COMP7370 Advanced Computer and Network Security

Generalizing Data to Provide Anonymity when Disclosing Information (4)

Topics:

- 1. Time management
- 2. Domain generalization hierarchy

## **Topic 1: Time management**

- Emails
  - o Google: "How to Read 100 Emails, Fast"
  - Check email once a day
  - Group emails
  - o Reply to all the short emails first with "yes" or "no" as an answer
  - Write brief emails
  - o Long emails -> tasks -> must be prioritized

## Review: K-anonymity

**Definition 3.1 (k-minimal generalization** – wrt a quasi-identifier) Let  $T_i$  and  $T_j$  be two tables such that  $T_i \leq T_j$ .  $T_j$  is said to be a k-minimal generalization of a table  $T_i$  wrt to a quasi-identifier QI iff:

1.  $T_j$  satisfies k-anonymity wrt QI

2.  $\forall T_z : T_i \leq T_z, T_z \leq T_j, T_z \text{ satisfies } k\text{-anonymity } wrt \ QI \Rightarrow T_z[QI] = T_j[QI].$ 

- (1) k-anonymity
- (2) Minimal Question: (why minimal matters?)

## **Topic 2: Domain generalization hierarchy**

Why we need a domain generalization hierarchy?



We have many generalization solutions, for example:

Figure 3: Examples of generalized tables for  $\mathsf{PT}$ 

- Motivations of using domain generalization hierarchy:
  - Can we represent relations between these generation solutions?
  - The definition of k-minimal generalization depends on k value. Can we find an approach that is independent of k value?
  - How can we show generalization strategies or different ways of generalizing a DB?

Note: some generalizations are minimal some are not wrt quasi-identifier.

• Walk through this example:



low usability, high privacy



high usability, low privacy

## • The number of different possible strategies for a domain hierarchy

**Theorem 3.2** Let  $DT = \langle D_1, \ldots, D_n \rangle$  be a tuple such that  $D_i \in \mathsf{Dom}, i = 1, \ldots, n$ . The number of different strategies for DT is:  $\frac{h_{DT}!}{h_1!\ldots h_n!}$ , where each  $h_i$  is the length of the path from  $D_i$  to the top domain in  $\mathsf{DGH}_{D_i}$  and  $h_{DT} = \sum_{i=1}^n h_i$ .

DT = (D1, ..., Dn)e.g., DT = (E0, Z0, E1, Z1, ..)