers. TIGER first decides disk utilization threshold
based on inlet temperatures of data nodes. Then, files are
assigned to disks in each node provided that disk utiliza-
tion is below the corresponding threshold. We applied cross-
interference coefficients to estimate the recirculation of hot air
from the outlets to the inlets of data nodes. We implemented
TIGER in an HP server. Our experimental results confirm
that TIGER is capable of offering about 10 to 15 percent
cooling-energy savings without significantly degrading I/O
performance.
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