
A Pipelining Approach to Informed Prefetching in Distributed Multi-Level Storage
Systems

Maen M. Al Assaf†, Mohammed I. Alghamdi�, Xunfei Jiang‡, Ji Zhang‡, and Xiao Qin‡

† King Abdullah II School for Information Technology, University of Jordan, Amman, Jordan

‡ Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849-5347

�Department of Computer Science, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia

Abstract—In this paper, we present an informed prefetching
technique called IPODS that makes use of application-disclosed
access patterns to prefetch hinted blocks in distributed multi-
level storage systems. We develop a prefetching pipeline in
IPODS, where an informed prefetching process is divided into
a set of independent prefetching steps among multiple storage
levels in a distributed system. In the IPODS system, while data
blocks are prefetched from hard disks to memory buffers in
remote storage servers, data blocks buffered in the servers
are prefetched through networks to clients’ local cache. We
show that these two prefetching steps can be handled in a
pipelining manner to improve I/O performance of distributed
storage systems. Our IPODS technique differs itself from
existing prefetching schemes in two ways. First, IPODS reduces
applications’ I/O stalls by keeping hinted data in clients’ local
caches and storage servers’ fast buffers (e.g., solid state disks).
Second, in a prefetching pipeline, multiple informed prefetch-
ing mechanisms semi-dependently coordinate to fetch blocks
(1) from low-level (slow) to high-level (fast) storage devices in
servers and (2) from high-level devices in servers to clients’
local cache. The prefetching pipeline in IPODS judiciously
hides network latencies in distributed storage systems, thereby
reducing the overall I/O access time in distributed systems.
Using a wide range of real-world I/O traces, our experiments
show that IPODS can improve noticeably I/O performance of
distributed storage systems.

Keywords-Informed prefetching, pipelining, parallel storage
systems, distributed multi-level storage system.

I. INTRODUCTION

This paper reports the effectiveness of an informed

prefetching technique - IPODS - that relies on application-

disclosed access hints to prefetch blocks from remote servers

to clients’ local cache in distributed multi-level storage

systems. Our IPODS technique incorporates a prefetching

pipeline, that divides an informed prefetching process into a

number of independent prefetching steps. In the pipeline,

while data blocks are prefetched from low-level devices

(e.g., hard disks) to up-level devices (e.g., memory buffers)

in remote storage servers, data blocks buffered in the up-

level devices of the servers are prefetched through networks

to local cache at client sites.

Recent work (see, for example, [16][12]) has shown

that prefetching techniques can solve the I/O bottleneck

problem in large-scale computing systems. Both predictive

prefetching [2] and informed prefetching [1] - two popular

types of approaches - improve I/O performance by preload-

ing data from disks into the main memory prior to data

accesses. In this study, we focus on informed prefetching, in

which prefetching decisions are made based on applications’

future access hints. We investigate the performance impacts

of informed prefetching on distributed multi-level storage

systems.
We are particularly interested in informed prefetching,

because evidence [1] shows that informed prefetching can

bridge the performance gap between the CPU and I/O. In a

study conducted by Patterson et al., an informed prefetching

algorithm - TIP - improves performance of I/O-intensive

applications by applying cost-benefit analysis to allocate

buffers for both prefetching and caching [1]. Although

we pay attention to informed prefetching, the pipelining

idea incorporated in IPODS can be applied to predictive

prefetching in the realm of distributed multi-level storage

systems. In our future study, we plan to propose a pipelining

approach to predictive prefetching for multi-level storage

systems in a distributed computing environment.
The following three factors motivated us to consider a

pipelining approach to informed prefetching in distributed

multi-level storage systems:

1) the growing needs of distributed multi-level storage

systems,

2) the I/O access hints offered by applications, and

3) the possibility of a prefetching pipeline for distributed

storage systems powered by multi-level storage de-

vices.

When parallel disk subsystems are extended into multiple-

level storage systems [14][8], a hierarchy of multiple storage

devices increases data access latency if the data are residing

in a lower level of the systems. To shorten long data transfer

latency, popular data or future accessed data may be stored

in the upper level of the storage systems.
In a distributed storage system, large disk access latency

due to network and server delays can be hidden by informed

prefetching. We develop an informed prefetching technique

tailored for distributed multi-level storage systems, each of

which consists of a group of multi-level storage servers.

2012 IEEE 11th International Symposium on Network Computing and Applications

978-0-7695-4773-2/12 $26.00 © 2012 IEEE

DOI 10.1109/NCA.2012.26

87

We demonstrate that a pipeline mechanism can be used

to efficiently prefetch data blocks from a low-level storage

device to a up-level storage device before moving the data

blocks to the clients.

Application disclosures of future I/O accesses can be used

to boost I/O performance of distributed multi-level storage

systems. We address three distinct issues related to I/O

access hints provided by applications. First, how to use

application hints to prefetch data among multiple storage

levels (e.g., main memory, solid state disks, and hard disk

drives) in remote storage servers. Second, how to use access

hints to prefetch data from remote storage servers to local

clients’ cache. The centerpiece of our approach is a pipeline

in which we split the informed prefetching process into a set

of independent prefetching steps among the multiple storage

levels. Third, how to coordinate the above two prefetching

modules in a pipeline manner.

Existing informed prefetching algorithms rely on the

assumption that parallel disks offer enough I/O bandwidth

for prefetching without encountering I/O congestion. Under

such an assumption, an informed prefetching mechanism

can prefetch a large number of data blocks in parallel. Our

preliminary results show that distributed storage systems

may not have unlimited I/O bandwidth; this observation

is especially true for storage systems where nodes are

connected with slow networks. In this study, we address the

slow network issue by proposing a prefetching pipeline to

hide long latencies imposed by the networks.

This study has the following two major research contri-

butions:

• To reduce I/O delays and application’s elapsed time in

distributed multi-level storage systems, we propose new

informed prefetching approaches to coordinate multiple

prefetching mechanisms in the form of a pipeline. The

informed prefetching algorithm developed in this study

is called IPODS. We show that with our prefetching

pipeline in place, multiple prefetching operations can

be processed in parallel by both upper-level and lower-

level prefetching mechanisms.

• We developed a simulated distributed multiple-level

storage system, in which the two prefetching algorithms

are implemented. Simulation results show that our

prefetching mechanism powered by a data fetching

pipeline reduces applications’ stall and execution times.

The rest of the paper explains and justifies a pipelined

informed prefetching scheme in distributed multiple-level

storage system. Section II reviews the related work. We

outline the IPODS architecture in Section III. Section IV de-

scribes the design and implementation issues of the IPODS

prefetching mechanism. Section V presents our experimental

framework and results. Finally, Section VI provides conclu-

sions and directions for future studies.

II. RELATED WORK

Previous researchers have suggested that application-

disclosed hints can be used by prefetching mechanisms to

dramatically improve I/O performance. To our best knowl-

edge, however, ours is the first study to focus on informed

prefetching in distributed multi-level storage systems, the

first to construct a pipeline to coordinate multiple prefetch-

ing mechanisms in a distributed multi-level storage system,

and the first to offer a systematic performance evaluation

of informed prefetching in distributed multi-level hybrid

storage systems.

A. Multi-level storage systems

A multi-level storage system consists of a hierarchy of

heterogeneous storage devices that differ in their hardware,

speed, size, and other specifications [17]. Multilevel storage

systems provide cost-effective solutions for large-scale data

centers without significantly affecting I/O response times.

The I/O performance of a multi-level storage system depends

on data placement of the system. Ideally, a high-level storage

device should store two types of data: (1) popular data that

are frequently accessed and (2) data that are likely to be

accessed in the not-too-distant future.

Typical storage devices in a modern multi-level storage

system include main memory, solid state disks, hard disks,

and magnetic tape subsystems (see, for example, [8]).

B. Informed Prefetching

A study conducted by Patterson et al. [1] [5] [4] [6]

[10] inspired us to concentrate on informed prefetching

issues. Patterson et. al suggested that informed prefetching

algorithms - invoking storage parallelisms - can take advan-

tage of application-disclosed I/O access hints to eliminate

I/O stalls through aggressive prefetching [10][1][5]. Perfor-

mance benefits of informed prefetching were confirmed by

other studies undertaken by Huizinga et al. [3] and Chen et
al. [11].

When it comes to disk arrays, parallel informed prefetch-

ing aims to leverage parallel I/O to improve prefetching

performance. Parallel informed prefetching is made pos-

sible, because data blocks are striped across an array of

disks [9][13]. Parallel informed prefetching eliminates I/O

stalls by placing hinted data in the cache before the data are

requested by applications. To improve cache usage for both

prefetching and caching, Patterson et al. proposed a cost-

benefit model, which assists their prefetching mechanism

to balance cache/buffer space shared between the LRU

(least-recently-used) cache and the prefetching buffer [1].

The model decides the benefit of using more buffers for

prefetching and the cost of ejecting a LRU block or a

prefetched block.

88

C. Prefetching in Distributed and Parallel Storage Systems

Apart from multiple-level storage systems, parallel and

distributed storage systems can benefit from prefetching

schemes. For example, Patterson et al. proposed and im-

plemented an informed prefetching model in a distributed

storage system where data are allocated in remote nodes

[1]. Unlike multi-level storage systems, distributed storage

systems have to face the challenge of reducing latencies

of accessing remote storage nodes through networks. To

address this challenge, Rochberg and Gibson extended a

network file system by integrating an informed prefetching

mechanism [7]. Rochberg and Gibson’s approach hides disk

latency while exposing storage parallelism. Their experi-

mental results show that informed prefetching over network

reduces application’s execution time by anywhere from 17%

to 69% [7].

Our informed prefetching strategies are quite different

from the aforementioned approaches, because ours leverage

a prefetching pipeline to efficiently migrate hinted data to

upper-level storage devices, thereby significantly reducing

data access times.

III. SYSTEM DESIGN

Compared with existing prefetching schemes, IPODS

introduces a set of salient features: support application-

disclosed I/O access hints, multiple informed prefetching

mechanisms, and support a prefetching pipeline across mul-

tiple storage devices. Before presenting the IPODS imple-

mentation details, we first outline a high-level overview of

IPODS’s system design.

A. Hardware Architecture of IPODS

Figure 1 illustrates the hardware architecture of IPODS.

The system consists of client nodes and distributed storage

nodes. Each client node maintains a local buffer caches;

applications running on client nodes retrieve data from

remote storage nodes. Applications disclose their future

access hints to client nodes, which prefetch data from remote

storage nodes to local buffers. Each storage node builds with

N-level storage devices. In this paper, we configure each

storage node as a two-level storage device - the upper level

is a solid state disk and the lower level is a hard drive. As

we descend in the hierarchy, the disk read latency increases.

A large data block are stripped and stored across multiple

storage nodes. Data blocks are transferred among client and

I/O storage nodes through networks.

Figure 1: Distributed/Parallel Multi-level Storage System.

(see also [15])

B. Assumptions
As a conservative assumption, hinted data blocks are

initially allocated to HDDs thanks to the large capacity of

the HDDs. It is noteworthy that I/O performance of multi-

level storage systems can be improved if hinted blocks are

initially placed in SSDs rather than HDDs.
In a multiple level storage system, a small portion of SSD

space is reserved for retaining copies of the prefetched data.

Instead of migrating data from HDDs to SSDs, IPODS keeps

original copies at the HDD level while fetching duplicated

copies to SSDs. In addition, IPODS adjusts SSD space

reserved for prefetching.

IV. IPODS ALGORITHM

The informed prefetching algorithm - TIP (see [1] for

details) - reduces applications’ stalls and elapsed time. TIP

makes use of applications’ hints of future I/O accesses. In

this section, we extend the informed prefetching technique

by creating a pipeline in which we split the informed

prefetching process into a set of independent prefetching

steps among the multiple storage levels. In this section,

we show that how multiple prefetching mechanisms can

coordinate to prefetch hinted blocks in parallel. We call our

new informed prefetching technique powered by a pipeline

in a distributed system as IPODS.
Our empirical experiments indicate that parallel storage

systems may have I/O congestion. Evidence shows that there

is a maximum number of read requests being concurrently

processed in a parallel storage system. In the event that

an upper-level prefetching mechanism does not fully utilize

available I/O bandwidth, unused I/O bandwidth can be allo-

cated for lower-level prefetching mechanisms to bring hinted

blocks from lower-level to upper-level storage in a pipeline

manner. This observation suggests that the pipelining process

largely depends on available I/O bandwidth for lower-level

prefetchers.
This section presents an algorithm that guides us in

implementing the IPODS mechanism for distributed multi-

level storage systems.

89

A. Definitions

IPODS handles the informed prefetching process between

SSDs and HDDs. When an application starts its execution,

the TIP module assigns a number of buffers for prefetching

(Xcache) based on the cost benefit model. This means that the

informed prefetching module continues to issue a number of

concurrent read requests that equals to (Xcache). The concur-

rent reads utilize either a part or all of the parallel storage

system’s bandwidth. Based on the non-utilized portion of

the I/O bandwidth, IPODS assigns its pipelined prefetching

depth.

Let MaxBW be the maximum number of read requests

that may take place concurrently in the parallel storage

system. The value of MaxBW depends on the number of

nodes and the available aggregated I/O bandwidth. In the

event that TIP is assigning Xcache buffers for prefetching,

the difference between Xcache and MaxBW is the pipelined

prefetching depth of IPODS. The pipelined prefetching

depth is determined by Equation 1; this number represents

the maximum space that needs to be reserved for pipelined

prefetching in the uppermost level (i.e, SSDs). Pipelined

prefetching depth does not consume the SSD storage space

because it will reserve only a single data block space at each

SSD of the array.

Pdepth = MaxBW −Xcache (1)

where;
Pdepth: IPODS pipelined prefetching depth

MaxBW : Maximum bandwidth

Xcache : Number of prefetching buffers

The TIP module continues prefetching Xcache hinted data

blocks over the network concurrently. At the same time,

IPODS keeps fetching Pdepth hinted data blocks from HDDs

to the SSDs in a pipeline manner with TIP. IPODS consists

of two algorithms determining what the first hinted block to

be fetched from HDDs and the number of subsequent blocks

to be fetched. Initially, most of TIP’s prefetching requests

are found in the lowest level (i.e., HDDs) until the hinted

data blocks arrive in the uppermost ones (i.e., SSDs). At

this point, TIP fetches hinted blocks from one of the two

storage levels. As more I/O bandwidth becomes available

for IPODS to fetch hinted blocks in a pipeline manner, more

prefetching requests are handled in the uppermost level.

Every time a data block is prefetched by TIP, it will be

consumed from the SSD’s pipelined prefetching buffer and

a new pipelined prefetching request is initiated. As more

I/O bandwidth becomes available for pipelining, application

stalls and elapsed time will be reduced.

Tcpu + Thit + Tdriver represents the system’s single time

unit needed for an application to consume a prefetched data

block. In addition, a distributed multi-level storage system

consists of several storage nodes where each one has an

HDD and an SSD. Thdd−network−cache is the time spent

in retrieving a single data block over a network from a

remote storage node’s HDD. Tss−network−cache is the time

needed to fetch a single data block over a network from a

remote node’s SSD. Thdd−ss is the disk read latency from

the HDD to SSD of a remote node. Tss−network−cache is

less than Thdd−network−cache, because the performance of

SSD is higher than that of HDD.

B. The Pstart and Pnext Algorithms

IPODS pipelines the prefetching processes. When in-

formed prefetching initiates its first prefetching requests,

IPODS begins fetching requests from HDDs to SSDs. The

position of the first block to be fetched from HDD by

IPODS is calculated by the Pstart algorithm. The pipelined

prefetching depth spans until a number of data blocks that

are calculated by equation 1. When a data block is requested

by TIP, the block will be consumed from the pipelining

buffer in SSD after the block is fully fetched from SSD

to the main memory of the client node. At this time, IPODS

issues a new pipelined prefetching request for another hinted

data block. The position of the next accessed data block is

calculated by the Pnext algorithm. Tconsume−ss represents

the time needed to consume a single pipelined preftching

block from SSD (i.e. Tconsume−ss = Tss−network−cache).

The Pstart Algorithm: Determines the first block
fetched from HDD to SSD

xcachecounter = 0

accesstime = - (Tcpu + Thit + Tdriver)

for blockcounter = 1 to Thdd−ss / (Tcpu + Thit + Tdriver)

do
xcachecounter ++

accesstime += (Tcpu + Thit + Tdriver)

if accesstime ≥ Thdd−ss then
Pstart = blockcounter

return Pstart

end if
if xcachecounter = Xcache then

if Tstall−ss(Xcache) > 0 then
accesstime += Tstall−ss(Xcache)

end if
if accesstime ≥ Thdd−ss then

Pstart = blockcounter + 1

return Pstart

end if
xcachecounter = 0

end if
end for
Algorithm 1. returns the hinted block position for which

IPODS begins pipelining. The first hinted block to be

fetched from HDD depends on the Thdd−ss and the

stall values that may take place during the beginning of

informed prefetching (Tstall−ss(Xcache)), assuming that

all data is already in the SSD. The algorithm calculates

90

the hinted data block’s position that will be accessed after

enough time to have it read from HDD to SSD.

The Pnext Algorithm:

totaltime = Thdd−ss + Tconsume−ss

xcachecounter = 0

accesstime = - (Tcpu + Thit + Tdriver)

for blockcounter = 1 to totaltime / (Tcpu + Thit + Tdriver)

do
xcachecounter ++

accesstime += (Tcpu + Thit + Tdriver)

if accesstime ≥ totaltime then
Pnext = Pstart + blockcounter - 1

return Pnext

end if
if xcachecounter = Xcache then

if Tstall−ss(Xcache) > 0 then
accesstime += Tstall−ss(Xcache)

end if
if accesstime ≥ totaltime then

Pnext = Pstart + blockcounter

return Pnext

end if
xcachecounter = 0

end if
end for
Algorithm 2. returns the next hinted data block that

IPODS should fetched from HDD to SDD when a pre-

viously pipelined data block is consumed from buffer in

SDD. Tconsume−ss is the time to consume a block in SSD.

The application stalls for at least Tstall−ss(Xcache). These

stalls reduce the prefetching depth.

For Tstall−ss(Xcache) calculation, we used TIP’s

mathematical model for stalls calculation by applying

Tss−network−cache. (see [1]).

Figure 2 illustrates an example of IPODS working with

the TIP module. MaxBW equals 5 and Xcache equals 2.

IPODS uses the remaining 3 slots for pipelined prefetching.

Due to the space limitation, we cannot illustrate a complete

motivational example for IPODS. An example of informed

prefetching without pipelining can be found in TIP’ paper

(see [1]).

C. The IPODS Algorithm

Algorithm 3: IPODS
Pstart = call pipelining start block

MaxBW = Maximum number of concurrent reading re-

quests

Pdepth = Pstart + (MaxBW - Xcache) - 1

while informed prefetching do
if bandwidth shortage then

shrink the pipelining depth by 1

end if
if pipelined data block is altered then

discard the pipelined data block

end if
if is the first prefetching then

for block = Pstart To block = Pdepth do
pipeline block to SSD

end for
else if SSD buffer is consumed then

Pnext = call (Next to Prefetch) for the consumed

block

if the Pnext data block is not already in the SSD

then
pipeline Pnext to the SSD

end if
end if

end while
The IPODS algorithm calls the Pstart algorithm to deter-

mine the first hinted block to be fetched from HDD. Next

IPODS calculates the pipelined prefetching depth (i.e.,

Pdepth), which is affected by the available I/O bandwidth.

Then, IPODS initiates a prefetching request to fetch hinted

blocks from HDD to SSD. Every time a cached block is

consumed from SSD by the TIP module, IPODS starts

prefetching the next hinted block from HDD to SSD.

IPODS can handle any bandwidth shortage or data block

modification.

V. IPODS SIMULATION AND PERFORMANCE

EVALUATION

We implement IPODS in a trace-driven simulator written

in C++. The simulated distributed system consists of a client

node offering local buffers and a set of remote storage nodes

built with two-level storage devices (i.e., a SSD level and a

HDD level). The client and all the storage nodes are con-

nected by a network. Figure 1 shows the architecture of the

simulated distributed storage system. The metric evaluated

in the simulated two-level (i.e., SSD and HDD) distributed

storage system (see Figure 1) is elapsed time with various

MaxBW values. Each MaxBW case is evaluated by varying

the numbers of prefetching buffers of the buffer cache. We

compare an IPODS-enabled prefetching mechanism against

the same system without deploying IPODS. Data blocks are

initially placed in HDD. The IPODS mechanism coordinates

two prefeching modules: the first one fetches hinted blocks

from HDDs to SSDs, the second one uses TIP [1] to further

fetch hinted blocks from SSDs to main memory over the

network.

A. System Setup

In our simulation studies, we use two LASR traces:

machine01 (LASR1) and machine06 (LASR2) [19][20] as

guides for the application’s I/O requests, which consist

of 11686 and 51206 I/O read system calls, respectively.

Without loss of generality, we assume that each I/O read

system call requests an entire data block. As a conservative

91

Figure 2: Average stalls when using IPODS and a fixed number of buffers for parallel prefetching in the buffer cache. The

maximum number (MaxBW) of read requests is 5. Informed prefetching buffers = 2, and the rest 3 spaces of the

bandwidth are used for pipelined prefetching. Thdd−network−cache = 5, Thdd−ss = 8, Tss−network−cache = 4, and Xcache =

2. The first accesses stall for 5 time units. Before IPODS fetches hinted blocks from HDD to SSD, the application stalls

for Tstall−hdd(Xcache) = Thdd−network−cache - 2(Tcpu + Thit + Tdriver) = 3 time units every 2 accesses. IPODS continues

to fetch 2 hinted blocks each time from HDD. When a prefetched block is consumed from SSD, a new pipelined

prefetching request is initiated by IPODS. When TIP prefetches a pipelined data block, the application stalls for

Tstall−ss(Xcache) = Tss−network−cache - 2(Tcpu + Thit + Tdriver) = 2 time units every 2 accesses.

assumption, the average I/O arrival interval is Tcpu + Thit +

Tdriver, representing the worst case. If the interval is larger

than Tcpu + Thit + Tdriver, IPODS can achieve even better

I/O improvement.

All the system parameters used in our simulator are

validated by the testbed in our laboratory at Auburn. The

following are storage devices tested in our laboratory:

• Memory: Samsung 3GB RAM Main Memory.

• HDD : Western Digital 500GB SATA 16 MB Cache

WD5000AAKS.

• SSD: Intel 2Gb/s SATA SSD 80G sV 1A.

• Network Switch: [18] Network Dell Power Connect

2824.

Our preliminary results based on our storage devices indi-

cate that an SSD is guaranteed to exhibit better performance

than HDD when the data block size is 200 MB for a local

system. According to our research lab testbed validation

performed at Auburn, the system parameters used in our

simulation study are: block size equals 200 MB, and (Tcpu

+ Thit + Tdriver) equals 0.037 seconds. Data is located in the

HDDs. The average latency of reading a 200MB data block

from a remote SSD and HDD to the buffer cache over a

LAN network is 4.158 and 4.43 seconds, respectively. The

time spent reading a 200MB block from the HDD to the

SSD Thdd−ss equals 4.5 seconds. There is no write latency

to the buffer cache; similar assumption can be found in [1].

Since both TIP and IPODS work concurrently, the

maximum number of read requests to HDDs is set to

MaxBW . According to TIP’s prefetching horizon equation

(see [1]),the prefetching horizon of reading the data from

HDD is 120 and the maximum needed (MaxBW) equals

to 354. We simulate IPODS by setting MaxBW to 15

concurrent read requests. We choose 15 because in the TIP

study, 15 disks were tested in the performance evaluation

[1]. In the IPODS simulator, each storage node’s disks

can individually handle a single read request without I/O

congestion.

The IPODS pipelined prefetching depth does not consume

the SSD space. If TIP is assigning (Xcache) = 1, pipelined

prefetching depth becomes 14. In this case, IPODS needs

2.8 GB.

B. Elapsed Time Improvement

The simulation results show that IPODS reduces the total

elapsed time by about 6% when the TIP module is using

very few buffers for prefetching (e.g., Xcache is set to 1,

2, and 3). Figure 3 shows the total elapsed time for varying

numbers of prefetching buffers when MaxBW equals 15. As

92

Figure 3: Total elapsed time when the number of

prefetching buffers is varied from 1 to 15. MaxBW = 15.

IPODS reduces the elapsed time.

the number of Xcache increases, the performance difference

between the IPODS and non-IPODS cases decreases because

TIP becomes more efficient in reducing the application’s

stalls.

Importantly, the IPODS pipelined prefetching process

shows its best performance improvement when TIP uses

few Xcache buffers (e.g. Xcache = 1). The experimental

results suggest that IPODS can enhance I/O performance

of distributed and parallel storage systems where the TIP

module has limited or no cache buffer to utilize. On the

other hand, when Xcache is greater than or equal to 9

especially when (MaxBW) is limited, IPODS can not exhibit

any performance improvement.

C. Increasing the MaxBW Value

Performance improvement offered by IPODS becomes

more pronounced when I/O bandwidth of the parallel storage

system increases. This is a result IPODS being able to issue

more pipelined prefetching requests to HDDs and bring more

data to the uppermost level.

When using MaxBW that equals 15, we observed that

IPODS’s performance improvement is not as significant

because of the limited I/O bandwidth. Figures 4, 5, 6, 7, 8,

and 9 show application elapsed time when the Xcache value

is increased from 1 to the prefetching horizon of reading the

data from HDD (120) and MaxBW value is 20, 30, 50, 100,

200, and 354 respectively. The LASR1 trace is used in this

simulation study. As we mentioned previously, the maximum

needed (MaxBW) equals to 354.

As MaxBW increases, IPODS becomes able to do more

pipelining and to exhibit a significant performance im-

provement. It also can reduce the total elapsed time by

Figure 4: Total elapsed time when the Xcache value is

increased from 1 to 20. MaxBW is set to 20.

Figure 5: Total elapsed time when the Xcache value is

increased from 1 to 30. MaxBW is set to 30.

approximately 6% with more Xcache cases.

VI. CONCLUSION & FUTURE WORK

In a distributed storage system, large disk access laten-

cies due to network and server delays can be hidden by

informed prefetching. In this paper, we showed that the

pipelining approach (i.e., IPODS) to informed prefetching

can improve the I/O performance of distributed multi-level

storage systems. We illustrated how to use application hints

to prefetch data from low-level devices to up-level devices

in remote storage servers and from storage servers to local

cache of clients. The centerpiece of our IPODS approach is a

pipeline in which an informed prefetching process is divided

93

Figure 6: Total elapsed time when the Xcache value is

increased from 1 to 50. MaxBW is set to 50.

Figure 7: Total elapsed time when the Xcache value is

increased from 1 to 100. MaxBW is set to 100.

into a number of concurrent prefetching modules. More

specifically, while data blocks are prefetched from low-level

devices to up-level devices in remote storage servers, data

blocks buffered in the up-level devices of the servers can be

prefetched through networks to local cache at client sites.

The implementation of IPODS contains three important

elements related to application disclosures of future I/O

accesses. First, an informed prefetching module uses ap-

plication hints to prefetch data from low-level to up-level

storage devices in storage servers. Second, an informed

prefetching module prefetches data from storage servers to

local cache at client sites. Third, a prefetching pipeline

coordinates the above two informed prefetching modules,

Figure 8: Total elapsed time when the Xcache value is

increased from 1 to 120. MaxBW is set to 200.

Figure 9: Total elapsed time when the Xcache value is

increased from 1 to 120. MaxBW is set to 354.

enabling the two prefetchers to perform in parallel.

We performed the experiments using a validated simulator

driven by real-world I/O traces representing I/O-intensive

applications. The experimental results show that the IPODS

approach can be employed to efficiently prefetch data blocks

from low-level storage devices in remote servers to local

cache buffers in clients. IPODS noticeably reduces the

elapsed times of applications running in distributed multi-

level storage systems.

ACKNOWLEDGMENT

This research was supported by the U.S. National Sci-

ence Foundation under Grants CCF-0845257 (CAREER),

94

CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187

(CPA), CNS-0831502 (CyberTrust), CNS-0855251 (CRI),

OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and

DUE-0830831 (SFS). Mohammed Alghamdi’s research was

supported by AL-Baha University.

REFERENCES

[1] R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka:
Informed prefetching and caching, In Proceedings of the 15th
ACM Symposium on Operating System Principles, pages 79-
95, CO, USA, 1995.

[2] J. Griffioen and R. Appleton: Reducing file system latency
using a predictive approach, In Proceedings of the 1994
USENIX Annual Technical Conference, pages 197 207,
Berkeley, CA, USA, 1994.

[3] M. Huizinga, D. and S. Desai: Implementation of informed
prefetching and caching in linux, In Proceedings of the
International Conference on Information Technology, pages
443 -448, Las Vegas, NV, USA, 2000.

[4] R. Hugo Patterson , Garth A. Gibson , M. Satyanarayanan: A
status report on research in transparent informed prefetching,
ACM SIGOPS Operating Systems Review, v.27 n.2, pages:
21-34, 1993.

[5] A.Tomkins, R. Hugo Patterson and G. Gibson: Informed
multi-process prefetching and caching, In Proceedings of
the 1997 ACM SIGMETRICS international conference on
measurement and modeling of computer systems, pages 100
- 114, Seattle, WA , USA, 1997.

[6] R.H. Patterson, G.A. Gibson, M. Satyanarayanan: Using
Transparent Informed Prefetching (TIP) to Reduce File Read
Latency , In Proceedings of Conference on Mass Storage
Systems and Technologies, Pages: 329-342, Greenbelt, MD,
1992.

[7] D. Rochberg, G.A. Gibson: Prefetching over a network:
early experience with CTIP, ACM SIGMETRICS Performance
Evaluation Review, v.25 n.3, Pages: 29-36, 1997.

[8] M. Nijim: Modelling Speculative Prefetching for Hybrid
Storage Systems, In Networking, Architecture and Storage
(NAS), 2010 IEEE Fifth International Conference on, pages
143 - 151, Macau, 2010.

[9] T. Kimbrel, P. Cao, E. Felten, A. Karlin, K. Li: Integrated Par-
allel Prefetching and Caching, Proceedings of the 1996 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 262 - 263, PA,USA,
1996.

[10] R. Hugo Patterson, G. Gibson: Exposing I/O concurrency
with informed prefetching, Proceedings of the third interna-
tional conference on on Parallel and distributed information
systems, pages 7 - 16, Austin, TX, USA, 1994.

[11] Y. Chen ; Byna, S. ; X. Sun ; Thakur, R. ; Gropp, W: Explor-
ing Parallel I/O Concurrency with Speculative Prefetching,
Proceedings of the 2008 37th International Conference on
Parallel Processing, pages 422 - 429, Portland, OR, USA,
2008.

[12] Y. Chen ; Byna, S. ; X. Sun ; Thakur, R. ; Gropp, W: Hiding
I/O Latency with Pre-execution Prefetching for Parallel Ap-
plications, Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1 - 10, Austin, TX, USA, 2008.

[13] Ganger, G.R. ; Worthington, B.L. ; Hou, R.Y. ; Patt, Y.N: Disk
arrays: high-performance, high-reliability storage subsystems,
Journal: Computer, issn: 0018-9162, volume 27, pages 30-36,
doi: 10.1109/2.268882 Ann Arbor, MI, USA, 1994.

[14] Alexander Thomasian: Multi-level RAID for very large disk
arrays, ACM SIGMETRICS Performance Evaluation Review,
v.33 n.4, March 2006 [doi¿10.1145/1138085.1138091]

[15] T.Madhyastha; G. Gibson; C. Faloutsos: Informed prefetching
of collective input/output requests, Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), Port-
land, Oregon, 1999.

[16] C.K. Yang, T. Mitra and T. Chiueh: A Decoupled Architecture
for Application-Specific File Prefetching, Freenix Track of
USENIX 2002 Annual Conference, 2002.

[17] T. Kaneko: Optimal Task Switching Policy for a Multilevel
Storage System, IBM Journal of Research and Development,
vol.18, no.4, pp.310-315, July 1974.

[18] DELL PowerConnect 2824 Switch,
doi:http://www.dell.com/us/business/p/
powerconnect-2824/pd.

[19] Lasr trace machine01, doi:http://iotta.snia.org/traces/list/ Sub-
trace?parent=LASR+Traces.

[20] Lasr trace machine06, doi:http://iotta.snia.org/traces/list/ Sub-
trace?parent=LASR+Traces.

95

