COMP7370 Advanced Computer and Network Security

Cold Boot Attacks on Encryption Keys (2)
Topics: Imaging Residual Memory
Key reconstruction
Identifying keys in memory

Topic 1: Imaging Residual Memory

1. Memory Wiping
e Can wiping memory at POST (Power-On Self Test) solve the memory
attacking problem?
e Attackers can transfer memory data to a machine that does not wipe its
memory on boot.

2. Imaging tools

Challenging: booting a system can overwrite some portions of memory
e Load a full OS? Why not? Very destructive

e Solution: tiny special purpose program (trivial amounts of RAM)

e PXE Network boot

Laptop -------------------- > (PXE) target PC
UDP(enthernet)
<---- memory image ---- (30 sec. for 1GB RAM data)

e Boot from USB drives

Flash device(10KB SYSLINUX bootloader) ---------------- > (USB) target PC
<----- memory image ----

e EFI boot — Extensible firmware interface instead of BIOS
e iPods <---- imaging tools

3. Imaging attacks

e Approach 1: Simple reboot: change BIOS; boot the imaging tool

0 Warm boot? OS restart: software will have an opportunity to wipe
sensitive data prior to shutdown

o Cold boot: briefly remove and restore power

e Approach 2: Transferring DRAM modules.
o0 Physical access to target machines
o0 Cool DRAM using “canned air” dusters

Topic 2: Key reconstruction

1. Motivation:
e Why recover keys? Bit errors (rate 5% to 50%)
e Symmetric and private keys.

e Brute-force search: Time consuming
e Observation: many encryption systems precompute key schedules and
keep them in memory.

Key ------- > key schedules; subkey for each round (for block ciphers)
S how to find code word (i.e., key schedules)

e Modeling decay:
o all bits decay to the same ground state
o0 probability /delta_0 flippingfrom1to0 Note: very small 0.1%
o0 probability /delta_1 flipping fromOto 1

2. Reconstruct DES keys (error-correction; consider a specific type of keys)
e 56-bit key -- > 16 48-bit subkeys
e \oting:
Original Key 1st, 2nd 3rd ..., ith,.... 56th

Each bit (i.e., ith bit) from the original key is repeated in about 14 of the 16

subkeys.
Subkey 1 1-1, 1-2 (ith), 1-3, ... 1-48
2 2-1(ith), 2-2, 3-3, ... 3-48
16 16-1, 16-2, 16-3 (ith), ... 16-48

For ith bit in the original key: 1-2,2-1, 16-3
1 0 1
If /delta_0 = /delta_1, then let’s vote: ith bit is O if more than n/2 of the
recovered bits are 0, and 1 otherwise.

If /delta_0 !=/delta_1, then ith bit is O if more than nr of the recovered
bits are 0
(see slides)

_ log(1 — &) —log
" Tog(1—8o) + log(1 —8;) — log &, —log &

e.g.,
/delta 0=0.1
/delta_1=0.001 r=0.75

e Result: error rate = 50%; 98% probability to reconstruct DES key
e Suggestions for key reconstructions:

0 What cryptosystem?

0 How does the cryptosystem work?

3. Reconstruct AES keys

e Original 128-bit key -> 11 (4-word) round keys

(see slides)

1 bit flip in original key -> many flips in round keys

round kev 1

=t

Core » (B

f -
o2 j/ 1/

Figure 6: In the 128-bit AES key schedule, three bytes of
each round key are entirely determined by four bytes of

the preceding round key.

e Step 1: A guess - value for each slice of 7 bytes. Why guess? Decrease

total likelihood

e Step 2: calculate expanded key schedules

Expended key schedules (from guessed key) vs. recovered key schedules (in

target RAM)

e Step 3: Is likelihood of expanded key schedules (from the guessed key)
decaying to recovered key schedule high?

Topic 3: Identifying keys in memory

e Question: How will you identify keys in RAM?

o Statistical tests

o Locate program data structures

e ldentify AES keys (see slide)
0 Input: a memory image

o Output: a list of likely keys
0 Basic idea: (1) key schedules rather than original keys
(2) recover keys from their key schedules

i _— >
f
] >
{ Hamming
176 or 240 byes distance

R
\
\

Key schedule word that should have been
generated from the surrounding words.

1.

Iterate through each byte of memory. Treat the fol-
lowing block of 176 or 240 bytes of memory as an
AES key schedule.

. For each word in the potential key schedule, calcu-

late the Hamming distance from that word to the key
schedule word that should have been generated from
the surrounding words.

If the total number of bits violating the constraints
on a correct AES key schedule is sufficiently small,
output the key.

