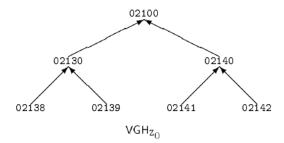
COMP7370 Advanced Computer and Network Security

Generalizing Data to Provide Anonymity when Disclosing Information (3)

• Comments on homework 2.

Review: K-anonymity

Definition 2.2 (k-anonymity) Let $T(A_1, ..., A_n)$ be a table and QI_T be the quasi-identifiers associated with it. T is said to satisfy k-anonymity iff for each quasi-identifier $QI \in QI_T$; each sequence of values in T[QI] appears at least with k occurrences in T[QI].


T[Q1]: T[ethnicity]: each sequence; 2 sequences; both 5 "black" and 6 "Caucasian" \geq k (say

k is 4)

T[Q2]: T[sex]: 2 sequences: both 7 "male" and 4 "female" >= 4

Key Approach: Hide partial information by generalizing values

How to present a process of hiding partial information? Value Generalization Hierarchies

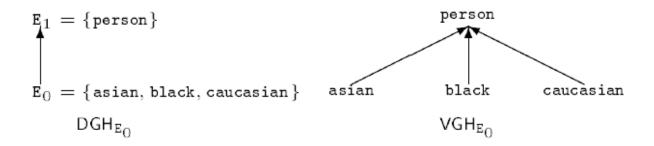
value generalization hierarchy

Question: Why value generalization hierarchies are not enough to present the idea of hiding information?

$$\mathbf{Z}_2 = \{02100\}$$

$$\mathbf{Z}_1 = \{02130, 02140\}$$

$$\mathbf{Z}_0 = \{02138, 20239, 02140, 02141\}$$


$$\mathsf{DGH}_{\mathbf{Z}_0}$$

Key: Less informative

domain generalization hierarchy

- Domain:
 - o e.g.: zip code domain, number domain, string domain.
 - o Every attribute is in the ground domain

Question: give Eo, can you provide E1?

Definition 3.1 (k-minimal generalization – wrt a quasi-identifier) Let T_i and T_j be two tables such that $T_i \leq T_j$. T_j is said to be a k-minimal generalization of a table T_i wrt to a quasi-identifier QI iff:

- 1. T_j satisfies k-anonymity wrt QI
- 2. $\forall T_z: T_i \leq T_z, T_z \leq T_j, T_z \text{ satisfies } k\text{-anonymity } wrt \ QI \Rightarrow T_z[QI] = T_j[QI].$

Use slide 7 to explain: $T_i = PT$, $T_j = GT[0,1]$;

PT --- transformed -> GT[0,1]

- (1) k-anonymity
- (2) Minimal

Question: (why minimal matters?)

$\mathbf{Eth}:\mathbf{E}_0$	$\mathbf{ZIP}:\mathbf{Z}_0$
a	38
a	39
a	41
a	42
b	38
ь	39
b	41
b	42
С	38
С	39
С	41
c	42

$\mathbf{Eth}: \mathbf{E}_0$	$\mathbf{ZIP}: \mathbf{Z}_1$
a	30
a	30
a	40
a	40
b	30
b	30
b	40
b	40
c	30
c	30
С	40
С	40

 $\mathsf{PT} \qquad \qquad \mathsf{GT}_{[0,1]}$