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Abstract—Fault-tolerance plays an important role in improving the reliability of multiple earth-observing satellites, especially in

emergent scenarios such as obtaining photographs on battlefields or earthquake areas. Fault tolerance can be implemented through

scheduling approaches. Unfortunately, little attention has been paid to fault-tolerant scheduling on satellites. To address this issue, we

propose a novel dynamic fault-tolerant scheduling model for real-time tasks running on multiple observation satellites. In this model, the

primary-backup policy is employed to tolerate one satellite’s permanent failure at one time instant. In the light of the fault-tolerant

model, we develop a novel fault-tolerant satellite scheduling algorithm named FTSS. To improve the resource utilization, we apply the

overlapping technology that includes primary-backup copy overlapping (i.e., PB overlapping) and backup-backup copy overlapping

(i.e., BB overlapping). According to the satellites characterized with time windows for observations, we extensively analyze the

overlapping mechanism on satellites. We integrate the overlapping mechanism with FTSS, which employs the task merging strategies

including primary-backup copy merging (i.e., PB merging), backup-backup copy merging (i.e., BB merging) and primary-primary copy

merging (i.e., PP merging). These merging strategies are used to decrease the number of tasks required to be executed, thereby

enhancing system schedulability. To demonstrate the superiority of our FTSS, we conduct extensive experiments using the real-world

satellite parameters supplied from the satellite tool kit or STK; we compare FTSS with the three baseline algorithms, namely, NMFTSS,

NOFTSS, and NMNOFTSS. The experimental results indicate that FTSS efficiently improves the scheduling quality of others and is

suitable for fault-tolerant satellite scheduling.

Index Terms—Earth-observation satellite, fault-tolerance, scheduling, primary-backup copy, overlapping, merging
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1 INTRODUCTION

EARTH observation satellites (EOSs) are platforms
equipped with optical instruments that orbit the earth

to take photographs of specific areas at user requests [1],
[2]. Nowadays, EOSs have been widely used for exploring
earth’s resources, battlefield reconnaissance, natural disas-
ter surveillance, and the like thanks to their unique ad-
vantages such as expansive coverage area, long-term
surveillance, and unlimited airspace borders [3], [4], [5]. As
the number of satellites grows, multiple satellites are com-
monly designed to operate in a coordinated way to perform
missions. Multiple satellites significantly improve system
performance, cost, and survivability compared with the
traditional single-satellite deployments [6], [7]. Noticeably,
real-time applications have been developed and deployed
on multiple EOSs, in which the correctness depends not
only on the logical results (e.g., photographs imaged by

EOSs), but also on the time instants at which these results
are delivered. For example, when an earthquake occurs,
there is an urgent need for EOSs to obtain photographs of
affected areas in a real-time manner. Generally, the photo-
graphs are expected to be acquired within a few hours or
even minutes for conducting damage assessment and plan-
ning rescue policies in a timely manner. Missing deadlines
on getting photographs may greatly affect damage assess-
ment and rescue resulting in catastrophic consequences [4].
Another example can be easily found in modern military
warfares, in which EOSs are critical equipment to obtain
first-hand battlefield information [8]. If the battlefield infor-
mation cannot be acquired in a timely manner, it will nega-
tively affect decision-making. As such, the US government
initiated the Operationally Responsive Spacelift (ORS)
plan to design and develop quick-response satellites focus-
ing on tactics and battle missions. Up to now, several
small modern satellites (e.g., TacSat-1, TacSat-2, TacSat-3,
TacSat-4, and ORS-1) with the characteristics of low cost,
short manufacture, and launching period have been success-
fully launched in recent years to meet emerging and persis-
tent warfighter needs in operationally relevant timelines [9].

Apparently, the aforementioned real-time applications
must then incorporate inherent high reliability features.
Since the EOSs in the above scenarios are employed in
disaster surveillance and military battlefields, where each
task must be guaranteed to be completed within its deadline
even in the presence of some EOSs’ runaway or the failures
of instruments installed on EOSs due to enemy interference
or other unpredictable reasons. Hence, the management
and control system of multiple EOSs on the ground must
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ensure its functional and timing correctness even when
faults occur on EOSs. Consequently, providing fault-toler-
ant mechanisms for such a system coupled with multiple
EOSs is mandatory owing to the critical nature of tasks exe-
cuting on EOSs. Furthermore, in these real-time applica-
tions, a great mass of observation information and photos
on disaster areas and battlefields are badly required; the
arrival times and the number of these real-time earth-obser-
vation tasks requested by different users are uncertain,
thereby making it a great challenge to develop effective
fault-tolerant mechanisms on EOSs.

Scheduling has been regarded as an efficient approach
to achieving high performance (e.g., boosting utilization of
satellite resources, providing quick timing response, com-
pleting more tasks, etc.) in satellite imaging. Task schedul-
ing on EOSs deals with the problem of mapping earth-
observation tasks to multiple EOSs to generate schedule
decisions satisfying a set of constraints. The most obvious
difference between satellite scheduling and other schedul-
ing problems is that satellites are orbiting the earth, which
means required areas can only be observed in the satel-
lites’ visible ranges (i.e., tasks can only be executed in visi-
ble time windows [10]).

Motivation. Due to the significance of scheduling on
EOSs, a wide variety of task scheduling algorithms have
been proposed in the past decades (see, for example, [1], [2],
[11], [12], [13], [14], [15], [16]). Unfortunately, conventional
satellite scheduling algorithms, which were mainly devel-
oped to optimize task guarantee ratios without addressing
the fault tolerance issue, are inadequate for safety-critical
real-time applications on EOSs. A handful of fault-tolerant
scheduling algorithms have been implemented in parallel
and distributed systems such as clusters and grids (see, e.g.,
[17], [18], [19], [20], [21], [22]). To the best of our knowledge,
no work has been done on fault-tolerant scheduling on
EOSs. The great challenge is two-fold. First, EOSs’ time win-
dow constraints and tasks’ deadline constraints must be
incorporated during fault-tolerant scheduling. Second,
many EOSs cannot permanently in contract with a ground
control station. Thanks to the development of relay satellites
and the space-to-space communication technology among
satellites, commands as well as a satellite’s status can be
quickly transferred in a short time period. Such a technol-
ogy trend offers ample and promising opportunities to
ensure robustness against failures of a satellite running real-
time tasks. In this paper, we propose novel fault-tolerant
scheduling algorithms for real-time tasks on multiple EOSs.
Specifically, our approach focuses on aperiodic, indepen-
dent, and real-time tasks. We employ the primary-backup
model (PB, in short), in which primary-backup overlapping,
backup-backup overlapping, the task merging techniques
and time window constraints considered.

Contributions. The major contributions of this paper are
summarized as follows:

� We establish a satellite fault-tolerant model, which
extends the traditional primary-backup fault-toler-
ant model by incorporating time window constraints
of EOSs.

� We analyze task overlapping conditions for the
primary-backup overlapping and backup-backup

overlapping schemes on multiple EOSs to improve
satellite resource utilization.

� We propose three task merging mechanisms while
scheduling to decrease the observation number, thus
to further enhance satellite resource utilization.

� With the overlapping and merging mechanisms in
place, we design a novel dynamic real-time fault-
tolerant satellite scheduling algorithm or FTSS to
support multiple EOSs.

� We demonstrate that we can design a real-time
fault-tolerant scheduling algorithm that is condu-
cive to improve the scheduling performance of the
conventional scheduling algorithms on multiple
EOSs, where the time window features of satellites
are addressed.

The remainder of the paper is organized as follows. The
next section reviews related work in the literature. Section 3
formally models the dynamic real-time fault-tolerant sched-
uling problem on EOSs. This is followed by our proposed
FTSS algorithm and the main principles behind it in
Section 4. The simulation experiments and performance
analysis are given in Section 5. Section 6 concludes the
paper with a summary and future work.

2 RELATED WORK

Because of the importance of scheduling inmanagement and
control systems of multiple EOSs, a large number of schedul-
ing techniques and algorithms on multiple EOSs have been
developed and deployed. Static (off-line) scheduling domi-
nates the scheduling family in the past decades. In a static
scheduling algorithm, assignments of tasks to satellites and
the time at which the tasks their executions are determined a
priori. A static scheduler makes periodic scheduling deci-
sions in one day, one week, or even one month [23].

For instance, Bianchessi et al. [1] investigated an improved
Tabu search algorithm to solve themulti-satellite, multi-orbit,
and multi-user scheduling problem; they evaluated the qual-
ity of the solution with an upper bounding procedure based
on the column generation algorithm. After modeling this
scheduling problem using a constraint-based language,
Frank et al. [13] adopted a stochastic greedy search algorithm
on the basis of a heuristic guidance strategy to create
solutions. Soma et al. [24] constructed a mathematical model
for multi-satellite scheduling; then, they developed an
optimization approach by applying a genetic algorithm.
Linear programming and heuristics have been investigated
to optimize the performance of constellations of small
satellites [25]. Zufferey et al. [26] employed the best ingre-
dients of the graph coloring techniques to address the satellite
range scheduling problems, proposing the Tabu search and
the adaptive memory algorithms. Globus et al. [6], [27]
designed an evolutionary algorithm to solve the multi-satel-
lite scheduling problems.

The aforementioned static scheduling schemes lack
immediate and dynamic responses, thereby being unable to
meet the needs of applications with uncertain arrival times.

With the increase of number of satellites as well as satellite
applications, much attention in recent years has been drawn
towards dynamic (on-line) scheduling, in which the arrival
times of tasks are not known a priori. For example, Wang
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et al. [15] investigated an approach to solving the dynamic
scheduling problem in the context of distributed imaging
satellites. Billups [28] addressed both static and dynamic
scheduling issues and studied several solutions including a
greedy dynamic method, genetic algorithms, integer pro-
gramming based approaches and a graph theory approach.
Liao and Yang [14], [29] put forward a nominal planning
with rolling horizon and lagrangian relaxation technique;
they suggested a dynamic policy named FAHA to adjust the
nominal planning with updated information. The problem
of new image requests that are dynamically added for agile
satellites was addressed by Dilkina and Havens [30]. They
studied an approach incorporating the advantages of permu-
tation-based search and constraint propagation. However,
the above dynamic scheduling schemes were not tailored for
real-time applications and; thus, these solutions cannot guar-
antee the deadlines of real-time tasks. Very recently, we pro-
posed some dynamic scheduling algorithms coupled with
the task merging techniques for real-time applications [31],
[32], [33]. Our schemes greatly improve the scheduling effec-
tiveness for EOSs.

Little attention has been paid to dynamic fault-tolerant
scheduling on EOSs. Fault-tolerant scheduling has been
extensively investigated in clusters, grids, and multiple
processor systems. Among many fault-tolerant techniques,
the P

̠
rimary-Ḇackup (PB, in short) model is the most

popular one. In the PB model, two copies of one task are
allocated on two different nodes, where an acceptance test
is employed to check the correctness of schedules [34]. For
example, two techniques (i.e., deallocation and overloading)
were proposed by Ghosh et al. [35] to enhance the schedul-
ability while providing fault tolerance with low overhead.
In the overlapping scheme, multiple backup copies can
overlap in the same time slot on the same processor. And
when a primary copy completes successfully, its corre-
sponding backup copy is reclaimed (i.e., deallocation).
Manimaran et al. [36] extended the method described in [35]
to tolerate more than one failure by partitioning processors
into several groups. In addition, Al-Omari et al. [37] studied
a primary-backup overloading technique in which a pri-
mary copy can overlap with backup copies of other tasks to
further improve the schedulability. Note that these fault-tol-
erant scheduling approaches belong to the category of pas-
sive backup copies (i.e., a backup copy is allowed to execute
only if a fault occurs in its primary copy). Besides, the laxity
must be at least twice as large as the computation time.

In contrast with the passive backup copy scheme, the
active backup copy scheme allows a primary copy to execute
simultaneously with its backup copy. Thus, a backup copy
can begin to execute even though no fault is detected in its
primary copy. Commonly, this scheme is used for the tasks
with tight laxity. Tsuchiya et al. [34] proposed a technique in
which two copies of each task are concurrently executed
with different start times. Yang et al. [38] studied a fault-
tolerant scheduling algorithm making the two copies of a
task be executed simultaneously to improve schedulability.
Al-Omari et al. [19] investigated an adaptive scheme that
controls the overlap interval between the primary copy
and the backup copy of a task based on the primary-fault
probability and the task’s laxity. In our previous work, we
investigated fault-tolerant scheduling algorithms on clusters

[22], [39], [40], where real-time constraints, QoS, and the reli-
ability are generally considered. However, these policies are
not suitable for fault-tolerant scheduling on EOSs due to the
unique features of EOSs.

In this paper, we concentrate on designing a novel
dynamic fault-tolerant scheduling strategy for independent
real-time tasks executing on EOSs. Specifically, the PB over-
lapping, BB overlapping, and task merging techniques are
seamlessly integrated to tolerate one satellite’s failure at any
time instant.

3 SYSTEM MODEL

In this section, we introduce the models, notion, and
terminology used throughput in this paper. For future
reference, we summarize the main notation used in this
study in Table 1.

3.1 Task Model

Earth-observation tasks are usually categorized into three
types of observation targets, namely, point targets, area
targets, and moving targets. A point target is able to be
photographed in a single slot by a sensor of a satellite. An
area target usually cannot be totally covered by a single
observation of a sensor and; therefore, is partitioned into
small strips or grids as multiple point targets. When it
comes to a moving target, the potential existing area may
be predicted in a real-time manner; then, the area can be
divided into point targets. As such, we focus on point
targets in this study.

We consider a set T ¼ ft1; t2; . . . ; tng of independent non-
preemptive real-time tasks arriving aperiodically. Because
the P

̠
rimary-Ḇackup model is employed in our fault-tolerant

scheduling scheme, task ti has two copies (i.e., primary copy

tPi and backup copy tBi that execute on different satellites).
Task ti 2 T is modeled as a tuple ti ¼ ðai; di; rsiÞ, where ai,
di, and rsi represent task ti’s arrival time, deadline, and res-
olution requirement, respectively. It is noteworthy that the
resolution used in this study refers to spatial resolution.1

LetR ¼ fr1; r2; . . . ; rmg be a satellite resource set. Resource
rj 2 R is denoted by rj ¼ ðduj; sj; sj; bj; oj; asj;msgj; borjÞ,
where duj; sj; sj; bj; oj; asj;msgj, and borj are the duration of
task execution, field of view angle, slewing pace, start-up
time, retention time of shutdown, attitude stability time,max-
imum slewing angle, and the best ground observation resolu-
tion (OR), respectively [32].

Let fP
i and fBi be the finish times of primary copy tPi and

backup copy tBi , respectively. Let ST
P ¼ ðstPijÞn�m be a start

time matrix of tasks’ primary copies, where element stPij
represents the start time of tPi on resource rj. Likewise,

STB ¼ ðstBijÞn�m is a start timematrix of tasks’ backup copies,

where element stBij denotes the start time of tBi on resource rj.

Correspondingly, we denote FTP ¼ ðftPijÞn�m and FTB ¼
ðftBijÞn�m as the finish time matrix of primary copies and

backup copies. rðtPi Þ, and rðtBi Þ represents two satellite

resources to which tPi and tBi are allocated, respectively.
We denote AOP

ij ¼ faoPij1; aoPij2; . . . ; aoPijKij
g as a set of

available opportunities of tPi on resource rj; AOP
i is the

1. http://en.wikipedia.org/wiki/Remote_sensing#Data_processing.
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available opportunity set of tPi on all resources (i.e.,

AOP
i ¼

S
rj2RAO

P
ij). For a given available opportunity

aoPijk 2 AOP
i , we have aoPijk ¼ f½wsPijk; wePijk�; uPijkg, where

½wsPijk; wePijk� is the time window of observation and uPijk is

the slewing angle for primary copy tPi . Fig. 1 shows an

example of available opportunity aoPijk.

Correspondingly, we have AOB
ip ¼ faoBip1; aoBip2; . . . ; aoBipQip

g,
where p 6¼ j. AOB

i ¼
S

rp2RAO
B
ip, and aoBipq ¼ f½wsBipq;

weBipq�; uBipqg. aoPijk and aoBipq are valid available opportunities

if 1) wePijk > ai, and weBipq > ai; 2) ws
P
ijk < di, and wsBipq < di;

3) uPijk 2 ½�msgj;msgj�, and uBipq 2 ½�msgj; msgj�. Within the

valid slewing angle, the count of available opportunities

caoPi of task tPi can be derived from (1) as:

caoPi ¼ Ka þKb þKc; (1)

where

Ka ¼ 0; if wePijk � ai � wePijkþ1;
1; if ai < wePijk;

(
(2)

Kb ¼ #
�
aoPijkjwsPijk > ai; we

P
ijk < di

�
; (3)

Kc ¼
0; if wePijk � di � wePijkþ1;
1; if di < wePijk:

(
(4)

Similarly, the count of caoBi can be calculated like caoPi .
Based on the arrival time and deadline of a task, we can

further determine its valid available opportunities. That is:

aoPijk ¼
f½ai; wePijk�; uPijkg; if wsPijk < ai; ai þ duj � wePijk;

f½wsPijk; di�; uPijkg; if wePijk > di; di � duj � wsPijk:

(
(5)

Again, the available opportunities of a backup copy can
be adjusted as (5).

Decision variable matrix XP ¼ ðxP
ijkÞn�m�Kij

is used to

reflect a mapping of primary copies, where element xP
ijk

equals “1” if tPi has been allocated to the kth available

opportunity on resource rj; otherwise, xP
ijk is set to “0”. Like-

wise, XB ¼ ðxB
ipqÞn�m�Qip

, in which an element xB
ipq equals

“1” if tBi has been assigned to the qth available opportunity

on resource rp. Consequently, rðtPi Þ ¼ j, 9k jxP
ijk ¼ 1 and

rðtBi Þ ¼ p, 9q jxB
ipq ¼ 1. ZP

i and ZB
i represent all possible

schedules for primary copy tPi and backup copy tBi , respec-

tively. zPi 2 ZP
i is a scheduling decision of tPi . Similarly,

Fig. 1. An example of available opportunity aoPijk.

TABLE 1
Definitions of Notation

Notation Definition

ti The ith task in the task set T ¼ ft1; t2; . . . tng
ai; di; rsi tis arrival time, deadline, and resolution requirement

rj The jth satellite resource in the satellite resource set R ¼ fr1; r2; . . . rmg
duj; sj; sj The duration of task execution, field of view angle, slewing pace of rj
bj; oj; asj The start-up time, retention time of shutdown, attitude stability time of rj
msgj; borj The maximum slewing angle, the best ground observation resolution of rj

tPi ; t
B
i

The primary and the backup of task ti

fP
i ; f

B
i

The finish times of tPi and tBi

stPij; st
B
ij

The start time of tPi and tBi on rj

ftPij; ft
B
ij

The finish time of tPi and tBi on rj

rðtPi Þ; rðtBi Þ The satellite resources to which tPi and tBi are allocated

aoPijk; ao
B
ipq

The k available opportunity of tPi on rj and the q available opportunity of tBi on rq

½wsPijk; wsPijk�; uPijk The time window of observation and the slewing angle of aoPijk

½wsBijk; wsBijk�; uBijk The time window of observation and the slewing angle of aoBijk

caoPi ; cao
B
i

The count of available opportunities of tPi and tBi
xP
ijk xP

ijk is “1” if t
P
i is assigned to aoPijk; otherwise, xP

ijk is “0”

xB
ipq xB

ipq is “1” if t
B
i is assigned to aoBipq; otherwise, xB

ipq is “0”

zPi ; z
B
i

The scheduling decision of tPi and tBi
orðzPi Þ; orðzBi Þ The observation resolution of tPi and tBi employing zPi and zBi , respectively
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zBi 2 ZB
i is a scheduling decision of tBi . The observation reso-

lution of tPi employing the scheduling decision tPi is orðzPi Þ
that is computed from (6) below:

or
�
zPi

� ¼ borj � LP
ijk

Hj
; (6)

LP
ijk ¼ ðHj þRÞ cos uPijk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðHj þRÞ2sin2uPijk

q
, in which R is

the earth radius, uPijk is the observation angle of task tPi on

kth time window on resource rj and Hj is the orbit height of

rj. orðzBi Þ can use a similar computation like (6). zPi and zBi
are feasible scheduling decisions if 1) fP

i � di and fB
i � di;

2) orðzPi Þ � rsi and orðzBi Þ � rsi.

3.2 Fault Model

The fault model used in our study includes the following
reasonable assumptions.

� Failures on satellites are transient or permanent, and
independent. In other words, a fault occurred on one
satellite will not affect another satellite.

� Since the probability that two satellites fail simulta-
neously is extremely small, we assume that only one
satellite fails at any one time instant. The backup
copies can be successfully finished if their corre-
sponding primary copies are on the failed satellite.

� A fault-detection mechanism is available to detect
satellite failures. New tasks will not be allocated to
any known failed satellite.

3.3 Scheduling Objectives

The primary objective in this study is to accommodate as
many tasks submitted by users as possible while adopting
the PB fault-tolerant model. Recall that a primary copy is
successfully allocated only if its corresponding backup copy
is be scheduled. In other words, if there is no feasible sched-
ule for a backup copy, its primary copy will have to be can-
celed. The overarching scheduling goal formally delineated
in the following expression is to maximize the number of
accepted primary copies under timing constraints:

max
tP
i
2T;rj2R

Xm
j¼1

Xn
i¼1

XKij

k¼1
xP
ijk

( )
: (7)

Another scheduling objectives (See Eq. (8)) is to obtain
the maximal observation resolution benefit (i.e., minimize
the observation resolutions of all accepted tasks under tim-
ing constraints)

min
tP
i
2T;tB

i
2T;rj2R

ORP þORB

CPB

� �
; (8)

where ORP equals
Pm

j¼1
Pn

i¼1
PKij

k¼1 x
P
ijkorðzPi Þ, ORB is equal

to
Pm

p¼1
Pn

i¼1
PQip

q¼1 x
B
ipqorðzBi Þ, and CPB is

Pm
j¼1

Pn
i¼1

PKij

k¼1
xP
ijk þ

Pm
p¼1

Pn
i¼1

PQip
q¼1 x

B
ipq.

Eqs. (7) and (8) suggest that our fault-tolerant sched-
uling strategy has to aim at accommodating a large num-
ber of tasks within timing constraints and the resources

offering better observation resolution should be chosen
in task scheduling.

4 OVERLAPPING DESIGN AND ANALYSIS

To efficiently improve the schedulability by boosting the
utilization of satellite resources, we employ the overlapping
mechanism including backup-backup (BB in short) and pri-
mary-backup (PB in short) overlapping in our study based
on the consideration that a majority of backup copies only
occupy resources but do not execute as the probability of a
satellite’s fault is tiny.

Let us introduce five basic properties to facilitate the pre-
sentation of our overlapping mechanism.

Property 1. One satellite’s fault can be tolerated if and only if the
primary copy and the backup copy of a task are allocated to two
different resources. Thus, we have

8ti 2 T; r
�
tPi
� 6¼ r

�
tBi
�
: (9)

Property 1 indicates that the primary copy and the
backup copy of a task cannot be assigned to the same satel-
lite; otherwise, both copies cannot be successfully finished
when the resource encounters a fault and fails to tolerant
the fault.

Recall that backup copies may be active or passive. We
adopt the passivemode in our scheme, because two different
satellites fly with some distance between them and the prob-
ability that they take the same photograph at the same time
is very slim. Therefore, we have the following property.

Property 2. The start time of backup copy tBi is later than the fin-

ish time of primary copy tPi , i.e.,

8ti 2 T; stBip > ftPij; j 6¼ p: (10)

Property 3. If tPi finishes successfully within its deadline, then

the time slot reserved by tBi will be reclaimed immediately and

tBi will not be executed.

Property 4. The overlapping mechanism is employed on condi-
tion that the primary copies and backup copies can be executed
on available opportunities. That is,

8tPi 2 T; rj 2 R; aoPijk 2 AOP
ij;

stPij 2
	
wsPijk; we

P
ijk � duj



; uPijk 2 ½�msgj;msgj�; (11)

and

8tBi 2 T; rp 2 R; aoBipq 2 AOB
ip;

stBip 2
	
wsBipq; we

B
ipq � duj



; uBipq 2 ½�msgp;msgp�: (12)

Property 4 indicates that the observation resolution of
each task must be better than or equal to the users’ reso-
lution requirements. Property 4 leads to the following
property.

Property 5. A task can be allocated only if its observation resolu-
tion is equal or smaller than that of the user’s requirement.
Thus, we have

8tPi 2 T; tBi 2 T; orðzPi Þ � rsi and orðzBi Þ � rsi: (13)
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4.1 BB Overlapping

To improve the resource utilization, we employ the backup-
backup (i.e., BB) overlapping mechanism in which a backup
copy of one task may overlap with backup copies of other
tasks. Fig. 2 illustrates two examples of BB overlapping.

We observe from Fig. 2a that tB1 and tB2 are overlapping
with each another, and the reason is four-fold.

� If resources r1, r2, and r3 are fault-free, t
P
1 and tP2 will

be finished successfully. Thus, there is no need to

execute tB1 and tB2 any more. Therefore, tB1 and tB2 can
overlap.

� If resource r1 has a fault, tP1 will fail. In this case, tB1
has to be executed. According to the assumption in

Section 3.2, r2 and r3 will not fail and; thus, tP2 can be

successfully finished. Since stB22 > ftP23, after the com-

pletion of tP2 , the time slot reserved for tB2 will be

reclaimed, avoiding any conflicts between tB1 and tB2
with respect to execution time. Hence, tB1 and tB2 can
overlap.

� If a fault occurs in resource r3, t
P
2 cannot be success-

fully finished. There is no timing conflicts between

tB1 and tB2 .
� If resource r2 encounters a fault, tB1 and tB2 cannot be

finished. Based on our assumption, r1 and r2 are per-

forming, then tP1 and tP2 can be finished successfully.

Thus, the overlapping between tB1 and tB2 will not
affect fault tolerance.

It should be noted that tP1 and tP2 cannot be allocated to
the same resource. Fig. 2b shows an unfeasible allocation
example.

Fig. 2b illustrates that if resource r1 encounters a fault, tB1
and tB2 must be executed. Due to the overlapping of tB1 and

tB2 , there exists a timing conflict between tB1 and tB2 . Conse-
quently, we obtain the following property.

Property 6. If primary copies tPi ; t
P
j ; . . . ; t

P
k have been allocated to

the same resource, then their corresponding backup copies

tBi ; t
B
j ; . . . ; t

B
k cannot have overlapping part in timing.

According to the features of satellite observation (i.e., a
scene imaged by a satellite sensor is with a certain size),
adjacent targets in a scene can be observed at the same time
[41]. This unique characteristic motivates us to merge tasks
while applying the overlapping strategy to improve the
schedulability.

Now, we give an example (see Fig. 3a) to show how to
merge tasks.

In Fig. 3a, tB;B1;2 represents a merged task formed from tB1
and tB2 . If a fault occurs in any resource, r1, r2, or r3 will not
affect fault tolerance (i.e., t1 and t2 can be successfully fin-
ished). The merging constraints is discussed in Section 4.4.

Additionally, if multiple primary copies are assigned to
the same resource, their corresponding backup copies can-
not be merged. The PB merging technique is described in
Section 4.2.

4.2 PB Overlapping

A second overlapping mechanism is primary-backup (i.e.,
PB) overlapping, in which the primary copy of a task can
overlap with backup copies of other tasks. An example of
feasible PB overlapping is shown in Fig. 4a.

Fig. 4a shows that tB1 can overlap with tP2 . Let us consider
the following four cases.

� If resources r1, r2 and r3 encounter no failure, tB1 and

tB2 do not need to be executed after tP1 and tP2 finish
successfully. Then, the occupied time slots will be

reclaimed. tB1 and tP2 have no chance to execute

simultaneously. So tB1 and tP2 can overlap in this case.
� If a fault occurs in resource r1, t

B
1 has to be executed.

Based on our assumption, r2 and r3 will work nor-

mally. Since tB1 and tP2 are overlapping in terms of

timing, to make tB1 finish successfully, tB2 must be

chosen to execute, giving up the execution of tP2 . By

this operation, it is feasible for tB1 and tP2 to overlap.
� If resource r2 fails, tP1 and tB2 can be successfully

finished. Thus, tB1 and tP2 are able to overlap with
each other.

� If resource r3 encounters a fault, tP1 and tP2 can be fin-

ished. Because tB1 will be reclaimed after the comple-

tion of tP1 , there is no time conflict between tB1 and tP2 .

Hence, the overlapping of tB1 and tP2 is acceptable.
If the start time of tPj is earlier than that of tBi , t

P
j cannot

overlap with tBi . An example of unfeasible PB overlapping
is depicted in Fig. 4b.

Suppose that resource r1 encounters a fault, tB1 must exe-

cute. At this time tP2 is executing and cannot be interrupted,

so there exists a time conflict between tB1 and tP2 . Property 7
describes a constraint if a primary copy can overlap with a
backup copy.Fig. 3. Some examples of merging.

Fig. 2. Examples of BB overlapping. The red solid pane represents the
available opportunities of task tP1 , the red dashed pane represents
the available opportunities of task tB1 , the blue solid pane represents the

available opportunities of task tP2 , and the blue dashed pane represents

the available opportunities of task tB2 .

Fig. 4. Examples of PB overlapping.
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Property 7. If a primary copy tPi can overlap with a backup

copy tBj on resource rp, the start time of tPi must be later than

that of tBj , i.e.,

stPip > stBjp: (14)

Similar to BB overlapping, tP1 and tB2 cannot be allocated to the
same resource. We can conclude the following property.

Property 8. If a primary copy tPi and backup copies tBj ; . . . ; t
B
k

overlap, tBi and tPj ; . . . ; t
P
k cannot be allocated to the same

resource.

However, based on the example in Fig. 4a, if tB1 and tP2
can be merged, tP1 and tB2 are able to be allocated to the same
resource as shown in Fig. 3b.

It is clear that tP1 and tB2 can be allocated to the same
resource, because t1 and t2 can be finished successfully

regardless of any failure on r1 or r2. Merged task tB;P
1;2 is

formed from tB1 and tP2 ; we analyze the merging constraints
in Section 4.4.

4.3 PP Merging

From the aforementioned analysis of the overlapping tech-
nologies, we show that primary copies cannot be over-
lapped because overlapping primary copies fails to tolerate
failures. Nevertheless, multiple primary copies can be
merged while conducting fault-tolerant scheduling besides
the PB merging and BB merging discussed in the PB and BB
overlapping. Fig. 5 depicts three PP merging examples.

Fig. 5a illustrates that if tP1 merges with tP2 , their corre-

sponding backup copies tB1 and tB2 might be allocated to two
other different resources. Thus, we can easily conclude that
no matter which resource encounters a fault, t1 and t2 can
be successfully finished.

If resource r1 fails (see Fig. 5b), t
B
1 and tB2 can run success-

fully. If resource r2 encounters a fault, tP;P1;2 also can success-

fully finish. Thus, we can conclude that if tP1 merges with tP2 ,

tB1 and tB2 can be allocated to the same resource except for

rðtP;P1;2 Þ and at the same time tB1 and tB2 have no overlapping.

Fig. 5c clearly shows that if tP1 merges with tP2 , it is also

feasible to merge tB1 with tB2 , and tP;P1;2 and tB;B
1;2 need to be

allocated to different resources.
On the other hand, if tB1 and tB2 has to employ the over-

lapping method rather than merging, it cannot realize fault-
tolerance. Fig. 6 depicts an unfeasible example of PP
merging.

We observe from Fig. 6 that if resource r1 encounters a

fault, tB1 and tB2 will start to execute. tB1 and tB2 have a time
conflict during their execution, thereby violating the fault-
tolerance requirements.

Theorem 1. Multiple primary copies tPi ; . . . ; t
P
j ; . . . ; t

P
k can

merge while making fault-tolerant scheduling and their backup

copies tBi ; . . . ; t
B
j ; . . . ; t

B
k cannot overlap when allocating these

backup copies.

Proof. Since tP;...;P;...;Pi;...;j;...;k is a merged task, there exists no timing

conflict of tPi ; . . . ; t
P
j ; . . . ; t

P
k when executing. Besides, sup-

pose tBi ; . . . ; t
B
j ; . . . ; t

B
k can overlap, if rðtP;...;P;...;Pi;...;j;...;k Þ fails,

rðtB;...;B;...;Bi;...;j;...;k Þ has to execute, but it is impossible to finish

all of them successfully because there exists overlapping
in them. It means that the assumption is incorrect, which
completes the proof for this Theorem. tu

4.4 Merging Constraints

Let tXa and tYb represent two tasks ready to be merged, where
X and Y denote any kind of copy (e.g.,X and Y may be P or
B). The following four constraints must be met.

First, tXa and tYb must have an overlapped time window.
Thus, we have

8tXa 2 T; tYb 2 T; rj 2 R; aoXajk 2 AOX
aj; ao

Y
bjq 2 AOY

bj;

weXajk > wsYbjq; if weYbjq > weXajk;

weYbjq > wsXajk; if weXajk > weYbjq:

(15)

Second, the overlapped time window must be equal to or
larger than the execution time of tXa and tYb . That is,

min
�
weXajk; we

Y
bjq

��max
�
wsXajk; ws

Y
bjq

� � duj : (16)

Third, the scene of resource rj must be able to cover the

targets of both tXa and tYb by adjusting its observation angle;
that is, ��uXajk � uYbjq

�� � sj : (17)

Fourth, the observation resolution of a merged task tXY
ab

must be equal to or better than the users’ requirements
in terms of observation resolutions. Thus, we have the
following constraint:

or
�
zXY
ab

� � rsa; and or
�
zXY
ab

� � rsb : (18)

Fig. 5. Examples of successful PP merging.

Fig. 6. An example of unfeasible PP merging.
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If tXa merges with tYb , the time window of merged task tXY
ab

becomes

twXY
ab;j;kq ¼ jmaxfwsXajk; wsYbjqg;minfweXajk; weYbjqgj: (19)

Also, the new slewing angle is set to be:

uXY
ab;j;kq ¼ ðuXa;j;k þ uXb;j;qÞ=2: (20)

Hence, the available opportunity of tXY
ab is

aoXY
ab;j;kq ¼ ftwXY

ab;j;kq; u
XY
ab;j;kqg: (21)

Apparently, the count of the available opportunities of
the merged task tXY

ab equals the count of the merging oppor-

tunities between tXa and tYb . Hence, the merged task tXY
ab may

also have multiple available opportunities, which provides
multiple choices to optimize our scheduling objectives.

The aforementioned merging of tasks only considers two
tasks. However, it can be easily extended to merge multiple
tasks only by repeating the merging operations of two tasks
under the constraints (15)-(18).

The main differences between the overlapping and merg-
ing techniques are summarized as follows:

� If multiple tasks merge into one task, then these tasks
are treated as a single task. In contrast, when multi-
ple tasks are overlapping, these tasks cannot be envi-
sioned as a single task; moreover, only one of the
overlapped tasks can be executed according to our
fault model.

� The overlapping technique is applied to decrease
occupied time slots, whereas the merging technique
aims to reduce the number of tasks.

� Multiple primary copies can be merged. On the other
hand, multiple primary copies are unable to overlap
one another.

� The constraints of overlapping are different from
those of merging.

5 FAULT-TOLERANT SATELLITE SCHEDULING

ALGORITHM FTSS

In this section, we present the novel fault-tolerant satellite
scheduling algorithm for real-time, independent, aperiodic
tasks running on multiple EOSs. FTSS judiciously considers
observation resolution, resource utilization, schedulability,
and fault-tolerance.

5.1 Primary Copies Scheduling

In order to make a primary copy and its corresponding
backup copy be allocated successfully, the primary copy
should be executed as early as possible to save more time
slots for the backup copy to be allocated before its deadline.

To get the earliest start time of a primary copy, the prepa-
ration time and ready time are needed.

Definition 1. Preparation time pXP
i�1;i;j is the time required to

start task tPi from its previous task tXi�1 due to the change of
slewing angle, i.e.,

pXP
i�1;i;j ¼ oj þ

��uXi�1;j;k � uPi;j;q
��

sj
þ asj þ bj: (22)

Definition 2. Ready time rPij is the time from which tPi can be
started,

rPij ¼ maxfpXP
i�1;i;j þ fti�1;j; aig: (23)

Property 9. A primary copy tPi can be executed in an available

opportunity aoPijk, which could be operated by the following

three ways:

� tPi is able to merge with a task (or a merged task);
� tPi overlaps with a task (or a merged task);
� aoPijk has an idle time slot sufficiently being enough to

accommodate tPi .

Either way, the finish time of tPi must be earlier than the
deadline of ti, i.e.,

fP
i < di: (24)

In the first way, constraints (15)-(18) must be satisfied to
guarantee that tPi is able to merge with a task (or a merged

task). estPijk is equal to the start time of task (or merged task)

tXa to be merged with. That is,

estPijk ¼ stXaj: (25)

For the second way, tPi can overlap with a backup copy
or overlap with a merged task that cannot derive from any

primary copies, i.e., if tPi can overlap with a merged task

t
X1;X2;...;Xk
i1;i2;...;ik

,

X1 6¼ P and X2 6¼ P and � � � and Xk 6¼ P: (26)

Since tPi can only overlap with backup copies or merged
tasks containing only backup copies, it is necessary to

search the first task tXa (maybe a backup copy or a merged

task constituted only by backup copies), then the estPijk can

be obtained by:

estPijk ¼ max
�
rPij; st

X
aj þ "

�
; (27)

where " is the time to cancel the execution of tPi if tXa has to
be executed.

With regard to the third way, the earliest start time estPijk
must be calculated. Without loss of generality, before com-

puting estPijk, we assume that ti1 ; ti2 ; . . . ; tiq have been allo-

cated to the kth available opportunity on resource rj. To
simplify the symbol, we refer these copies to be either pri-
mary copies or backup copies; these copies can be either sin-

gle tasks or merged tasks. The idle time slots on aoPijk are

½wsPijk; sti1 �; ½fti1 ; sti2 �; . . . ; ½ftiq�1 ; stiq �; ½ftiq ; wePijk�. To obtain

the estPijk, all these time slots should be scanned by timing in

ascending order. As a result, the first idle time slot
½ftik ; stikþ1 � that satisfies the following inequality is selected:

maxfrPij; ftik þ pXP
ik;i;j
g þ duj � stikþ1 : (28)

Hence, the estPijk can be determined by

estPijk ¼ maxfrPij; ftik þ pXP
ik;i;j
g: (29)
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In our FTSS, we let the start time of a primary copy be its
earliest start time in order to execute the primary copy as
early as possible.

The pseudocode of primary copy scheduling in FTSS is
outlined in Algorithm 1.

Algorithm 1. Primary Copies Scheduling in FTSS

1 foreach new task ti, schedule its primary copy tPi do
2 allocationTag FALSE;mergeTag FALSE;
3 foreach resource rj in the system do
4 Calculate tPi ’s available opportunities AOP

ij;
5 Calculate tPi ’s valid available opportunities by (5);
6 PMerging();
7 if allocationTag 6¼ TRUE then
8 POverlappingðÞ
9 PInsertingðÞ
10 if allocationTag ¼¼ TRUE andmergeTag¼¼FALSE

then
11 estPij  min{estp

0
ij , est

P 00
ij };

12 if allocationTag ¼¼ TRUE then
13 Put allocation scheme of tPi into set aSchemePi ;
14 else
15 Reject tPi and tBi ;
16 Sort the allocation schemes in aSchemePi by tPi ’s start

time in ascending order;
17 aSchemePi ðuÞ  the former u% schemes in aSchemePi ;

Algorithm 2. Function PMerging()

1 foreach valid available opportunity aoPijk do
2 if tPi can merge with a task (or a merged task) tXa allocated

in twP
ijk then

3 Merge tPi with tXa ;
4 estPijk  stXaj;

5 Calculate tPi ’s finish time fP
i ;

6 if fP
i < di then

7 mergeTag TRUE; allocationTag TRUE;
8 break;

Algorithm 3. Function POverlapping()

1 foreach valid available opportunity aoPijk do
2 if tPi can overlap with a task (or a merged task) tXa

allocated in twP
ijk based on Properties (7) and (8) then

3 Calculate tPi ’s earliest start time estPijk by (29);
4 Calculate tPi ’s finish time fP

i ;
5 if fP

i < di then
6 Calculate tPi ’s observation resolution orðzPi Þ by (6);
7 if orðzPi Þ � rsi then
8 allocationTag TRUE; estP

0
ij  estPijk;

9 break;

Now, we evaluate the time complexity of primary alloca-
tion in FTSS as shown below. Suppose we consider schedul-
ing a primary copy of task i. Let m denote the number of
resources. Let Kij denote the number of available opportu-

nities of tPi on resource rj. Let NtwðijkÞ denote the number

of existing allocated tasks in twP
ijk. Let Ki denote the maxi-

mum number of Kij on all resources. Let Ntw denote the

maximum number of NtwðijkÞ within all the available
opportunities on all resources.

Algorithm 4. Function PInserting()

1 foreach valid available opportunity aoPijk do
2 if aoPijk has an idle time slot to accommodate tPi then
3 Calculate tPi ’s earliest start time estPijk;
4 Calculate tPi ’s finish time fP

i ;
5 if fPi < di then
6 Calculate tPi ’s observation resolution orðzPi Þ by (6);
7 if orðzPi Þ � rsi then
8 allocationTag TRUE; estP

00
ij  estPijk;

9 break;

Theorem 2. The time complexity of primary allocation in FTSS is
OðmKiNtwÞ.

Proof. In the function PMerging(), the time complexity of
calculating the earliest start time of tPi in one available

opportunity aoPijk on rj is OðNtwðijkÞÞ. Then, for all the

available opportunities on rj, the time complexity is
OðKijmaxfNtwðijkÞgÞ, i.e. the time complexity of PMerg-
ing(). The time complexities of function POverlapping()
and PInserting() both are OðKijmaxfNtwðijkÞgÞ. The cal-
culation process is similar to that of PMerging(). For all
the resources, the time complexity in the worst situation
is OðKiNtwÞ. Therefore, the overall time complexity is cal-
culated as follows: OðmOðKiNtw þKiNtw þKiNtwÞÞ ¼
OðmKiNtwÞ. tu

5.2 Backup Copies Scheduling

We schedule a backup copy, whose primary copy has been
allocated, as late as possible to save earlier time slots for
other later-arriving tasks to meet their deadlines. Addition-
ally, idle time slots that are smaller should be selected to
make room for other tasks to enhance schedulability.

Property 10. A backup copy tBi can be allocated in an available

opportunity aoBipq, which could be operated by the following

three ways:

� tBi is able to merge with a task (or a merged task);
� tBi overlaps with a task (or a merged task);
� aoBipq has an idle time slot sufficiently to accommodate

tBi .

In the first way, constraints (15)-(18) must be satisfied to
guarantee tBi being able to be merged with a task (or a

merged task). The lstBipq is equal to the start time of task

(or merged task) tXb needed to merge with, i.e.,

lstBipq ¼ stXbp: (30)

Now, we discuss the latest start time of a task’s backup
copy in the second and third ways. For any backup copy tBi ,

the latest start time lstBijk can be obtained by scanning the

time windows from right to left

lstBipq ¼
min

�
weBipq; di

�� duj; if lts ¼ idle _ ol�tBi �;
stXbp � pBXibp � duj; if ts ¼ idle _ ol

�
tBi
�
;

(
(31)
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where lts denotes the latest time slot and olðtBi Þ denotes that
tBi can overlap with other tasks (or merged tasks) in the lat-

est time slot. stXbp denotes the start time of task tXb that exe-

cutes following tBi and cannot overlap with it. ts represents

the time slot before that occupied by tXb . p
BX
ibp is the prepara-

tion time required to start task tXb after finishing tBi .
The start time of a backup copy is set to the latest start

time in our FTSS. The pseudocode of backup copy schedul-
ing in FTSS is outlined in Algorithm 5.

Algorithm 5. Backup Copies Scheduling in FTSS

1 foreach new task ti whose primary copy tPi has not been rejected,

schedule its backup copy tBi do

2 allocationTag FALSE; value þ1;
3 foreach allocation scheme of tPi in aSchemePi ðuÞ do
4 allocationTag0  FALSE;mlst 0; nmlst 0;
5 foreach resource rj except rðtPi Þ in the system do
6 Calculate tBi ’s available opportunities AOB

ip;
7 Calculate tBi ’s valid available opportunities

as (5);
8 BMergingðÞ;
9 if allocationTag 6¼ TRUE andmlst ¼¼ 0 then
10 BOverlappingOrInsertingðÞ;
11 if allocationTag0 ¼¼ TRUE andmlst 6¼ 0 then
12 Put allocation scheme with maximalmlst of

tBi into set aSchemeBi ;
13 else if allocationTag0 ¼¼ TRUE andmlst ¼¼ 0 then
14 Put allocation scheme with maximal nmlst of tBi

into set aSchemeBi ;
15 if allocationTag ¼¼ FALSE then
16 Reject tPi and tBi ;
17 foreach primary copy allocation scheme in

aSchemePi ðuÞ and the corresponding backup copy
allocation scheme in aSchemeBi do

18 Calculate valuei ¼ stP
i

stB
i

=ðorðzPi Þ þ orðzBi ÞÞ;
19 if valuei < value then
20 Select the current task allocation scheme;

Algorithm 6. Function BMerging()

1 foreach valid available opportunity aoBipq do
2 if tBi can merge with a task (or a merged task) tXb allocated

in twB
ipq then

3 Merge tBi with tXb ;
4 lstBipq  stXbp;
5 if lstBipq > nmlst then
6 mlst lstBipq;
7 allocationTag TRUE; allocationTag0  TRUE;
8 break;

Then, we evaluate the backup allocation’s time complex-
ity in FTSS. We consider scheduling a backup copy of task i.

Let NaðiÞ denote the number of allocation schemes of tPi in

aSchemePi ðuÞ. LetQip denote the number of available oppor-

tunities of tBi on resource rp. Let NtwðipqÞ denote the number

of existing allocated tasks in twB
ipq. Let Qi denote the maxi-

mum number of Qip on all resources. Let N 0tw denote the
maximum number of NtwðipqÞ within all the available
opportunities on all resources.

Theorem 3. The time complexity of primary allocation in FTSS is
OðmNaðiÞQiN

0
twÞ.

Proof. As the similar calculation process in Theorem 2, the
time complexities of BMerging() and BOverlappingOrIn-
serting() both are OðQipmaxfNtwðipqÞgÞ. The time com-
plexity for examining all the resources is OðmQiN

0
twÞ.

For all the allocation schemes of tPi in aSchemePi ðuÞ, the
time complexity is OðmNaðiÞQiN

0
twÞ. For lines 17-20 in

Algorithm 5, the time complexity is OðNaðiÞÞ. As a result,
the time complexity of the backup allocation in FTSS
is calculated as follows: OðmNaðiÞQiN

0
tw þNaðiÞÞ ¼

OðmaxfmNaðiÞQiN
0
tw;NaðiÞgÞ ¼ OðmNaðiÞQiN

0
twÞ. tu

6 PERFORMANCE EVALUATION

We evaluate in this section the performance of the proposed
FTSS algorithm. To demonstrate the performance improve-
ments gained by FTSS, we quantitatively compare it with
three baseline algorithms, namely, a fault-tolerant satellite
scheduling algorithm without merging (NMFTSS); a fault-
tolerant satellite scheduling algorithm without overlapping
(NOFTSS); a fault-tolerant satellite scheduling algorithm
without merging and overlapping (NMNOFTSS).

� NMFTSS: Different from FTSS, NMFTSS does not
take task merging into account. From the perfor-
mance comparisons between NMFTSS and FTSS, we
can evaluate the effectiveness of task merging.

� NOFTSS: As a variant of FTSS, task overlapping is
not considered in NOFTSS. The performance dis-
crepancy between NOFTSS and FTSS is able to vali-
date the value of overlapping.

� NMNOFTSS: NMNOFTSS considers task insertion in
the waiting sequence only, neither task merging nor
overlapping is considered.

The performance metrics by which we evaluate the system
performance include:

� Guarantee Ratio (GR) defined as: GR ¼ Total num-
ber of tasks guaranteed to meet their deadlines/
Total number of tasks � 100%;

� Observation Resolution used to test the average
observation resolution of accepted tasks.

6.1 Simulation Method and Parameters

To validate the performance improvements of FTSS, the
targets are randomly generated in the area: latitude �30-60
degree and longitude 0-degree. The number of targets are
200, 400, 600, 800, 1,000, 1,200, respectively. According to
extensive literature ([12], [23], [42], [43], [44]), ten sensors on
different satellites are considered in this paper. The parame-
ters of the sensors are presented in Table 2, and the orbit
models of satellites are obtained from the satellite tool kit or
STK,2 where the parameters with (*) denote the designed
values based on the previous literature.

� The arrival time of a task is denoted as ai ¼ ai�1 þ
intervalTime, where intervalTime is a random posi-
tive real number, uniformly distributed in ½a; b�; a0 ¼ 0;

2. http://www.agi.com/.
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� The deadline di is expressed as di ¼ ai þDeadline,
where Deadline 	 NðbaseDeadline; baseDeadline=10Þ.

Table 3 summarizes the simulation parameters and their
values. The STK presents the running status of earth-obser-
vation system composed by 10 satellites listed in Table 2.
Besides, the random synthetic tasks generated by our simu-
lation parameters are shown on the earth (Target i denotes
the ith task). Fig. 7 shows the 3D graphic when 100 tasks are
generated.

Algorithm 7. Function BOverlappingOrInserting()

1 foreach valid available opportunity aoBipq do
2 if tBi can be accommodated by overlapping or inserting

then
3 Calculate tBi ’s latest start time lstBipq by (33);
4 Calculate tBi ’s observation resolution orðzBi Þ as (6);
5 if orðzBi Þ � rsi then
6 allocationTag TRUE; allocationTag0  TRUE;
7 if lstBipq > nmlst then
8 nmlst lstBipq;
9 break;

In our experiments, we employ the “Once Tuning One
Parameter (OTOP)” method, which has been widely
applied in simulation experiments reported in the literature
(see, for example, [29], [31], [40]). In each experiment, we
change a single parameter while keeping all the other
parameters fixed. Tuning one parameter at a time allows us
to clearly observe impacts of the parameter on performance
of our scheduling system.

6.2 Performance Impact of the Number of Tasks

In this experiment, we investigate the performance impact
of the number of tasks that increases from 200 to 1,200 with

an increment of 200. Fig. 8 illustrates the performances of
FTSS, NMFTSS, NOFTSS and NMNOFTSS in terms of guar-
antee ratio and observation resolution.

Fig. 8a shows that with the increase of the number of
tasks, the guarantee ratios of all the algorithms decrease.
This trend is reasonable, because of given limited resources,
increasing the number of tasks makes the tested system
heavily loaded, which in turn reduces the guarantee
ratios. Besides, Fig. 8a shows that the guarantee ratio of
NMNOFTSS is the lowest because neither the overlapping
technique nor the task merging strategies are employed in
the scheduling process of NMNOFTS, which results in a
poor resource utilization. On the contrary, FTSS performs
best in terms of guarantee ratio. We attribute the result to
the adoption of several overlapping techniques in FTSS,
which boosts the resource utilization. The number of tasks
decreases by the introduction of the task merging strategy.
Consequently, the guarantee ratio of FTSS is the highest
among all the evaluated solutions. We can observe from
Fig. 8a that NMFTSS and NOFTSS outperform NMNOFTSS.

TABLE 2
Parameters of Satellite Sensors

Sensor Satellite bs(m) msg(deg) FOV du
(s) s
(deg/s) b
(s) o
(s) as
(s) Height (km)

Sensor1 IKONOS-2 4 45 0.931 1 0.5 5 5 10 681
Sensor2 QuickBird-2 2.44 25 2.1 1 0.5 5 5 10 450
Sensor3 SPOT-4 10 27 4.2 1 0.5 5 5 10 832
Sensor4 SPOT-5 10 27 2.09 1 0.5 5 5 10 822
Sensor5 ORBVIEW-03 1 27 1.0 1 0.5 5 5 10 470
Sensor6 JB-3A 3 32 5.72 1 0.5 5 5 10 300
Sensor7 EROS-A01 1.9 45 1.6 1 0.5 5 5 10 500
Sensor8 CBERS-1 19.5 32 8.32 1 0.5 5 5 10 778
Sensor9 CBERS-2 10 32 8.32 1 0.5 5 5 10 778
Sensor10 ERS-2 10 25 7.34 1 0.5 5 5 10 780

TABLE 3
Parameters for Simulation Studies

Parameter Value(Fixed)-(Varied)

Number of Tasks (1,000)-(200, 400, 600, 800, 1,000, 1,200)
Number of Resources (10)
intervalTime(h) ([20, 40])-([0, 20], [20, 40], [40, 60],

[60, 80], [80, 100])
u (50)-(10, 20, 30, 40, 50, 60, 70, 80)
baseDeadline(h) (30)-(20, 30, 40, 50, 60, 70)

Fig. 7. STK 3D graphics.

Fig. 8. Performance impact of the number of tasks.
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Besides, the guarantee ratio of NMFTSS is higher than that
of NOFTSS, because the constraints of task merging are
stringent, which makes low guarantee ratio of NOFTSS.

Fig. 8b demonstrates that the observation resolutions of
the four algorithms go up with the increasing number of
tasks. When the resources are limited, the increase of the
number of tasks results in heavy load, which makes the sys-
tem downgrade observation resolutions to acceptmore tasks.
Note that all the observation resolutions of accepted tasks
satisfy user requirements. Hence, the observation resolutions
ascend. We observe from Fig. 8b that when the system work-
load is light (e.g., the number of tasks is less than 400), the
observation resolution of FTSS is better than that of
NMNOFTSS. This result confirms that FTSS can optimize the
observation resolution as well as accept more tasks. When
the system workload is heavy (the number of tasks is greater
than 600), the observation resolution is worse than that of
NMNOFTSS. This is due to the fact that FTSS prefers to accept
more tasks, and thus the observation resolution degrades
inevitably. Besides, the observation resolution of NMFTSS
outperforms NOFTSS. During the of task-merging process, a
sensor must adjust its observation angle to cover several tar-
gets in one imaging procedure, thereby leading to worse
observation resolutions. NMFTSS does not need to adjust sat-
ellite sensors’ observation angles for covering several targets.
Thus, the observation resolution ofNMFTSS is better.

6.3 Performance Impact of Arrival Rate

We carry out a group of experiments to observe the impact
of arrival rate on the four algorithms. Parameter intervalTime
is uniformly distributed among [0, 20], [20, 40], [40, 60], [40,
60], [60, 80] and [80, 100]. The experimental results are
depicted in Fig. 9.

Fig. 9a demonstrates that when we increase the interval-
Time from [0, 20] to [20, 40], the guarantee ratios of all the
algorithms noticeably decrease because of two reasons.
First, when intervalTime is in [20, 40], the system workload
is still heavy. When new tasks arrive, most of the previous
tasks have not been finished. However, the decrease of the
arrival rate makes the system tend to accept more tasks
which leads to the rejection of the following tasks because
the previously accepted tasks have not been finished.
Hence, the guarantee ratios decrease a bit. Second, when
tasks rapidly arrive, more time windows of tasks can over-
lap with others, thereby providing more opportunities for
task overlapping and merging. On the other hand, when
intervalTime becomes a little larger (i.e., the system work-
load is heavy), the opportunities for task overlapping and
merging become less, and thus all the guarantee ratios

descend. In the period of intervalTime increasing from [20,
40] to [80, 100], the guarantee ratios of all the algorithms
increase. This is because the system workload becomes
light, and the previous tasks can be finished when new tasks
arrive, and thus more tasks can be finished. It is worth not-
ing that the guarantee ratio of FTSS turns out to be higher
than those of other algorithms when intervalTime varies. We
attribute this result to the fact that FTSS employs task over-
lapping and merging techniques, which improves the
resource utilization and scales the number of tasks down.

Fig. 9b shows that the differences among the four algo-
rithms are marginal. The observation resolutions are
improved with the increase of intervalTime, because a system
under light workload can offer good observation resolutions
while accommodating more tasks. Additionally, among the
four algorithms, NMNOFTSS has the best observation reso-
lutions while the worst guarantee ratio (see Fig. 9a). In
emergent situations, the system should accept as many tasks
as possible within timing constraints, and meanwhile satisfy
users’ observation resolutions requirements. Although
NMNOFTSShas the smallest observation resolution, itmakes
the system lose many opportunities to execute tasks. On the
contrary, as the employment of task overlapping and task
merging techniques, FTSS can improve the guarantee ratio
without huge impact on the observation resolutions. The dif-
ference between FTSS andNMNOFTSS is only 0.065867. This
result proves that FTSS exhibits good performance in terms
of observation resolution.

6.4 Performance Impact of Task Deadline

Now we investigate the impact of the tasks’ deadlines
on the performance of the four algorithms. The parameter
baseDeadline varies from 20 to 70 with an increment of 10.
Fig. 10 illustrates the experimental results.

Fig. 10a demonstrates that the guarantee ratios of the
four algorithms show ascending trends with the increase of
baseDeadline. The reason is that the deadlines of tasks
become loose, which increases the available opportunities
for tasks, and consequently reduces the execution conflicts
between different tasks. So the guarantee ratios increase.
Further, when baseDeadline is 20, the guarantee ratio of
NMFTSS is a bit higher than that of FTSS. This is because
FTSS tends to merge tasks preferentially. However, in the
situation of tight deadlines, this characteristic of FTSS
causes some tasks to be unable to overlap with others. Thus,
the number of accepted tasks decreases. When baseDeadline
varies from 30 to 70, the guarantee ratio of FTSS is always
higher than that of NMFTSS. This result can be attributed to
the fact that despite the aforementioned characteristic of

Fig. 9. Performance impact of arrival rate. Fig. 10. Performance impact of deadline.
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FTSS, the opportunities for task overlapping also increase in
the condition that the deadline becomes loose. It should be
noted that when the value of baseDeadline is between 50 and
70, NONOFTSS always outperforms NMFTSS and NOFTSS,
however being inferior to FTSS.

Fig. 10b depicts that the observation resolutions of all the
algorithms slightly increase first and; then, the observation
resolution drops with the increasing baseDeadline. When the
deadline becomes a bit looser, the system is still overloaded.
In this case, some tasks’ observation resolutions must be
degraded so that an increasing number of tasks may have
feasible schedules. When we further loosen the deadline,
the system is able to accept more tasks, thereby offering
higher observation resolutions. The observation resolution
of FTSS is marginally higher than that of NMNOFTSS (i.e.,
the average difference is only 0.014623), but FTSS outper-
forms NMNOFTSS in terms of guarantee ratio.

6.5 Performance Impact of Parameter u

We evaluate in this experiment the performance impact of
the parameter u that guides FTSS to schedule primary cop-
ies by yielding multiple candidate allocations for primary
copies. The experimental results are shown in Fig. 11.

It is observed from Fig. 11a that the guarantee ratios of all
the algorithms are insensitive to parameter u increases. We
attribute this trend to the limited number (e.g., 10) of resour-
ces, which causes only one or two allocation schemes of
primary copies to be available. Thus, the available overlap-
ping schemes of backup copies are few; u has little impact
on the performance of the algorithms. In contrast, when the
number of resources is great or the number of tasks is rela-
tively small, the value of u has significant impacts. Besides,
regardless of the changing value of u, FTSS consistently
exhibits the best performance.

Fig. 11b depicts that the observation resolutions of all the
algorithms almost remain unchanged. This result confirms
that parameter u has no noticeable impact on system per-
formance, because there are few available overlapping
schemes of backup copies due to scarce resources. In addi-
tion, the observation resolution of FTSS is consistently
higher than that of NMNOFTSS, because FTSS makes an
efforts to improve guarantee ratio at the cost of observation
resolutions under the condition that the observation resolu-
tions satisfy user requirements.

7 CONCLUSIONS AND FUTURE WORK

In this study, we investigated the problem of fault-tolerant
scheduling for real-time tasks on multiple earth observation

satellites. The fault-tolerant capability is achieved by apply-
ing the primary-backup policy. The scheduling objective is
to improve real-time tasks’ schedulability and optimize
tasks’ observation resolutions without violating any fault-
tolerant requirements. We first built a scheduling model
incorporating the primary-backup policy. Then, we ana-
lyzed the task overlapping conditions on multiple EOSs and
the constraints of task merging. Next, we proposed a novel
fault-tolerant satellite scheduling algorithm called FTSS,
which seamlessly integrates task overlapping, task merging,
and task inserting. FTSS can efficiently enhance resource
utilization and; thus, FTSS improves system performance in
terms of guarantee ratios and observation resolutions.

Our FTSS is the first of its kind reported in the litera-
ture, because it comprehensively addresses the issue of
fault-tolerance, real-time, schedulability, and adaptivity.
To evaluate the performance of FTSS, we conducted
extensive experiments to compare FTSS with the three
baseline algorithms. The experimental results indicate
that FTSS significantly improves the scheduling quality
of the other solutions. Our experiments confirm that
FTSS is conducive to fault-tolerant satellite scheduling in
dynamic environments.

There are a few open issues to be addressed in our future
studies. First, we will extend our fault-tolerant scheduling
model to tolerate multiple satellites’ failures. We plan
to extend FTSS to develop new scheduling algorithms toler-
ating multiple failures and for periodic tasks. Second, we
will take communication times and task dispatching times
into account to enhance scheduling accuracy. Third, we
plan to implement and test FTSS in one of our real-world
satellite systems.
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