
Scale-RS: An Efficient Scaling Scheme
for RS-Coded Storage Clusters

Jianzhong Huang, Xianhai Liang, Xiao Qin, Senior Member, IEEE, Ping Xie, and

Changsheng Xie,Member, IEEE

Abstract—It is indispensable to scale erasure-coded storage clusters to meet requirements of increased storage capacity and I/O

performance. In this study, we propose an efficient scaling scheme for Reed-Solomon-coded storage clusters called Scale-RS, which

has three salient features. First, Scale-RS achieves uniform data distribution by equally placing data blocks among old and new chunks

using a transposed data layout. Second, Scale-RS minimizes data movement incurred in the procedures of data redistribution and

parity update. Scale-RS not only reaches the lower bound of data migration traffic by transferring necessary data blocks from old data

chunks to new chunks, but it also reduces update traffic via generating parity difference blocks from data blocks stored in an individual

data chunk. Third, Scale-RS improves the I/O performance of scaled storage clusters in terms of read parallelism and write throughput.

We implement Scale-RS along with two alternative scaling schemes in a Reed-Solomon-coded storage cluster, on which real-world I/O

traces are replayed. Experimental results demonstrate that Scale-RS achieves the highest read performance among the three scaling

schemes after data redistribution. When it comes to scaling from six data chunks to nine, Scale-RS can outperform the other two

scaling schemes in terms of aggregate write throughput by a factor of 2.85 and 3.05 under online filling and offline filling, respectively.

We also show that user response time is slightly enlarged during data redistribution due to bandwidth competition between migration

and user I/Os.

Index Terms—Erasure-coded storage cluster, cluster scaling, data redistribution, parity update

Ç

1 INTRODUCTION

IT is important to scale storage systems to satisfy growing
demands of storage capacity and I/O performance. In

this study, we propose an efficient scaling scheme—Scale-
RS—for Reed-Solomon-coded storage clusters. Scale-RS
aims at boosting the I/O performance of scaled storage clus-
ters in terms of read parallelism and write throughput.

1.1 Motivation

The following three factors motivate us to investigate scal-
ing schemes for erasure-coded storage:

� high cost-effectiveness of erasure-code storage,
� dynamically changing application requirements, and
� urgent needs of scalability in storage capacity.
Motivation 1. Thanks to high fault tolerance, storage effi-

ciency, as well as cost-effectiveness, erasure-coded storage
has been widely used in cloud storage platforms [1], [2], [3],
data centers [4], [5], [6], archive storage [7], [8], [9], and the
like. Nowadays, popular erasure codes used in distributed

storage include Reed-Solomon (RS) coding and parity array
coding. RS coding [10], [11] supports higher fault-tolerance
than XOR-based parity array coding (e.g., EVENODD [12],
RDP [13], etc.) that tolerates less than three concurrent fail-
ures. For example, Windows Azure Storage (WAS) adopts
a variant of RS coding to implement a four-fault-tolerant
cluster system [3]; Facebook also implements RS coding in
HDFS-RAID to tolerate four failures [4].

Motivation 2. A wide range of applications have various
deployment requirements in terms of I/O performance,
fault-tolerance, and storage efficiency. To meet a variety of
application requirements, existing erasure-coded storage
systems adopt different coding parameters (see k and r in
Table 1). Ideally, coding parameters should be dynamically
adjusted according to the changing access patterns of appli-
cations. For example, each map processes a single HDFS
chunk in Hadoop; more chunks improve the map parallel-
ism [14]. Increasing the k value improves read performance
and storage efficiency, because (1) read performance is pri-
marily affected by read parallelism and (2) storage effi-
ciency k/(k þ r) of (k þ r, k) RS-coded storage increases
with parameter k.

Motivation 3. It is necessary for a storage system to
expand or shrink its storage volume by adding or removing
storage devices. International Data Corporation (IDC) proj-
ects that the storage market will grow at a 53.4 percent com-
pound annual growth rate (CAGR) between 2012 to 2016
[21]. The ever-growing amount of data requires highly scal-
able storage solutions [22]. Additionally, ‘disk space uti-
lization’ is an important metric for storage systems [23]. It is
needed to expand storage when disk space utilization
reaches a predetermined threshold (e.g., 75 percent).

� J. Huang, X. Liang, P. Xie, and C. Xie are the with Wuhan National Lab.
for Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China.
E-mail: {hjzh, cs_xie}@hust.edu.cn, {hustlxh, qhnuxp}@gmail.com.

� X. Qin is with the Department of Computer Science and Software
Engineering, Shelby Center for Engineering Technology, Samuel Ginn
College of Engineering, Auburn University, AL 36849-5347.
E-mail: xqin@auburn.edu.

Manuscript received 7 Jan. 2014; revised 16 May 2014; accepted 16 May 2014.
Date of publication 20 May 2014; date of current version 8 May 2015.
Recommended for acceptance by M.C. Chuah.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2326156

1704 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

Therefore, it is extremely vital to scale up storage clusters by
adding new data nodes.

1.2 Data Layout of RS-Coded Storage

Fig. 1 illustrates how a data stream is physically stored using
(kþ r,k) RS encoding. A client collects data strips—each of
which is usually 64 KB—into k 1 MB data buffers. When the
buffers fill, it calculates an additional rparity blocks and sends
all the kþ r blocks to kþ r different storage nodes. Each node
writes a 1 MB block to disk, until the chunks on disk reach a
maximum chunk size. Note that the default chunk size is
64MB in GFS [5], HDFS [4] and QFS [6], and it is configurable
(e.g., 128, 256, and 512 MB). At this point the client will have
written k full data chunks and r parity chunks. If there is new
data, the client will establish connections to kþ r new nodes
and repeatedly perform the above process.

Both k data blocks and r parity blocks are exclusively
stored in k data chunks DC1;DC2; . . . ;DCkf g and r parity
chunks PC1;PC2; . . . ;PCrf g, respectively. Both data and
parity blocks in chunks are organized in a RAID-4-like data
layout, thus forming a (kþ r; k) RS-coded chunk group. If a
chunk is a whole node, then the erasure-coded storage clus-
ter can be regarded as a centralized RAID like storage sys-
tem. Each block can be partitioned into multiple strips, and
the collection of k data strips and r associated parity strips is
called a stripe [24]. For simplicity, we denote kþ r blocks as
a stripe (see Fig. 2). Since any k of kþ r blocks in a stripe can

recover the original k data blocks and each block is stored in
a separate chunk, data are protected against the simulta-
neous failures of up to r chunks.

1.3 Challenges and Strategies

Similar to RAID scaling [25], [26], [27], [28], [29], [30], we
refer to node additions or removals in network-based era-
sure-coded storage clusters as ‘cluster scaling’. In this study,
‘cluster scaling<k!kþDk> ’ means that Dk new nodes are
placed into a cluster and Dk newly-created data chunks
are stored on the new nodes. We also denote a chunk group
before scaling and after scaling by ‘a source chunk group’ and
‘a destination chunk group’, respectively. There are two types
of cluster scaling: (1) scaling-up if Dk> 0 and (2) scaling-
down if Dk< 0. We focus on the scaling-up case hereinafter,
unless otherwise specified.

We are facing the following three challenges while
designing a scaling scheme to expand erasure-coded chunk
groups in storage clusters.

Challenge 1. How to maintain a uniform data distribution after
scaling? If the uniformity of data distribution is violated, the
initially balanced load will be served by a portion of data
chunks. Load imbalance usually adversely degrades read
performance.

Challenge 2. How to minimize data movement induced by data
redistribution? To preserve the data distribution uniformity
of destination chunk groups, it is inevitable to migrate data
blocks among new and old chunks. Such data migrations
cause updates of corresponding parity blocks, thereby
yielding extra update traffic.

Challenge 3. How to improve the I/O performance of scaled
storage clusters? A scaled storage cluster should exhibit high
read parallelism, which in turn leads to improved read per-
formance. Additionally, write throughput is an important
requirement for data archival—one of in-production appli-
cations of erasure-code storage.

Because data and parity blocks stored in chunks are orga-
nized in a RAID-4-like layout, we should investigate the
applicability of RAID scaling schemes for RS-coded chunk
groups. Existing RAID scaling approaches focus on RAID-0
[25], [26], RAID-4 [31], RAID-5 [27], [28], [32], [33], [34], [35],
and RAID-6 [29], [30], [36]. Different from RAID-0 scaling
solutions that only address data migrations, cluster scaling
must handle data migrations as well as parity updates.
When RAID-4 scaling attempts to maintain a uniform data
distribution across all data disks, a problem of large data

TABLE 1
Comparisons of Erasure-Coded Distributed Storage

Storage System (kþ r; k) Erasure Codes�

WAS [3] a variant of Reed-Solomon coding
(k ¼ 12, r ¼ 4) [15]

GFS II [5], QFS [6] Reed-Solomon encoding (k ¼ 6, r ¼ 3)
Facebook [4] RS coding is used in HDFS-RAID

(k ¼ 10, r ¼ 4)
HYDRAstor [16] Cauchy-based Reed-Solomon Codes

(k ¼ 9, r ¼ 3)
Tahoe-LAFS [9] Vandermonde-based Reed-Solomon

Codes [17]
Cleversafe [18], [19] Cauchy-based Reed-Solomon

Codes [20]

�k and r—number of data chunks and parity chunks, respectively.

Fig. 1. Procedure of (kþ r; k) Reed-Solomon encoding.

Fig. 2. Data layout of a (kþ r,k) RS-coded chunk group, where k data
blocks and r parity blocks are exclusively stored in k data chunks and r
parity chunks.

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1705

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

migration occurs. Although an alternative RAID-4 scaling
scheme can reduce the number of data blocks to be moved
by migrating certain blocks to newly added disks [31], the
RAID-4 scaling scheme suffers from a very expensive cost
of parity updates during new data filling. Traditional
RAID-5 scaling schemes are based on round-robin layout. If
these RAID-5 scaling schemes are deployed in RS-coded
storage clusters, then the clusters will inevitably encounter
high I/O overhead incurred by data migrations and parity
updates. The parity layout of each RAID-6 code is unique;
RAID-6 scaling techniques designed for a specific RAID-6
code are inadequate for RS-coded storage clusters. In short,
there is a wide application gap between RAID scaling
schemes and cluster scaling.

In this study, we design an efficient cluster scaling
scheme called Scale-RS, which exploits the structural prop-
erties of erasure codes to optimize both data migrations and
parity updates. Scale-RS not only makes the total number of
moved data blocks equal to the lower bound of data migra-
tion traffic, but it also minimizes the data movement
induced by parity updates.

1.4 Roadmap

The remainder of this paper is organized as follows.
Section 2 summarizes the preliminaries of this study. The
design of Scale-RS is detailed in Section 3. Section 4
describes the experimental settings and results. Section 5
surveys the related work of storage scaling schemes. Sec-
tion 6 discusses implementation issues. Finally, we con-
clude our work in Section 7.

2 PRELIMINARIES

Recognizing that RS codes are widely deployed in in-pro-
duction storage systems (see Table 1), we investigate scaling
schemes for RS-coded storage clusters in this study.

2.1 Update Penalty in RS-Coded Storage Clusters

There is an update penalty issue in erasure-coded storage
systems [37], [10], [38]—modifying any data block leads to
updates of corresponding parity blocks. There exist two
updating methods, namely, reconstruction write (a.k.a.,
RCW) [39] and read-modify-write (a.k.a., RMW) [40]. In the
‘RMW’ updating method, parity block Prow;j in parity chunk
PCj is updated to Prow;j þ DProw;j when data block Drow;i in
data chunk DCi is changed to D0

row;i, where parity difference
block DProw;j equals to aj;i(D

0
row;i �Drow;i), and coefficient aj;i

denotes an element at the jth row and the ith row of a
redundancy matrix.

In cluster scaling<k!kþDk>, all r parity chunks should be
updated when Dk new data chunks join a (kþ r, k) RS-
coded chunk group. If Round-Robin method [26], [34] is
adopted, almost all data blocks will be migrated, and all
parity blocks must be regenerated using the encoding pro-
cedure. Therefore, we should consider the following two
issues when designing the Scale-RS scheme: (1) how to min-
imize the number of migrated data blocks, and (2) how to
reduce the data movement induced by parity updates.

2.2 Categories of Cluster Scaling

One cluster scaling process can be logically divided into two
stages: data redistribution and data filling. Data redistribu-
tion is a composite operation—apart from migrating data
blocks, all associated parity blocks should be updated
accordingly. Therefore, there exist the following three clus-
ter-scaling patterns from a methodological point of view
(see Table 2):

(1) No Data-Migration (No-DM). No data migration is
involved in the No-DM-based scaling scheme, which only
places Dk new nodes into a storage cluster, resulting in zero
migration overhead. In the data filling stage, new data is
filled into new chunks and associated parity blocks are
updated.

TABLE 2
Scaling Categories of Erasure-Coded Chunk Groups

1706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

(2) Data-Migration Only (DM-Only). The DM-Only-based
scaling scheme moves data blocks within the same stripe
from old data chunks to new data chunks (just like McPod
[31]), thereby avoids modifying parity blocks after writing
mapping metadata. When new data is filled into the scat-
tered space among all data chunks, the associated parity
blocks are updated.

(3) Data-Migration with Parity-Update (DM-PU). When
data blocks are migrated from old data chunks to new data
chunks, associated parity blocks are to be updated. In the
data-filling stage, new data is written to all data chunks
stripe by stripe (i.e., full-stripe write), and new parity blocks
are directly written to the parity chunks.

The No-DM pattern causes load imbalance due to non-
uniform distribution of user I/Os among all data chunks
(old and new). Additionally, compared to DM-PU, both No-
DM and DM-Only patterns suffer from higher update pen-
alty after the data redistribution stage. Therefore, Scale-RS
takes the DM-PU pattern.

3 SCALE-RS: AN EFFICIENT SCALING SCHEME

3.1 Overview

In the cluster scaling< k!kþDk> kþ Dk sequential stripes are
grouped into one scaling region. As shown in Fig. 3, different
scaling regions are separated with a wavy line. For each
scaling region, the ways to data redistribution and data fill-
ing are identical.

Scale-RS moves only enough data blocks from old data
chunks to new chunks, thereby avoiding data migration
among old data chunks. As shown in Fig 4a, the data space
in a scaling region can be divided into three zones: original
and unmoved data, original and moved data, and new
data. The zone of unmoved original data blocks is a square
of side length k. New data blocks are filled into the void
area according to the new striping rule of destination

chunk groups. The void area is a rectangle of height Dk
and width kþ Dk.

There are several steps involved in parity updates,
including retrieving moved data blocks, reading parity
blocks, calculating new parity blocks, and writing resulting
parity blocks. To reduce the data movement induced by
parity updates, Scale-RS adopts a transposed data layout
to redistribute the moved original data blocks (see Fig. 4b).
According to the transposed data layout, Scale-RS can gen-
erate associated parity difference blocks from data blocks
in an individual data chunk rather than that in multiple
data chunks, thus optimizing the step of ‘retrieving moved
data blocks’.

3.2 The Data Migration Stage

The notation summarized in Table 3 facilitates the presenta-
tion of the algorithms in Scale-RS.

3.2.1 Addressing Function

Let array H record the history of scaling operations, and H
[t] denotes the number of data chunks after the tth scaling.
Function Addressing(t, H, x) calculates the address of block

Fig. 3. Cluster scaling from four data chunks to six using Scale-RS. Each data block is a basic unit in both data redistribution and data filling stages.

Fig. 4. Data layout in scaling regions before scaling and after scaling.

TABLE 3
Symbols and Definitions

Symbols Definition

k, r Number of data chunks and parity
chunks, respectively

k0 Number of data chunks after scaling
DCi ith data chunk, i 2 f1; 2; . . . ; kg
PCj jth parity chunk, j 2 f1; 2; . . . ; rg

N(DCi) Node storing data chunk DCi

N(PCj) Node storing parity chunk PCj

Drow;i Data block at rowth row in data
chunk DCi

Prow;j Parity block at rowth row in parity
chunk PCj

DProw;j Parity difference block of Prow;j

C Capacity of data chunk, e.g., number
of data blocks

H Scaling history. H½0� is the initial number of
data chunks. H½t� denotes the number of data

chunks after the tth scaling.
col, row Chunk ordinal number and block

ordinal number of a block
aj;i Element at jth column and ith row of

Redundancy Matrix

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1707

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

x after the tth scaling. With the addressing function in place,
Scale-RS is able to offer high scaling flexibility by support-
ing multiple scaling operations.

Function 1: Addressing(t, H, x)

Input:
t: scaling times
H: scaling history, H[0],H[1]; . . . ;H[t]
x: logical block number

Output:
col: the data chunk holding data block x
row: physical block number

1 if t ¼¼ 0 then ==Initial Layout

2 k ¼ H½0�, col ¼ x mod k; row ¼ x=k

3 end

4 k ¼ H½t� 1�, k0 ¼ H½t�
5 if x 2 ½ 0; k � C� 1� then ==block x is original

6 ½colo, rowo� ¼Addressing(t� 1;H; x)

7 p ¼ rowo mod k0

8 if 0 � p < k then ==Not Moved

9 col ¼ colo, row ¼ rowo

10 else ==To be Moved

11 [col,row] ¼Moving(colo, rowo, k
0)

12 end

13 else if x 2 ½ k � C; k0 � C� 1 � then ==block x is new

14 [col,row] ¼ Filling(x, k, k0)
15 end

16 return col; row

Data blocks are placed to k data chunks in a round-robin
manner when a new (kþ r, k)RS-coded chunk group is cre-
ated. The initial address of block x is calculated by one mod-
ular and one division (see line 2).

Let us investigate the tth scaling, where the number of
data chunks is increased from k to k0 (see line 4). If block x is
an original block, Scale-RS calculates its old address
(colo; rowo) of the previous scaling (see line 6). If block x is a
new block, it is filled to the location whose address is calcu-
lated by function Filling(x, k, k0) (see line 14).

If block x is within the unmoved data zone, then Scale-
RS keeps its chunk ordinal number and block ordinal num-
ber unchanged (see line 9); otherwise, Scale-RS invokes
function Moving(colo, rowo, k

0) to change its block address
(see line 11).

3.2.2 Moving Function

Now we consider function Moving(colo; rowo; k
0). According

to the transposed data layout in Fig. 4b, the data block’s
location is transposed to its destination location. If a data
block is to be moved, Scale-RS only swaps its chunk ordinal
number and block ordinal number.

As to one scaling region of kþ Dk sequential stripes,
Scale-RS moves a total of k� Dk data blocks from old data
chunks to new data chunks. The theoretical minimum
amount of migrated data is ðk0 � kÞ � ðDk=k0Þ ¼ k� Dk,
where the lower bound of migration fraction is Dk/k0. That
is, Scale-RS reaches the theoretical minimum data migration.

Function 2:Moving(colo, rowo, k
0)

Input:
colo: the data chunk holding a data block
rowo: physical block number in colo

th data chunk
k0: the number of data chunks after scaling

Output:
col: new data chunk holding data block (colo, rowo)
row: physical block number

1 col ¼ rowo mod k0

2 row ¼ ðrowo=k
0Þ � k0 þ colo

3 return col; row

3.2.3 Filling New Data Blocks

After the data redistribution is completed, new data blocks
are written (i.e., filled) into an empty stripe of the scaled
chunk group, according to a new striping rule of the desti-
nation chunk group.

Function Filling(x, k, k0) calculates the address of new
data block x. The ordinal number of the data chunk holding
block x is calculated by a modular: col ¼ ðx� k� CÞmod k0.
The calculation of its physical block number (viz., block
ordinal number) is relatively complicated, because the new
data block should be filled into the lower k0 � k rows of the
scaling region.

Function 3: Filling(x, k, k0)
Input:

x: logical block number
k0: the number of data chunks after scaling

Output:
col: new data chunk holding data block x
row: physical block number

1 y ¼ x � k�C, Dk ¼ k0� k

2 col ¼ y mod k0

3 row ¼ (y
k�k0 � k0) þ k þ (yk0 mod Dk)

4 return col; row

When new data blocks are filled into an entire stripe
across k0 data chunks, associated r parity blocks can be
directly produced using the (k0 þ r, k0) RS encoding. Conse-
quently, such a full-stripe write exhibits higher filling-time
performance than partial-stripe writes in the cases of No-
DM and DM-Only. Partial-stripe writes need to perform
the ‘reading-old-parity-block’ step before calculating new
parity blocks.

3.3 The Parity Updating Stage

3.3.1 Generating Parity Blocks

Recall that (see Section 2.1) if data block Drow;i in data chunk
DCi is modified to D0

row;i, then parity block Prow;j in parity
chunk PCj will be updated by adding parity difference
aj;i(D

0
row;i �Drow;i). Similarly, when original data blocks are

moved to new data chunks, the parity difference block
equals to the linear combination of the moved data blocks
with corresponding coefficients, since the new data chunks
are initially zeroized. For example, if data blocks D5;1 and
D6;1 are respectively moved to data chunks DC5 and DC6,

1708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

then the associated parity difference block for parity chunk
PC1 will be a1;5D5;1 þ a1;6D6;1.

Storage nodes offer sufficient computing capability in
addition to I/O services [8], [24], [41]; thus, the calculation
of parity difference can be accomplished by the nodes
accommodating old data chunks, new data chunks, or par-
ity chunks. Here, we denote nodes storing old data chunk
DCi, new data chunk DCi0 and parity chunk PCj as N(DCi),
N(DCi0), and N(PCj), respectively. There are three policies
of calculating parity difference blocks:

� Policy-1—by node N(DCi), with i2 f1; 2; . . . ; kg.
Node N(DCi) calculates r parity difference blocks,
which are delivered to r parity chunks.

� Policy-2—by node N(DCi0), with i0 2 fkþ 1; . . . ;
kþ Dkg. After receiving Dk data blocks from an old
data chunk, node N(DCi0) computes r parity differ-
ence blocks and forwards them to r parity chunks;

� Policy-3—by node N(PCj), with j 2 f1; 2; . . . ; rg. After
receiving Dk data blocks from an old data chunk,
node N(PCj) calculates its parity difference using the
received data blocks.

A key design goal of Scale-RS is to minimize data
movement induced by parity updates. Such a design goal
spurs us to choose Policy-1 rather the other two policies
to generate parity difference blocks. Analytically, Policy-1
causes the fewest number of transferred blocks among
the three policies. Compared to Policy-1, Policy-2 has an
extra data-forwarding step, and Policy-3 suffers from an
enormous amount of network traffic. Fig. 5 depicts a dia-
gram of cluster scaling< 4!6> , where node N(DCi) not
only delivers Dk ¼ 2 original data blocks {D5;i;D6;i}
to Dk ¼ 2 new data chunks {DC5;DC6}, but also calculates
rþ 2 parity difference blocks {S6

row¼5a1;rowDrow;i;
S
6
row¼5a2;rowDrow;i} for parity chunks {PC1;PC2}, with

i 2 f1; 2; . . . ; kg. Each parity difference block is generated
from data blocks in an individual data chunk, thereby
exploiting data locality.

3.3.2 Procedure of Updating Parity Blocks

When migrating original data blocks or filling new data
blocks, corresponding parity blocks should be updated. Pro-
cedure Updating(k; k0; r) shows the parity updating within a
scaling region. When original data blocks at rows
{k þ 1; k þ 2; . . . ; k0} are migrated to new data chunks,

parity blocks at rows {1; 2; . . . ; k} will be updated using the
RMW method. When new data blocks are filled into void
area, parity blocks at rows {k þ 1; k þ 2; . . . ; k0} will be
yielded by the encoding algorithm.

Procedure 1: Updating(k, k0, r)
Input:

k: the number of data chunks before scaling
k0: the number of data chunks after scaling
r: the number of parity chunks

1 switch the time point do
2 case data blocks at rows fkþ 1; kþ 2; . . . ; k0g have been
migrated

3 foreach i 2 f 1; 2; . . . ; k gdo
4 foreach j 2 f1; 2; . . . ; rg do
5 Pi;j þ ¼ S

k0
row¼ kþ1aj;rowDrow;i

6 end

7 end

8 endsw

9 case rows fkþ 1; kþ 2; . . . ; k0g have been filled with
new blocks

10 foreach i 2 fkþ 1; kþ 2; . . . ; k0gdo
11 foreach j 2 f1; 2; . . . ; rg
12 Pi;j ¼ S

k0
col¼ 1aj;colDi;col

13 end

14 end

15 endsw
16 endsw

The updating procedure properly performs regardless of
the total number C of data blocks in a chunk. If C is a multi-
ple value of (k þ Dk), all data blocks can be divided into rgn
(for, rgn¼ C=ðkþ DkÞ) scaling regions, each of which can be
processed by the updating procedure; otherwise, there exist
some empty data blocks in the moved area of the rgnth scal-
ing region after the data redistribution stage, and the above
updating procedure still works when the empty data blocks
are initialized to 0.

After Dk data blocks are written to Dk new data chunks,
the Dk blocks should also be transferred to each of r parity
chunks to accomplish parity updates [42]. With the trans-
posed layout, only one parity difference block (i.e., the lin-
ear combination of the Dk data blocks) is delivered to one
parity chunk. Therefore, Scale-RS minimizes the data move-
ment incurred by parity updates.

3.4 Optimization in Scale-RS

3.4.1 Write Aggregation

When k original data blocks in k old data chunks are sent to
new data chunk DCi0 , node N(DCi0) may write the received
data blocks in an arbitrary order. Motivated by the fact that
large block requests improve disk I/O performance [43],
Scale-RS merges multiple blocks into a single request. We
refer to this optimization technique as write aggregation.
Fig. 6 shows that after four data blocks (e.g., blocks 16, 17,
18, and 19) are delivered from four old data chunks to new
data chunk DC5, node N(DC5) buffers the data blocks to a
pre-allocated RAM space and then writes the buffered
blocks in the form of a single write request.

Fig. 5. Scaling from four data chunks to six data chunks using Scale-RS,
where old data blocks in lower Dk ¼ 2 rows are migrated to Dk ¼ 2 new
data chunks (i.e., DC5 and DC6), and r ¼ 2 associated parity difference
blocks are delivered to parity chunks. ‘Drow;i ½DCi�’ represents that data
block Drow;i comes from data chunk DCi, and ‘S6

row¼5aj;rowDrow;i ½DCi�’
indicates that parity difference block ‘S6

row¼5aj;rowDrow;i’ is delivered from
data chunk DCi.

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1709

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

Each chunk in HDFS or QFS is stored as a separate file to
a native file system (e.g., ext3, ext4) on a datanode. It is feasi-
ble to use the space reservation feature of the underlying file
system to enable blocks to be written contiguously (see Sec-
tion 3.1 in [6]). In this case, write aggregation makes k data
blocks be written in a sequential manner, thus improving
the write throughput by mitigating disk seek time over mul-
tiple contiguous blocks.

3.4.2 Decoupling Parity Update from Data Migration

Parity update is a composite operation. For example, the
RMW method relies on three steps to modify a parity block;
the three updating steps are reading an old parity block,
computing a new parity block, and writing a resulting par-
ity block. It is conventional to couple both data migration
and parity update into an atomic operation to assure the
data consistency of each stripe. As a result, updating latency
incurred by parity update is a significant contributor of the
data-redistribution time.

Essentially, data migration and parity update can be
accomplished in an asynchronous fashion, suggesting that
Scale-RS may decouple parity update from data migration.
In Scale-RS, node N(DCi) storing old data chunk DCi trans-
fers Dk original data blocks and r parity difference blocks
to new data chunks and parity chunks, respectively. Once
the data blocks are successfully written to the new data
chunks and the parity difference blocks are received by
nodes storing parity chunks, the migration process termi-
nates and continues a next migration. And nodes storing
parity chunks {PC1,PC2; . . . ;PCr} independently update
parity blocks by merging the received parity difference
blocks. The decoupling method can guarantee the stripe
consistency, because parity difference blocks can also be
calculated from Dk moved data blocks and then stored to
new data chunks {DCkþ1;DCkþ2; . . . ;DCkþDk}.

3.4.3 Deferred Update

After node N(PCj) storing parity chunk PCj has read a local
old parity block Prow;j and received a parity difference block
DProw;j, a new parity block P0

row;j will be successfully gener-
ated. The operation of reading a local parity block or receiv-
ing a parity difference block over network may stall parity
updates from the perspective of I/O path. To address this
performance issue, Scale-RS adopts the deferred update tech-
nique. As shown in Fig. 7 node N(PC1) not only buffers k
received parity difference blocks {DP1;1;DP2;1; . . . ;DPk;1} to
a pre-allocated RAM space (i.e., update region), but also
reads k old parity blocks {P1;1;P2;1; . . . ;Pk;1} via a single

read. If two blocks in a block pair (e.g., Prow;1 and DProw;1)
have already been buffered, then the node will carry out an
XOR calculation of Prow;1 � DProw;1. Furthermore, k new
parity blocks {P0

1;1;P
0
2;1; . . . ;P

0
k;1} can be written to PC1

adopting the write aggregationmethod (see Section 3.4.1).

3.5 Features of Scale-RS

Scale-RS has four salient features as follows:
(1) Uniformly distributing data after scaling. Each data

chunk, either old or new, has k data blocks after data redis-
tribution; Scale-RS preserves the uniformity of data distri-
bution even after multiple scaling operations.

(2) Minimizing the total number of migrated data blocks. The
number of migrated data blocks from old data chunks to
new data chunks k� Dk, which is the theoretical minimum
amount of migrated data for one scaling region of k þ Dk
sequential stripes.

(3) Optimizing parity updates in both cases of data redistribu-
tion and data filling. Using the transposed data layout, Scale-
RS minimizes updating traffic when generating parity dif-
ference blocks. In data filling, the full-stripe write eliminates
the ‘reading-old-parity-block’ step, which is required in the
partial updating methods.

(4) Increasing the storage efficiency of RS-coded chunk groups.
For example, the storage efficiency of the source (6, 4)RS-
coded chunk group is 66.67 percent; the storage efficiency
of the destination chunk group is 75 percent when the
chunk group is scaled from four data chunks to six.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Our testbed is an RS-coded storage cluster that consists
of 15 commodity storage nodes and one client node. All
the nodes are connected through a Cisco WS-C2960S-
24TS-S switch. Each storage node contains an Intel(R)
E5800 @ 3.2 GHz CPU, 4 GB DDR3 memory, and Intel
G41 Chipset Mainboard with on board integrated Giga-
bit Ethernet interface. All the disks attached in the stor-
age nodes are West Digital’s Enterprise WD1002FBYS
SATA2 disks. The operating system running in the stor-
age nodes is Ubuntu 10.04 X86 64 (Kernel 2.6.32); the
operation system installed in the client node is Fedora
12 X86 64 (Kernel 2.6.32). The client node is a Dell R720
Server with two Xeon(R) E5-2609 @2.40 GHz (four cores)
CPUs, 32 GB DDR3 memory, and the Intel C600 series
Chipset Mainboard.

Fig. 7. Deferred update for parity chunk PC1 under
cluster scaling<k!k0 > . k old parity blocks are read through a single read
and k new parity blocks are written via a single write request.

Fig. 6. Write aggregation in clusterscaling< 4!6> . Four sequential blocks
are merged and written in the form of a single request.

1710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

4.2 Prototype and Methodology

4.2.1 Prototype Design

To resemble real-world workload, we implement an appli-
cation-level trace replayer on the storage cluster. The trace
replayer is running on the client node, acting as multiple
concurrent users whose average response times are mea-
sured. We adopt an open-loop model during the online
scaling, where traces are replayed according to timestamps
logged in trace files, i.e., I/O arrival rates are independent
of I/O request completions [44]. The trace replayer issues
I/O requests to appropriate data chunks according to
address mappings.

It is relatively fair to make comparisons between scaling
strategies incorporated in storage systems sharing the same
configuration; similar comparisons can be found in the liter-
ature [31]. For example, a group of comparative experi-
ments were performed on the same RAID system, where
the DM-Only-based McPod scheme and the DM-PU-based
MD-Reshape are deployed. In addition, No-DM, DM-Only
and DM-PU are the three cluster-scaling patterns for RAID-
4-like chunk groups (see Section 2.2), one of the evaluation
goals is to evaluate scaling performance of the solutions
based on the three scaling patterns in the realm of storage
clusters. Therefore, we compare DM-PU-based Scale-RS
and the two alternative scaling schemes based on No-DM
and DM-Only patterns. To quantitatively evaluate I/O per-
formances of our Scale-RS scheme and the two alternative
scaling schemes, we implement the three scaling schemes in
the RS-coded storage cluster. A scaling process reorganizes
data blocks among old and new data chunks, and updates
associated parity blocks. Aiming to minimize update traffic,
Scale-RS makes the storage nodes storing old data chunks
calculate parity difference blocks, which are delivered to
the corresponding parity chunks. ZFec library [45] is
employed for the classic Reed-Solomon coding.

4.2.2 Evaluation Methodology

An application scenario of erasure-coded storage systems is
to archive data that are no longer modified [3]. The archival
storage is usually characterized as Write-Only-Read-Many
(WORM) I/Os. We evaluate the online scaling performance
of Scale-RS using the Web-2 trace that represents read-inten-
sive applications [46]. Additionally, it is demanding to sus-
tain high write throughput for data archival. For instance,

high write throughput is indispensable for archiving video
data from surveillance cameras in a timely manner. There-
fore, we focus on three performance metrics, namely, user
response time during data redistribution, total redistribu-
tion time, and write throughput in data-filling stage.

To have an insight into the impact of background data
redistribution on foreground user I/Os, we collect the
response times of all user I/Os and calculate the average
user response time per 1,000 user I/Os. All average user
response times form an average user response time series.

Assume there are 100 chunks of size 128 MB stored on
each storage node (e.g., 128 MB �100 ¼ 12;800 MB), which
is sufficiently large to cover the footprint of the evaluated
workload. During the data filling stage, Dk � 12,800 MB is
the total amount of data written to the void area in destina-
tion chunk groups. Evidence shows that a configuration of
‘r ¼ 3’ achieves a sufficiently large Mean Time To Data Loss
or MTTDL for archival storage systems [8]. Therefore, we
set parameter r to be 3 in our tests.

To make a fair comparison between Scale-RS and the two
alternative scaling schemes, we also incorporate the deferred
update method to improve parity updates incurred in the
data filling stage within both the No-DM-based and DM-
Only-based schemes. Furthermore, the write aggregation
method is applied to theDM-Only-based scheme to optimize
the data redistribution process.

4.3 Trace-Driven Evaluations

4.3.1 Data Redistribution

We compare the performances of the three scaling schemes
running in two phases: during data redistribution and after
data redistribution. Fig. 8 plots the average user response
time series as the time increases from 0 to 340 with an incre-
ment of 20 seconds, with coding parameters k, Dk, and r are
set to 6, 3, and 3, respectively.

We draw three observations from Fig. 8. First, the Scale-
RS scheme spends more time than DM-Only to accomplish
data redistribution, because Scale-RS needs to handle parity
updates besides data migrations. Thanks to the two optimi-
zation techniques (i.e., ‘decoupling parity update from data
migration’ and ‘deferred update’), parity update overhead
is mostly hidden by overlapping with data migration
latency. As such, the redistribution time of Scale-RS is
slightly more than that of the DM-Only-based one (i.e.,

Fig. 8. Comparison of user response times among three scaling schemes (i.e., Scale-RS and two schemes based on No-DM and DM-Only patterns).

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1711

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

135.9 versus 124.1 s). Second, compared with No-DM, both
Scale-RS and DM-Only increase the user response time dur-
ing data redistribution, because data redistribution I/Os
compete disk bandwidth with user I/Os. Third, the No-
DM-based scheme has higher user response time than both
Scale-RS and DM-Only after data redistribution. This is
mainly because there are k ¼ 6 data chunks serving user I/
O requests in No-DM, whereas there are k0 ¼ 9 data chunks
in Scale-RS and DM-Only.

As mentioned in Section 1.3, it is challenging to achieve
high I/O performance for scaled storage clusters. Although
Scale-RS exhibits marginally longer response time than No-
DM and DM-Only during the course of data redistribution,
Scale-RS offers the highest read performance after data
redistribution. The reason lies in the fact that Scale-RS not
only has a much stronger spatial locality than DM-Only, but
it also achieves a higher read parallelism than No-DM.
Fig. 9 reveals that Scale-RS outperforms No-DM and DM-
Only in terms of average user response time by a factor of
1.40 and 1.09, respectively.

4.3.2 Offline Data Filling

When it comes to offline data filling, all chunks (i.e., old data
chunks, new data chunks, and parity chunks) are dedicated
to serve data filling operations rather than user I/Os. Fig. 10
plots the aggregate write throughput of the three scaling
schemes under offline filling. Again, parameters k, Dk, and r
are set to 6, 3, and 3, respectively.

The results plotted in Fig. 10 confirm that Scale-RS has
the best write performance among the three scaling
schemes. The reason is two-fold. First, the data filling opera-
tions of No-DM and DM-Only cause all old parity blocks in
parity chunks to be updated, thereby bringing a penalty to
write throughput; whereas Scale-RS directly generates r ¼ 3
new parity blocks and simply writes the new parity blocks
to r ¼ 3 parity chunks. Second, more stripes are involved in
both No-DM and DM-Only than that in Scale-RS; that is, No-
DM and DM-Only should update more parity blocks than

Scale-RS. For example, assume 36 new data blocks is filled
into a destination chunk group, then No-DM and DM-Only
need to update parity blocks in 36/Dk ¼ 12 stripes. If the
RMW update method [40] is adopted, then the ‘reading-
old-parity-block’ step is required before calculating new
parity blocks; if the RCW update method [39] is applied,
then the ‘reading-old-data-block’ step is triggered before
calculating new parity blocks. However, there are only 36/
k0 ¼ 36/9 ¼ 4 stripes involved in the Scale-RS case, and the
filling procedure is equivalent to a full-stripe write for
Scale-RS.

To examine the sensitivity of filling time to number k of
data chunks, we conduct a group of tests in the offline data
filling case, where parameters k, Dk, r are set to 9, 3, and 3,
respectively. Fig. 11 shows the write throughput of the three
scaling schemes.

Figs. 10 and 11 show that the aggregate write throughput
of No-DM is close to that of DM-Only in both cases of k ¼ 6
and k ¼ 9, because parity updates in parity chunks become
a data-filling performance bottleneck for these two schemes.
On the contrary, Scale-RS exhibits higher write throughput
when the k value is increased from 6 to 9. Specifically,
Scale-RS outperforms the other two scaling schemes in
terms of aggregate write throughput by a factor of 3.05 and
4.17 when the number k of data chunks is 6 and 9, respec-
tively. Scale-RS performs better when the destination chunk
group has more data chunks, because more data chunks
help to offer higher write bandwidth and to decrease the
number of stripes associated with parity updating (i.e., 36/
k0 þ 36/12 ¼ 3 stripes).

4.3.3 Online Data Filling

In the case of online data filling, a destination chunk group
simultaneously serves user read requests and data filling
operations. Fig. 12 plots both aggregate write throughput
and average user response times of the three scaling
schemes under online data filling, where the Web-2 trace is
replayed and parameters k, Dk and r are respectively set to
6, 3, and 3.

We draw two observations from Figs. 9 and 12a. First, the
data-filling operation has almost no impact on user read
performance of No-DM. No impact is expected, because
user I/O requests and data filling operations are respec-
tively served by old data chunks and new data chunks in
No-DM. Second, in the Scale-RS and DM-Only-based scaling
schemes, the average user response time increases under
online filling compared to that after data redistribution. The
increased user response times are attributed to bandwidth

Fig. 9. Comparison of average user response times of the three scaling
schemes in the case of ‘after data redistribution’.

Fig. 10. Comparison of aggregate write throughput under offline data fill-
ing. Parameters k ¼ 6, Dk ¼ 3, and r ¼ 3.

Fig. 11. Comparison of aggregate write throughput in the offline data fill-
ing case. Parameters k ¼ 9, Dk ¼ 3 and r ¼ 3.

1712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

competition between data filling operations and user I/Os
under online filling.

Three observations can be drawn from Figs. 10 and 12b.
First, the aggregate write performance of No-DM in the
online and offline filling cases are almost identical. Second,
the aggregate write throughput of DM-Only under online
filling is close to that under offline filling, because the parity
update in parity chunks is still the data-filling bottleneck for
DM-Only under online filling. Last, Scale-RS’s aggregate
write throughput under online filling decreases by 8.63 per-
cent compared to that under offline filling, because user I/
Os compete with filling operations for disk bandwidth in
the online filling case. In particular, Scale-RS can outper-
form the two alternative scaling schemes in terms of aggre-
gate write throughput by a factor of 2.85 to 2.97 under
online filling for cluster scaling< 6!9> .

4.4 Summaries of Evaluation

We summarize the observations drawn from the above
experimental results as follows:

� Both Scale-RS and DM-Only have similar data redis-
tribution performance. Compared to No-DM, the
user response times of Scale-RS and DM-Only
increase due to disk bandwidth competition between
data redistribution operations and user I/Os.

� After data redistribution, Scale-RS achieves the low-
est average user response time among the three
scaling schemes. That is, Scale-RS is conducive to
sustaining high read performance for scaled storage
clusters.

� Scale-RS has an outstanding performance under data
filling. It outperforms the other two alternative scal-
ing schemes in terms of write throughput by a factor
of 2.85 and 3.05 under online filling and offline filling
for cluster scaling< 6!9> , respectively; and the
speedup factor is 4.17 under offline filling as far as
scaling from 9 data chunks to 12 is concerned.

5 RELATED WORK

5.1 Storage Scaling Categories

Redundancy is a common approach to improve storage
reliability, either by replicating data blocks or by storing
additional information (e.g., parity blocks generated by
erasure codes).

Replica-based distributed storage systems usually
adopt randomized data distribution strategies for online
placement and reorganization of replicated data. For
example, the RUSH algorithm utilizes a mapping func-
tion to map replicated objects to a scalable collection of
storage servers or disks [48]; the CRUSH algorithm
employs a scalable pseudo-random data redistribution
function to distribute and reorganize replicated data [49].
Random Slicing provides a simple yet efficient random-
ized data distribution strategy for replica-based storage
systems [22]. Moreover, the rack-aware replica policy in
HDFS exhibits random placement decision for non-local
replicas, which can be on any rack and within any node
of the rack [50].

Erasure coding schemes (e.g., array codes, Reed-Solomon
codes) are implemented by striping data blocks across sev-
eral storage devices (e.g., disks and nodes). There are two
cases considered in the scaling of erasure-coded storage: (1)
block-level XOR-based RAIDs (e.g., RAID-4, RAID-5, and
RAID-6), where both data and parity blocks are placed
across disks according to a pre-calculated pattern. Such a
deterministic scaling in RAID usually alters its parity chain,
thus causing data redistribution; (2) file-level erasure-coded
storage clusters (e.g., HydraFS [51], DRFS [52]), where a
namespace server (MDS) maintains the mapping of file
blocks to the physical location. That is, file blocks are ran-
domly distributed. When Dk new nodes are added to
expand an existing storage cluster, the new nodes become
target nodes of data replacement. A simple way to utilize
the new nodes is to create a new RS-coded chunk group
within the storage cluster.

5.2 Storage Scaling Schemes

Our Scale-RS attempts to scale existing chunk groups for
RS-coded storage clusters. Because blocks in chunks are
organized in a RAID-4-like data layout within a (kþ r, k)RS-
coded chunk group, it is necessary to investigate existing
RAID scaling schemes. Table 4 summarizes several storage
scaling schemes from the aspects of distribution uniformity,
data migration, storage efficiency, parity update approach
during data migration, and the like.

Existing scaling schemes designed for RAIDs include
SLAS [26], SCADDAR [47], FastScale [25], McPod [31], ALV
[32], MiPiL [33], MDM [28], GA [34], GSR [27], PBM [35],
SDM [29], and so on. Data redistribution in scaling RS-
coded chunk groups consists of data migration and parity
update; the data migration can be completed using RAID-0
scaling approaches (e.g., Round-Robin, FastScale, etc.).
Unfortunately, scaling approaches to single-parity RAID-5
and dual-parity RAID-6 are not adequate for in-production
RS-coded storage clusters tolerating more than two failures,
because these scaling schemes are tailored for the specific
parity layout of RAID-5 and RAID-6.

Fig. 12. Aggregate average user response times and write throughput of
the three scaling schemes under online data filling. Parameters k ¼ 6,
Dk ¼ 3 and r ¼ 3.

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1713

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

Round-Robin (RR) algorithm preserves the uniformity
of data distribution in any case of scaling (e.g., RAID-0,
RAID-4, and RAID-5) [26], but RR causes almost 100 per-
cent of data moved as well as 100 percent of parity
updated. Compared to RR, Semi-RR algorithm signifi-
cantly reduces data migration [47]; however, Semi-RR fails
in achieving distribution uniformity after subsequent scal-
ing operations.

FastScale [25] is a scaling solution for striping without
parity (e.g., RAID-0, RAID-01, and RAID-10). FastScale
moves only enough data blocks from old disks to new disks
without migrating data among old disks. The downside of
FastScale is that it leads to large update overhead due to
partial-stripe writes during data filling.

McPod is a data redistribution approach to accelerating
RAID-4 scaling [31]. McPod maintains a uniform data distri-
bution across all data disks while optimizing data migration
with a set of techniques (e.g., outsourcing all parity updates
to a surrogate disk).

ALV is a data redistribution approach to RAID-5 scaling
[32]. ALV deploys a reordering window to change the trans-
fer order of data blocks to access multiple successive blocks
via a single I/O. ALV is an extension of the RR algorithm;
and as such, ALV suffers from large I/O overhead caused
by data migrations and parity updates.

MiPiL is a RAID-5 scaling approach [33], which not only
maintains a uniform distribution for regular data and parity
data, but also minimizes data migration using piggyback
parity updates and lazy metadata updates. MiPiL preserves
simple data management since it designs a deterministic
placement strategy appropriate for RAID-5.

MDM [28] is a RAID-5 scaling method with minimal data
movement. Although MDM can eliminate parity updates, it
is not feasible for (kþ r, k) RS-coded storage when r is
greater than or equal to 2. This is because new data blocks
are distributed down a diagonal in MDM, and the layout
after scaling becomes much more complex than a typical
RAID-5 one. Furthermore, MDM does not increase the data
storage efficiency after scaling.

Similar to ALV that accelerates RAID-5 scaling by
scheduling data blocks, Gradual Assimilation (GA)

algorithm [34] achieves the assimilation of the new disks
by a sequential reorganization of full stripes. The GA algo-
rithm adopts round-robin order to redistribute data blocks;
as the result, all parities need to be updated after data
migration is completed.

Global Stripe-based Redistribution (GSR) is proposed to
accelerate RAID-5 scaling [27]. GSR maintains the layout of
most stripes while sacrificing a small portion of stripes. The
main limitations of GSR are two-fold: First, it suffers from
high overhead in updating both mapping metadata and
parity blocks; Second, it brings a large performance penalty
under the workload with a strong locality.

Parity-based Migration (PBM) is an expansion method
for RAID-5 [35]. PBM minimizes data migration while
evenly distributing parity blocks. Unfortunately, PBM
makes the scaled RAID a non-standard RAID-5 distribution,
which may lead to an imbalanced data redistribution.

Stripe-based Data Migration (SDM) is a stripe-level scal-
ing scheme developed for RAID-6 [29]. It is common that a
RAID-6 scaling scheme is designed for a special RAID-6
code, because the parity layout of each RAID-6 code is
unique and the parity chain of one RAID-6 code is various.
Typical parity chains include diagonal chain, anti-diagonal
chain, horizontal chain, and vertical chain.

6 FURTHER DISCUSSIONS

This paper addresses the case of cluster scaling<k!kþDk>

where Dk is greater than zero. If no new data chunks are
created and inserted to an existing chunk group when Dk
new nodes join a cluster, then the redundancy parameters
(i.e., k and r) of the chunk group remain unchanged; thus,
the storage efficiency does not increase. In this case, new
nodes are merely used to expand the cluster’s capacity.

There is another way to expand an existing RS-coded
chunk group—Dk old data chunks in another chunk group
are inserted to the chunk group, and the associated parity
chunks are updated accordingly. Essentially, such a scaling
method is equivalent to the No-DM -based one.

Uniform data distributions are achieved at the cost of
data migration. To meet the uniform-data-distribution

TABLE 4
Comparisons of the Storage Scaling Schemes

Scaling
Scheme

Target
Storage

Uniform
Data

Distribution

Minimal
Data

Migration

Highest
Storage
Efficiency

Parity Update During
Data

Migration

RR (e.g., SLAS [26]) RAID-0, RAID-4, RAID-5
p � p

–
Semi-RR (e.g., SCADDAR [47]) RAID-0, RAID-4, RAID-5 � � p

–
FastScale [25] RAID-0, RAID-10, RAID-01

p p p
–

McPod [31] RAID-4
p p p

without parity update
ALV [32] RAID-5

p p p
write alignment technique

MiPiL [33] RAID-5
p p p

piggyback parity update
MDM [28] RAID-5 � p � without parity update
GA [34] RAID-5

p � p
not mentioned

GSR [27] RAID-5
p p p

not mentioned
PBM [35] RAID-5 � p p

no parity recalculation
SDM [29] RAID-6

p p p
not mentioned

Scale-RS (Ours) RS-Coded Chunk Groups
p p p

deferred update

1714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

requirement [25], a scheme of cluster scaling<k!kþDk> has to
move Dk/(k þ Dk) of old data blocks from old data chunks
to new chunks. Therefore, there is a tradeoff between distri-
bution uniformity and data-migration I/O traffics.

Scale-RS supports bidirectional scaling operations (i.e.,
scaling-up and scaling-down operations). When scaling
from k data chunks to k0 where k is larger than k0, the trans-
posed data layout still helps to minimize the data move-
ment induced by parity updates. In particular, after
receiving k� k0 data blocks from k� k0 data chunks to be
evicted, the receiving node can generate r parity difference
blocks from the received k� k0 data blocks.

Apart from sending Dk data blocks to Dk new data
chunks, a storage node storing an old data chunk is respon-
sible for calculating parity difference blocks. Nevertheless,
the node does not become an I/O and CPU performance
bottleneck during the data redistribution stage. The reason
is two-fold: (1) such calculation operations are executed
using in-memory Dk data blocks without incurring any disk
reads, and (2) storage nodes have sufficient computing
capability for RS encoding.

7 CONCLUSION AND FUTURE WORK

This paper proposed a new scaling scheme called Scale-RS,
which aims to expand RS-coded chunk groups for storage
clusters. Scale-RS is conducive to optimizing both data
migrations and parity updates. On one hand, Scale-RS
moves only necessary data blocks from old data chunks to
new data chunks without migrating data among old data
chunks; on the other hand, with the transposed data layout
in place, Scale-RS generates associated parity difference
blocks from data blocks stored in an individual data chunk,
thereby substantially reducing update traffic.

We implemented the prototypes for Scale-RS as well as
two alternative scaling schemes in an erasure-coded stor-
age cluster, on which real-world I/O traces were replayed.
The extensive experiments demonstrate that Scale-RS
slightly increases user response time during data redistri-
bution due to bandwidth competition between migration
and user I/Os; Scale-RS achieves the highest read perfor-
mance among the three scaling schemes in the case of ‘after
data redistribution’. The experimental results also illus-
trate that Scale-RS outperforms the other two scaling
schemes in terms of aggregate write throughput under
data filling. For example, in the cluster scaling< 6!9> case,
the speedup factors are 2.85 and 3.05 under online filling
and offline filling, respectively.

It is shown that data migrations compete disk and net-
work resources with user requests. As a future research
direction, we plan to develop novel strategies to schedule
migration I/Os among data chunks according to access
locality in user I/O workload, thereby aiming to minimize
interference between migration I/Os and user I/Os.

ACKNOWLEDGMENTS

This work was supported in part by the National High
Technology Research Program of China under Grant No.
2013AA013203, the National Basic Research Program of
China under Grant No. 2011CB302303, and the Funda-
mental Research Funds for the Central Universities under
No. 2014QN012. Xiao Qin’s work was supported by the

US National Science Foundation (NSF) under Grants CCF-
0845257 (CAREER), CNS-0917137 (CSR), and CCF-0742187
(CPA). Changsheng Xie is the corresponding author of
this paper.

REFERENCES

[1] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C.
Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R.
Abbasi, A. Agarwal , M. F. ul Haq, M. I. ul Haq, D. Bhardwaj, S.
Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas, “Windows azure storage: A highly available
cloud storage service with strong consistency,” in Proc. 23rd ACM
Symp. Operating Syst. Principles, 2011, pp. 143–157.

[2] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing i/o for recovery
and degraded reads,” in Proc. 10th USENIX Conf. File Storage Tech-
nol., 2012, pp. 251–264.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in
Proc. USENIX Conf. Annu. Techno. Conf., 2012, pp. 15–26.

[4] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sarma, R.
Murthy, and H. Liu, “Data warehousing and analytics infrastruc-
ture at facebook,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 1013–1020.

[5] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in Proc. 9th USENIX Symp. Operating Syst. Des.
Implementation, 2010, pp. 1–14.

[6] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1092–1101, 2013.

[7] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “A
decentralized algorithm for erasure-coded virtual disks,” in Proc.
Int. Conf. Dependable Syst. Netw., 2004, pp. 125–134.

[8] M. Storer, K. Greenan, E. Miller, and K. Voruganti, “Pergamum:
Replacing tape with energy efficient, reliable, disk-based archival
storage,” in Proc. 6th USENIX Conf. File Storage Technol., 2008,
pp. 1–16.

[9] TAHO-LAFS. (2010). Tahoe: The least-authority filesystem. Open
source code distribution [Online]. Available: http://tahoe-lafs.
org/trac/tahoe-lafs

[10] J. S. Plank, “A tutorial on Reed-Solomon coding for fault-tolerance
in raid-like systems,” Softw. Practice Exp., vol. 27, no. 9, pp. 995–
1012, 1997.

[11] M. Manasse, C. Thekkath, and A. Silverberg, “A Reed-Solo-
mon code for disk storage, and efficient recovery computa-
tions for erasure-coded disk storage,” Proc. Inf., 2009,
pp. 1–11.

[12] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An optimal
scheme for tolerating double disk failures in raid architectures,”
in Proc. 21st Annu. Int. Symp. Comput. Arch., 1994, pp. 245–254.

[13] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-diagonal parity for double disk failure
correction,” in Proc. 3rd USENIX Conf. File Storage Technol., 2004,
pp. 1–14.

[14] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly, 2012.

[15] I. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Industrial Appl. Math., vol. 8, no. 2, pp. 300–304,
1960.

[16] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G.
Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs: A high-
throughput file system for the hydrastor content-addressable
storage system,” in Proc. 8th USENIX Conf. File Storage Tech-
nol., 2010, pp. 225–238.

[17] L. Rizzo, “ On the feasibility of software FEC,” Dip. di Ingegneria
dell’Informazione, Univ. di Pisa, Italy, DEIT, Tech. Rep. LR-
970131, pp. 1–16, 1997.

[18] I. Cleversafe. (2008). Cleversafe dispersed storage,” Open source
code distribution [Online]. Available: http://www.cleversafe.
org/downloads, 2008.

[19] J. K. Resch and J. S. Plank, “Aont-RS: Blending security and per-
formance in dispersed storage systems,” in Proc. 9th USENIX
Conf. File stroage Technol., 2011, pp. 191–202.

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1715

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

[20] F. F. J. MacWilliams, and N. N. J. A. Sloane, The Theory of Error-cor-
recting Codes: Part 2. Amsterdam, The Netherlands: Elsevier, 1977,
vol. 16.

[21] D. Vesset, “Worldwide big data technology and services 2012-
2016 forecast,” IDC, Framingham, MA, USA, Tech. Rep. 238746,
2012.

[22] A. Miranda, S. Effert, Y. Kang, E. L. Miller, A. Brinkmann, and T.
Cortes, “Reliable and randomized data distribution strategies for
large scale storage systems,” in Proc. 18th Int. Conf. High Perform.
Comput., 2011, pp. 1–10.

[23] G. Newgaard, “White paper: Hadoop on emc isilon scale-out
nas,” EMC Corp., Tech. Rep. H10528.1, 2012.

[24] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure
coding libraries for storage,” in Proc. 7th USENIX Conf. File Storage
Technol., 2009, pp. 253–265.

[25] W. Zheng and G. Zhang, “Fastscale: Accelerate raid scaling by
minimizing data migration.” in Proc. 9th USENIX Conf. File Storage
Technol., 2011, pp. 149–161.

[26] G. Zhang, J. Shu, W. Xue, and W. Zheng, “Slas: An efficient
approach to scaling round-robin striped volumes,” ACM Trans.
Storage, vol. 3, no. 1, pp. 1–39, 2007.

[27] C. Wu and X. He, “Gsr: A global stripe-based redistribution
approach to accelerate raid-5 scaling,” in Proc. 41st Int. Conf. Paral-
lel Process., 2012, pp. 460–469.

[28] S. R. Hetzler, “Data storage array scaling method and sys-
tem with minimal data movement,” U.S. Patent 8,239,622,
Aug. 2012.

[29] C. Wu, X. He, J. Han, H. Tan, and C. Xie, “Sdm: A stripe-based
data migration scheme to improve the scalability of raid-6,” in
Proc. IEEE Int. Conf. Cluster Comput., 2012, pp. 284–292.

[30] C. Wu and X. He, “A flexible framework to enhance raid-6 scal-
ability via exploiting the similarities among mds codes,” in Proc.
42nd Int. Conf. Parallel Process., 2013, pp. 542–551.

[31] G. Zhang, J. Wang, K. Li, J. Shu, and W. Zheng, “Redistribute data
to regain load balance during raid-4 scaling,” IEEE Trans. Parallel
Distrib. Syst., vol. 99, no. PrePrints, p. 1, 2014.

[32] G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to raid-5 scaling,” IEEE Trans. Comput., vol. 59, no. 3,
pp. 345–357, Mar. 2010.

[33] G. Zhang, W. Zheng, and K. Li, “Rethinking raid-5 data layout for
better scalability,” IEEE Trans. Comput., vol. 99, no. PrePrints, p. 1,
2013.

[34] J. L. Gonzalez and T. Cortes, “Increasing the capacity of raid5 by
online gradual assimilation,” in Proc. Int. Workshop Storage Netw.
Archit. Parallel I/O, 2004, pp. 17–24.

[35] Y. Mao, J. Wan, Y. Zhu, and C. Xie, “A new parity-based migra-
tion method to expand raid-5,” IEEE Trans. Parallel Distrib Syst.,
vol. 99, no. PrePrints, p. 1, 2013.

[36] G. Zhang, K. Li, J. Wang, and W. Zheng, “Accelerate rdp raid-6
scaling by reducing disk i/os and xor operations,” IEEE Trans.
Comput., vol. 99, no. PrePrints, p. 1, 2013.

[37] G. A. Gibson, L. Hellerstein, R. M. Karp, and D. Patterson,
“Failure correction techniques for large disk arrays,” ACM
SIGARCH Comput. Archit. News, vol. 17, no. 2, pp. 123–132, 1989.

[38] J. S. Plank, M. Blaum, and J. L. Hafner, “Sd codes: Erasure codes
designed for how storage systems really fail,” in Proc. 11th USE-
NIX Conf. File Storage Technol., 2013, pp. 95–104.

[39] S. Savage and J. Wilkes, “Afraid: A frequently redundant array of
independent disks,” in Proc. USENIX Annu. Tech. Conf., 1996,
pp. 3–16.

[40] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, “Raid: High-
performance, reliable secondary storage,” ACM Comput. Sur.,
vol. 26, no. 2, pp. 145–185, 1994.

[41] M. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes effi-
ciently for storage in a distributed system,” in Proc. Int. Conf.
Dependable Syst. Netw., 2005, pp. 336–345.

[42] F. Zhang, J. Huang, and C. Xie, “Two efficient partial-updating
schemes for erasure-coded storage clusters,” in Proc. IEEE 7th Int.
Conf. Netw., Archit. Storage, 2012, pp. 21–30.

[43] Y. Deng, “What is the future of disk drives, death or rebirth?”
ACM Comput. Surv., vol. 43, no. 3, pp. 23–52, 2011.

[44] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus
closed: A cautionary tale,” in Proc. 3rd conf. Netw. Syst. Des. Imple-
mentation, 2006, pp. 239–252.

[45] Z. Wilcox-O’Hearn. (2012). Zfec 1.4.24. open source code distribu-
tion [Online]. Available: http://pypi.python.org/pypi/zfec

[46] M. Liberatore. (2007). Search engine i/o, umass trace repository
[Online]. Available: http://traces.cs.umass.edu/

[47] A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann,
“Scaddar: An efficient randomized technique to reorganize
continuous media blocks,” in Proc. 18th Int. Conf. Data Eng.,
2002, pp. 473–482.

[48] R. Honicky and E. L. Miller, “Replication under scalable hashing:
A family of algorithms for scalable decentralized data distribu-
tion,” in Proc. 18th Int. Parallel Distrib Process. Symp., 2004, pp. 96–
105.

[49] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush:
Controlled, scalable, decentralized placement of replicated data,”
in Proc. ACM/IEEE Conf. SuperComput., 2006, pp. 122–133.

[50] D. Borthakur. (2009). The hadoop distributed file system: Archi-
tecture and design, Hadoop Apache Project [Online]. Available:
http://hadoop.apache.org/common/docs/current/hdfs_design.
html

[51] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.
Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage,” in Proc. 7th USENIX
Conf. File Storage Technol., 2009, pp. 197–210.

[52] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “Hdfs
raid,” technical Talk, Yahoo! Developer Network, 2010.

Jianzhong Huang received the PhD degree in
computer architecture in 2005, and completed the
postdoctoral research in information engineering
in 2007 from the Huazhong University of Science
and Technology (HUST), Wuhan, China. He is cur-
rently an associate professor in the Wuhan
National Laboratory for Optoelectronics at HUST.
His research interests include computer architec-
ture and dependable storage systems. He
received the National Science Foundation of China
in Storage System Research Award in 2007.

Xianhai Liang received the BS degree in com-
puter science and technology from the Wuhan
University of Technology (WHUT), China, in 2012.
He is currently working toward the MS degree at
HUST. His research interests include networked
storage systems and file system.

Xiao Qin (S’00-M’04-SM’09) received the BS
and MS degrees in computer science from the
Huazhong University of Science and Technology
(HUST), China, in 1992 and 1999, respectively,
and the PhD degree in computer science from the
University of Nebraska-Lincoln, in 2004. He is cur-
rently an associate professor with the Department
of Computer Science and Software Engineering,
Auburn University. His research interests include
parallel and distributed systems, storage systems,
fault tolerance, real-time systems, and perfor-

mance evaluation. He received the US National Science Foundation
(NSF) Computing Processes and Artifacts Award, the NSF Computer
System Research Award in 2007, and the NSF CAREER Award in
2009. He is a senior member of the IEEE.

1716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

Ping Xie received the BS degree in physics
and the MS degree in computer application from
Qinghai Normal University, China, in 2002 and
2008, respectively. He is currently working toward
the PhD degree in the Huazhong University of Sci-
ence and Technology (HUST). His research
interests include erasure codes and dependable
storage systems.

Changsheng Xie received the BS and MS
degrees in computer science both from the Huaz-
hong University of Science and Technology
(HUST), Wuhan, China, in 1982 and 1988,
respectively. He is currently a professor in the
Department of Computer Engineering at HUST.
He is also the director of the Data Storage Sys-
tems Laboratory of HUST and the deputy director
of the Wuhan National Laboratory for Optoelec-
tronics. His research interests include computer
architecture, I/O system, and networked storage

system. He is the vice chair of the expert committee of Storage Network-
ing Industry Association (SNIA), China. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUANG ET AL.: SCALE-RS: AN EFFICIENT SCALING SCHEME FOR RS-CODED STORAGE CLUSTERS 1717

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:10:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

