2984

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

Exploiting Pipelined Encoding Process
to Boost Erasure-Coded Data Archival

Jianzhong Huang, Yanqun Wang, Xiao Qin, Senior Member, IEEE, Xianhai Liang,
Shu Yin, and Changsheng Xie, Member, IEEE

Abstract—This paper addresses an issue of erasure-coded data archival, where (k + r, k) erasure codes are employed to archive rarely
accessed replicas. The traditional synchronous encoding process neither leverages the existence of replicas, nor handles encoding
operations in a decentralized manner. To overcome these drawbacks, we exploit pipelined encoding processes to boost the data archival
performance on storage clusters. First, we propose two data layouts called [D + P]_, and [3X]_; by applying a chained-declustering

mechanism to both Mirrored RAID-5 and triplication redundancy groups. Second, in light of the [D + P|

and [3X] , layouts, we design

cd

two archiving schemes named DP and 3X, which exhibit the following three salient features: (i) exploiting data locality—two or three
local blocks are read by each involved node for encoding; (ii) decentralized computation load—encoding operations are distributed
among knodes; and (iii) parallel archival processing—two or three encoding pipelines are simultaneously deployed to generate parity
blocks. We implement both the DP and 3X schemes and three existing solutions (i.e., SynE, DE, and RapidRAID) in a real-world storage
cluster. Experimental results show that our archival schemes outperform the other three solutions in terms of archiving time by a factor of
atleast 3.41 in a nine-node storage cluster. The experiments strongly indicate that the performance bottleneck of SynE lies in its
block-receiving stage; it is disk I/O rather than network traffic that dominates archiving time for both the DE and RapidRAID schemes.

Index Terms—Erasure-coded storage cluster, data archival, pipelined encoding, power efficiency

1 INTRODUCTION

ATA redundancy achieves high reliability by either rep-
licating data blocks or storing additional information
(e.g., parity blocks generated by erasure codes). The 3X-
replica redundancy is employed by distributed storage
systems (e.g., GFS [1] and HDFS [2], and Amazon S3 [3]) to
keep data durable. Compared to data replication, erasure
codes provide equivalent fault-tolerance with significantly
small storage overhead [4]. Most of the data are accessed
within a short duration of the data’s lifetime. For example,
over 90 percent of accesses in a Yahoo! M45 Hadoop cluster
occur within the first day after data creation [5]; therefore, it
is economically friendly to archive data replicas using era-
sure codes. Nowadays, some real-world storage systems
(e.g., WAS [6], GFS 11 [7]) adopt a hybrid redundancy strat-
egy, where a replication strategy is applied to newly created
data, while erasure codes are used to archive the same data
once its access frequency decreases.
With Synchronous Encoding (or SynE for short) [5], parity
blocks are generated using classical erasure codes. If a (k + 7,

e | Huang, Y. Wang, X. Liang, and C. Xie are with Wuhan National Lab.
for Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China. E-mail: {hjzh, cs_xie}@hust.edu.cn,
{wychktk2013, hustlxh}@gmail.com.

e X. Qin is with the Department of Computer Science and Software Engi-
neering, Shelby Center for Engineering Technology, Samuel Ginn College
of Engineering, Auburn University, AL 36849-5347.

E-mail: xqin@auburn.edu.

o S.Yinis with the Hunan University, China.

E-mail: 16shuyin@gmail.com.

Manuscript received 16 June 2014, revised 17 Sept. 2014; accepted 27 Oct.
2014. Date of publication 30 Oct. 2014; date of current version 7 Oct. 2015.
Recommended for acceptance by A. R. Butt.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2014.2366113

k) erasure code is used, an encoding node retrieves k different
blocks from existing data replicas; then the node computes
and delivers the resulting r parity blocks to r other different
nodes. The traffic incurred by parity generation and parity
migration is k blocks and r blocks, respectively. The parity
generation traffic could be reduced to k —1 blocks if the
encoding operation is conducted by a node storing data repli-
cas. Such a centralized encoding process makes the encoding
node become a performance bottleneck of data archival.

Apart from SynE, two families of new erasure codes (i.e.,
DE [8] and RapidRAID [9]) were proposed to address
the issue of erasure-coded data archival. Both DE and
RapidRAID accomplish the parity generation through a
decentralized encoding process. The downside of DE and
RapidRAID is that each involved encoding node has to ser-
vice both read and write requests, thereby decreasing write
bandwidth due to bandwidth competition between reads
and writes. The degraded write bandwidth inevitably dete-
riorates archival performance.

The overarching goal of this study is to speed up the
archival process by leveraging the locality of replicas during
the encoding procedure. To achieve this goal, we focus on a
data layout strategy that places newly created data; we
show how such a layout allows data archival to capture the
following two features: (1) to accomplish data archival in a
pipelined manner—distributing encoding processes among
multiple nodes to form an encoding pipeline, which allevi-
ates the performance bottleneck in centralized encoding;
and (2) to increase archival parallelism—allowing all the
nodes to form two or more encoding pipelines, which speed
up the archival performance.

We propose two data layouts—[D + P] ; and [3X] ,—by
applying the chained-declustering (CD) mechanism to the

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.
1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HUANG ET AL.: EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL

{Redundancy 1: Mirrored RAID-5 } { Redundancy 2: Triplication

.| Chained Declustering Mechanism -, |

{ Layout 1: [D+P]cd } { Layout 2: [3X]cd

L Pipelined Encoding Strategy L

{ Archival Scheme: DP } { Archival Scheme: 3X

Fig. 1. The chained-declustering mechanism is applied to two redun-
dancy groups—errored RAID-5 and Tr|p||cat|on—to yield two layouts,
i.e., [D+P], (see Section 2.1) and [3X] , (see Section 2.2). The pipe-
Ilned encoding strategy is |ncorporated into the two layouts to design two
archival schemes, i.e., DP (see Section 3.1) and 3X (see Section 3.2).

data organized in Mirrored RAID-5 and triplication forms,
respectively. Two erasure-coded archival schemes called
DP and 3X are designed by applying the [D + P], and
[3X],, data layouts, respectively. Fig. 1 outlines the relation-
ship between the two layouts and the two archival schemes
implemented in light of pipelined encoding strategy.

SynE deploys a centralized encoding process, which is
likely to deteriorate encoding performance. Different from
SynE, the DP and 3X schemes distribute encoding opera-
tions among multiple nodes. Unlike DE and RapidRAID
schemes that suffer from bandwidth competition that slows
down archival process, DP and 3X judiciously maximize
disk bandwidth by making each node respond to either
reads or writes. The archival performance of DP and 3X is
dominated by network I/Os.

The contributions of this study are summarized as
follows:

e We introduce the chained-declustering mechanism
to both Mirrored RAID-5 and triplication redun-
dancy groups to reach two new data layouts
[D + P, and [3X],,, respectively. Both data layouts
not only have potential in power efficiency, but also
allow a subset of involved nodes to constitute an
encoding pipeline.

e We develop two archival schemes (i.e., DP and 3X),
which respectively apply the [D+ P]., and [3X],
data layouts to improve performance. Both archival
schemes exploit data locality of local replicas while
decentralizing the encoding process. Additionally,
all the nodes in DP and 3X collaborate to form multi-
ple (e.g., two or three) encoding pipelines to facilitate
archival parallelism.

e We implement the DP and 3X schemes as well as
three existing approaches (i.e., SynE, DE, and
RapidRAID) in a real-world storage cluster. Our
experiments show that the proposed archival
schemes outperform the other three solutions by a
factor of up to 3.41 in a nine-node storage cluster.
Interestingly, our findings reveal that the perfor-
mance bottleneck of SynE lies in its block-receiving
stage; it is disk I/Os that dominate the archival per-
formance in the DE and RapidRAID schemes rather
than network I/Os.

The rest of the paper is organized as follows. In Section 2

we present two chained-declustering-based layouts,
namely, [D + P]_, and [3X],,. Section 3 details our pipelined

2985
TABLE 1
Layout of [D + P] 4
Node: N1 N2]Vg s Nk Nk+1
Primary: d1 d2 dg s dk P1
Replica: p1 dy ds dk—q di

archival schemes—DP and 3X. Section 4 provides the com-
parative analysis of the five archival schemes. We describe
the experiments in Section 5. Sections 6 and 7 discuss
related work and applicability issues, respectively. Finally,
we conclude this paper in Section 8.

2 CHAINED-DECLUSTERING-BASED LAYOUTS

Prior studies (e.g., chained declustering [10], group rota-
tional declustering [11], and shifted declustering [12]) sug-
gest that a declustering strategy is able to improve 1/O
parallelisms for replication-based storage. CD is a simple
yet efficient policy (i.e., it simply shifts each row of data
units in a circular fashion); we introduce CD to Mirrored
RAID-5 and triplication to leverage data locality for efficient
data archival.

2.1 Applying the CD Mechanism to Mirrored RAID-5
Compared to triplication, ‘Mirrored RAID-5" [13], ‘Mirror+P’
[14], and ‘RAID 5+Mirror’ [15] provide better tradeoffs
between system availability and storage efficiency. We
advocate Mirrored RAID-5 in the context of storage clusters;

therefore, let us describe a chained-declustering-based
‘Mirrored RAID-5" layout called [D + P]_,.

2.1.1 Layout of [D+P].4

As depicted in Table 1, the [D + P], layout makes &k + 1
blocks {d;,ds,...,dx,pi} be dispersed among k+ 1 nodes
{N1, Ny, ..., Np1} in a chained-declustering manner, with
pi=di @ds @ - @ di. All the £+ 1 nodes are conceptually
organized in a chain, in which a primary block and its rep-
lica are placed in adjacent nodes.

The placement of replicas is critical to data reliability; the
rack-aware replica placement policy in HDFS is a good
example [16]. With the rack-aware replica placement policy
in place, one replica is stored on one node in a local rack,
another replica is placed on a node in a remote rack, and the
last one is on a separate node in the same remote rack.
When it comes to layout [D + P]_,, at most two nodes out of
a node chain are placed in the same rack; this policy does
not compromise data accessibility even in the presence of
failures of two nodes or an entire rack.

2.1.2 Supporting Double-Fault Tolerance

We consider a generic chained-declustering layout (see
Table 2), in which the ith primary block bf is placed on
node N;, and its replica b is placed on the next node
N(i+lm0dn) .

Definition 1. Let us consider a block collection b= {by,
ba, ... by}, where b; = {b! b7}, 1 < i < n.If primary block b
survives, then the step function s(bf) returns 1; otherwise,
s(b) returns 0. Similarly, the step function s(b) returns 1 if

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply

2986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.11, NOVEMBER 2015
TABLE 2 TABLE 3
An n-Node Chained Declustering Ring A 7-Node [D+P]_, with Four Failures
Node: N1 NQ N,j N,,,,l N,,, Node: N1 N2 NJ N4 N5 Nﬁ N7
Primary: by by b} e bP bP Prim?ry — ds — dy — dg —
Replica: b! b bt b, b’ , Replica — dy — ds — ds —

replica block bl survives; otherwise, s(bl) returns 0. The survive
function s(b;) can be derived from s(b') and s(bl) as Eq. (1):
s(bi) =s(bl) [s(b}) ie€{1,2,...,n}. (1)

Let num(b) be the number of essential surviving blocks in
collection b. num(b) is expressed as Eq. (2):

num(b) = s(by) + s(bg) + - - + s(by). (2)

Lemma 1. There exist at least n — 1 essential surviving blocks
(i.e., num(b) > n — 1) when two nodes fail.

Proof. If two adjacent nodes N; and N, fail, then n — 1 dif-
ferent blocks {b{, by, ..., b, bl ;, bl,,, ..., bP} survive.
Thus, we have ‘num(b) = n—1". On the other hand, if two
failed nodes N; and N, are non-adjacent, then n differ-
ent blocks {b}, b}, ..., bl |, b, bP |, bl ,, bY 4, ..., b} sur-
vive. Therefore, equation ‘num(b) = n’ also holds. This
concludes the proof of Lemma 1.]

Lemma 1 suggests that there are at least k essential
surviving blocks for [D +P], in the double-node-failure
case. In other words, layout [D + P]_; can tolerate double
node failures.

2.1.3 Achieving Power Efficiency

As to fault-tolerant storage systems, redundant devices
are logically envisioned as erased ones that can be deac-
tivated to conserve energy [17], [18]. Layout [D+P]_,
offers double-node-fault tolerance, thereby allowing two
nodes to be placed into low-power mode to reduce
energy consumption and the rest of the nodes to be
active to respond to user I/O requests.

We introduce two access policies to avoid unnecessary
power-state transitions in the offline nodes.

o Read policy. Reads in the energy-saving mode are han-
dled as below: (1) If a requested data block is residing
on an active node, then the read request is directly
serviced, and no extra computation overhead occurs;
(2) otherwise, k essential blocks are retrieved from the
active nodes, followed by calculation of the requested
data block from the k blocks. In the latter case, the
requested data block and its replica are residing on
two adjacent offline nodes, and parity block p; exists
in the k retrieved essential blocks.

o Write policy. In archival storage systems, it is critical to
address the issue of writing newly created data blocks
rather than updating existing ones. Data writes in the
energy-efficient mode are processed as follows. A
replica of new data blocks are stored to the remaining
active nodes according to the [D + P|_, layout. When

cd

the inactive nodes are activated, a replica of each new
data block is written to the activated nodes; in addi-
tion, two copies of the corresponding parity block are
placed to the activated nodes.

2.1.4 Analysis of Fault Tolerance

As mentioned in Section 2.1.2, layout [D + P|_; can tolerate
double node failures. Furthermore, [D + P]_, can tolerate
[(k+1)/2] failures as long as surviving nodes are not adja-
cent (see, for example, Table 3). [(k+ 1)/2]-fault-toler-
ance—the best case for the [D + P]_, layout—can be applied
to optimize power efficiency. This is because [(k+ 1)/2]
nodes can be placed into the low-power mode.

It is worth noting that the [D + P] , layout cannot always
tolerate [(k+ 1)/2] node failures, because the positions of
node failures are unpredictable. It is of necessity to consider
how to handle node failures when [(k + 1)/2] nodes stay in
the inactive /low-power mode. A basic principle is to power
up a certain number of inactive nodes. Let us consider a
straightforward approach given as follows. When an active
node (e.g., N> in Table 3) fails, one can simply activate two
inactive nodes (e.g., N; and N3 in Table 3) adjacent to the
failed one. This is because that a primary block and its rep-
lica are placed in adjacent nodes. In this case, the two acti-
vated nodes can be used to recover the failed node while
responding to user I/O requests.

The aforementioned approach still takes effect in the
double-node-failure case. Of course, it does not make sense
to achieve power efficiency at the cost of data loss. There-
fore, a node-reconstruction process should be immediately
triggered once two nodes concurrently fail.

2.2 Applying the CD Mechanism to Triplication

In this section, we describe a data layout called [3X]_,,
where the chained-declustering mechanism is applied to
triplication—the de facto redundancy scheme widely
employed by production storage systems.

Table 4 illustrates the layout of [3X] , for k data blocks
{di,ds,...,ds}, where all k nodes {Ny, Ns,..., N} are con-
ceptually organized in a chain; a primary block and its two
replicas are placed in any three adjacent nodes in the chain.

As to any data block d; (for,i € {1,2,...,k}), at least one
out of three copies of block d; survives in the presence of

TABLE 4
Layout of [3X] 4
Node: N1 NQ N3 Nk,1 Nk
Primary: d1 d2 d3 dk—l dk
First Replica: dy dy ds dieo diq
Second Replica: di_q di dy dioz dio

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

HUANG ET AL.: EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL

TABLE 5
A Six-Node [3X] _, with Four Failures
Node: N1 NQ N3 N_1]V5 Nﬁ
Primary d; — — dy — —
First Replica d(; — —_— d3 —_— —
Second Replica ds — — do — —

two-node failures. In other words, there are exactly k essen-
tial surviving blocks when two nodes fail; and thus, layout
[3X],4 is able to tolerate double-node failures. More interest-
ingly, [3X]_, can tolerate k — [k/3] node failures when there
are two faulty nodes sitting between two surviving nodes.
For example, the six-node [3X]_, layout plotted in Table 5
still offers £ = 6 essential surviving blocks in the four-node-
failure case (i.e., four faulty nodes are Ny, N3, N5, and Np).
Like [D + P]_,, the [3X]_, layout should address the issue of
tackling node-failure problems when k — [k/3] nodes still
stay in the low-power mode. Similarly, the node-activation
approach in [D + P]_, can be applied to the [3X]_, layout as
follows. If an active node fails, one may simply activate two
inactive nodes adjacent to the failed node.

The read/write policies of [3X], in the energy-saving
mode are different from those of [D+ P],, because the
[3X],, layout does not include a parity block (e.g., p1 in
[D + P]).

o Read policy. Reads in the energy-efficient mode are
handled as follows. If a requested data block is resid-
ing on an active node, then the read request is
directly serviced; otherwise, an offline node holding
the requested data block will be activated to respond
to the read request.

o Write policy. Data writes in the energy-efficient mode
are processed as follows. A replica of new data
blocks are stored to the remaining active nodes
according to the [3X] ; layout. When inactive nodes
are activated, two replicas of each new data block
will be placed to the activated nodes accordingly.

3 PIPELINED DATA ARCHIVAL

3.1 Archival for the [D+P]4 Layout

It is a conventional wisdom that if data replicas are no
longer modified, the replicas can be erasure coded to
save storage space. Such an erasure coding process using
existing data is referred to as ‘erasure-coded data archival’.
There are four steps involved in data archival within
storage clusters: (1) retrieving required data blocks; (2)
performing an encoding over the retrieved blocks; (3)
migrating resulting parity blocks to separate nodes; and
(4) deleting the replica blocks.

Since numerous production storage systems adopt Reed
Solomon (RS) codes [19], [20] to store infrequently accessed
data [21], [7], [22], our archival scheme—DP—employs RS
codes to archive replicas stored in a [D + P]_; manner.

According to the RS encoding procedure [23], parity
block p; can be derived as Eq. (3), where «;j; is a coefficient
in the generator matrix of RS codes:

7Ol1d1—|-012d2—|— o k.

2987

PN T PasNes— T P3
@p<2,h’2>‘>@7p<2..\14>»@7p

Node N] Ng N3 N4 N5 N6 N7 Ng N9

Primary d1 d2 d3 d4 d5 d(, P1

Replica P1 d] dz d3 d4 d5 d6

@:ﬂim\l 157" *D<'3AN3>*< 3 P3

p<'z,N1>+ —sz.N,b» p'
,,,,,,,,,,,,,,, g l k.
Primary d7 dg d9 d]o d11 d12 p{
Replica || pi || d7 |/ ds!| do |/ dypi| du | di

Group G;

Group G,

Fig. 2. The DP archival scheme—data stored in the [D + P] , layout is
migrated to erasure-coded storage, with coding parameters k = 6 and
r = 3. Symbol ‘@’ denotes the linear combination.

Given k = 6, Eq. (3) is decomposed as

P<jNy> = aj1dy + ajoda, 3.1
P<jN,> = DP<jNy> + oj3d3 + o 4dy, (3.2)
Pj = P<jN,> + @j5ds + ajeds. (3.3)

Parity block p; (2 < j <) can also be calculated from k
blocks, one of which is parity block p;. The k blocks are

{di,do,...,dx—1,p1} or {da,ds, ..., dx, p1}. When k equals to 6,
block p; is expressed as Eq. (4):
pi = (j1 — aj6)di + aep1 + (52 — @j6)da + ()3 — aj6)d3
+ (Ole — Olj}e)d4 —+ (Olj’5 — C(jyg)d(,.
(@)

Similarly, Eq. (4) can be decomposed into the following
three expressions:

P<inNg> = (@41 — @j6)d1 + @j6P1, (4.1)
P<iNg> = DejNy> + (052 — aj6)da + (o3 — aj6)ds, (4.2)
pj = p<j7)1:5> =+ (Ole — (¥j76)d4 + (Olj,s — Olj,()')ds. (43)

Since storage nodes offer sufficient Reed Solomon coding
capability [24], [25], [26], [27], nodes N,, N4, and Ng are able
to compute the linear combinations using Eqgs. (3.1)-(3.3).
For example (see group G, in Fig. 2), node N, generates
r—1=2 intermediate parity blocks p.yn,> and posn,s,
using two local blocks d; and d; according to Eq. (3.1), and
delivers the intermediate parity blocks to node Nj. Simi-
larly, node N computes two parity blocks ps and ps; for
nodes Ng and Ny using Eq. (3.3).

As shown in Fig. 2, the three non-adjacent nodes N,, Ny,
and Ny in group G; form an encoding pipeline
‘Ny — Ny — Ng'. Similarly, a second encoding pipeline
‘Ny — N3 — Ny’ is constituted from three non-adjacent
nodes N, N3, and N5 in group G. Simultaneously applying
the two encoding pipelines to two separate replica sets can
accomplish parallel archival processes.

When only one encoding pipeline is deployed to handle
data archival, one may deactivate [(k + 1)/2] nodes into the
power-saving mode to conserve energy. We refer to the DP
scheme in such a power-efficient mode as DP e

D (3)
Authorlzed Ilcensed use Ilmlted to: Auburn Unlver5|ty Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restnctlons apply.

2988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.11, NOVEMBER 2015
@{Pl\u,sz,P}Nl}*@i{php% ps} read read
Group G; i N ’ ’ X v

Node [IN; i [Ny [Ny [IN[Ns [Ns [N, [Nsg [Ny STu, dij STup, dij
Primary |/ di ! | d | ds | !ds!| ds | de STUp, di STU[1, d2]
ls‘Replica : d6 } d] d, } d3 : d4 d5 SmD,dl] Sru[Z, dl]
2nd Replica : ds } de d; } dy : ds dy dlj1 SI.u[4,d1] SI'U,[Z, d2]
G p ?{PLNZ, pziw%pim}”?i{pl" p2, p3 } sru[y, d2) —— N STU[3, d1)
roup G; A . ST, 2] STU[3, d2]
Primary | d; |!dg| | dy | dip | 'dii}| dip] STU[3, 42 SIUjs, d1]
15Replica | di> [1dyi | ds dy | 1dii| du d; ST, @) Faro Shuffle STU[4, 42

2“d Replica d11 : d]z: d7 dg : d9 : d10 ,,,,,,,,,,, 1
Node N, Node N,

%{pfim, PN, ps’fm}*%{pi'a P>, r:,%'}

Group G;
Primary | dz | dig [[dis) | dig | di7 | |dig [
1Replica | dis | di3 |idig | dis | dig | 1di7]
2nd Replica| d; dig } d13} dis dis : die }

Fig. 3. The 3X archival scheme—data stored in the 3X. layout is
migrated to erasure-coded storage. k = 6 and r = 3. All the data nodes
are grouped into three groups, which simultaneously carry out the
encoding processes for separate replica sets.

In a word, layout [D + P]_, offers opportunities for stor-
age clusters to optimize the archival process from three
aspects: (1) Exploiting data locality—two local blocks are
read by each involved node for encoding; (2) decentralized
computation load—unlike a single encoding node in the
SynE scheme, [k/2] nodes constitute an entire encoding
pipeline; (3) parallel archival—two encoding pipelines are
simultaneously executed to yield parity blocks.

3.2 Archival for the [3X]., Layout

Since 3X-replica redundancy is widely employed in produc-
tion storage systems, it is practical and vital to study how to
efficiently migrate from 3x replication to erasure coding.
Apart from the DP scheme, an archival scheme called 3X is
proposed to archive replicas organized in the [3X]_; layout
using RS codes.

According to data placement governed by layout [3X] ,,
all nodes can be divided into |k/[k/3]| groups, each of
which handles encoding operations in a pipelined manner.
Fig. 3 shows that the nodes holding six raw data blocks
{di,ds,...,ds} are divided into three groups (i.e., Gi, G,
and G3). All the groups are able to simultaneously carry out
encoding processes for separate replica sets, thereby
enabling high-performance archival through increased
archival parallelism.

Similar to DPpgyer, the 3Xower archival scheme deploys
an encoding pipeline to generate parity blocks from raw
data blocks organized in the [3X], layout. In 3Xpower, [£/3]
nodes are responsible for the redundancy generation;
k — [k/3] nodes are deactivated to save power.

cd

3.3 1/0 Optimization for DP and 3X
3.3.1 Write Aggregation

Block sizes of most existing cluster file systems are large.
For example, the default block size is 64 MB in GFS [1], QFS
[28], and HDFS [2], and it can be configured to 128, 256, 512
MB, etc. A storage request unit (SRU) is a basis access unit
from the I/O path’s standpoint; hence, a block is accessed
via a sequence of SRUs. I/O accesses are likely to be non-

(a) Logical Address Space (b) Physical Address Space

Fig. 4. The Faro shuffle algorithm is employed to handle Logical-to-
Physical address mapping for SRUs in blocks within a node.

sequential when requested SRUs are located on different
blocks, thereby degrading the available write bandwidth.

Write bandwidth degradation might occur in the DP
scheme if the following two conditions are met: (1) Two par-
ity blocks generated by two encoding pipelines are written
to an identical node; (2) these two parity blocks are placed
to different disk regions. Motivated by the fact that large
SRU requests help in achieving high write bandwidth [29],
[30], [31], we introduce the write aggregation technique to
both DP and 3X schemes. The write aggregation technique
consolidates multiple SRUs into a single write request. In
particular, the node storing parity blocks pre-allocates a
memory region to buffer SRUs delivered from different
encoding pipelines, then writes the buffered SRUs in the
form of a large sequential write.

3.3.2 Shuffle Mapping

In the DP scheme, one encoding node must read two SRUs
from two data blocks. Such a reading pattern results in non-
sequential I/Os if the two blocks are residing in the same
disk. To solve this problem, we map a range of logical SRUs
to physical locations using the faro shuffle algorithm [32].
The faro shuffle is equivalent to a cyclic logical left shift in
terms of binary representation. An example is shown in
Fig. 4b, where the first SRU sruy; ;) in data block d; and the
first SRU sruy; 4, in data block dy are contiguous. The space
reservation function of the underlying file system can be
used to contiguously write SRUs [28]; thus, two SRUs can
be placed contiguously when storing newly created data
blocks. By virtue of contiguous writes, each encoding node
accomplishes high read sequentiality during data archival.

The shuffle mapping algorithm can be extended to shuf-
fle SRUs in three blocks—three SRUs stored in three differ-
ent blocks are contiguously placed in a disk. Therefore, the
extended shuffle mapping algorithm can be deployed to
improve the read bandwidth for the 3X scheme.

4 COMPARATIVE ANALYSIS

4.1 Network Traffic

Fig. 2 shows that six blocks (i.e., four intermediate parity
blocks and two final parity blocks) are delivered to accom-
plish the DP archival process. In a general case, network
traffic induced by the DP scheme is [k/2] x (r — 1) blocks;

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

HUANG ET AL.: EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL

2989

TABLE 6
Comparisons of the (k+r,k) Erasure-Coded Data Archival Schemes

Scheme Redundancy Number of encoding Normalized network
nodes traffic

Synchronous 3-way replication = classical erasure codes k k+r-1
Encoding [5]
DE [8] 2 ~ 3-way replication = Decentralized erasure codes r *
RapidRAID [9] 2-way replication = Pipelined erasure codes k+4r k+r-1
Dp Mirrored RAID-5 = Reed Solomon codes 2x[k/2] for DP; [k/2] [k/2]x(@—1)

for DPpower
3X 3-way replication = Reed Solomon codes (k/[k/37)x[k/3] for 3X; [k/3] [k/3]x(r)

for 3Xp0\vcr

«: The traffic caused by data archival is a function of the number 1 of blocks stored in r coding nodes.

on the other hand, the 3X scheme leads to network traffic of
[k/3] x (r) blocks (see the comparison in Table 6).

The archival traffic in SynE is k4 r — 1 blocks if a node
keeping a data replica acts as the encoding node (see node
N; in Fig. 5a). In the DE archival process, the network traf-
fic is a function of the number ! of blocks stored in r coding
nodes, and the value of | ranges from k to 2k. Fig. 5b
depicts the network flow of DE, in which the value of [
equals to k (viz., DE(I = k)). It is revealed from Fig. 5c that
the traffic incurred by the RapidRAID archival process is
k+ 1 — 1 blocks.

When coding parameters k and r are set to 6 and 3 (i.e,,
k =3 and r = 3), the normalized traffic of SynE, DE, Rapi-
dRAID, DP, and 3X is eight, four, eight, six, and six blocks,
respectively. Surprisingly, network traffic caused by the
archival process has no noticeable impact on the archival
performance (see Section 5.3.1).

4.2 Diskl/Os

Fig. 6 shows the data flows of five archival schemes (i.e.,
SynE, DE, RapidRAID, DP, and 3X). The data flow in each

—x < [E—F
X3 Ll X7——
s
{1
N; N> N3 Ny Ns Ng N7 Ng Ng

(a) Synchronous Encoding Scheme -- SynE

V4>

(b) Decentralized Archival Scheme -- DE(I1=k)

zy z z 4 z z 70
Ny N> N3 Ny N7 Ng

(c) Pipelined Archival Scheme -- RapidRAID

Ng

Fig. 5. Network flows in the three erasure-coded archival schemes, with
coding parameters k =6 and r = 3.

scheme is exemplified by both network transmission and
disk I/Os of an encoding node and a parity node.

Recall that two types of disk I/O operations involved in
the archival process are: (1) reading required data blocks,
and (2) writing resulting encoded blocks. Figs. 6a, 6 d, and
6e illustrate that each node in SynE, DP, and 3X responds to
either read requests or write requests.

When it comes to DE, I data blocks are spread among r
coding nodes {Nj..i, Niia,..., Niy,}, meaning that one of
the coding nodes has to read at least [I/r] blocks. Apart
from reads, each coding node has to write one encoded
block. Thus, DE’s write bandwidth is approximate to 1/(1
+[1/r]) of the total available disk bandwidth. The available
disk bandwidth might be reduced due to non-sequential
accesses, which occur when existing data blocks and the
encoded parity blocks are residing on different regions of a
disk. We address this non-sequential-access issue in our
experiments by introducing multiple disks to improve I/O
sequentiality (see Section 5.3.4).

In RapidRAID, if parameter k is larger than parameter
r, then each of k—r nodes {N,.i,N.o,...,Ni} will
respond to two read requests and one write request (see
Node N, in Fig. 6¢c). We evaluate the disk throughput by
running IOMeter [33] on HDD disks deployed in the
tested storage cluster (see details of the experimental
environment in Section 5.1); we observe that the maxi-
mum throughput of a disk is anywhere between 120 to
135 MBps. Thus, we estimate that the available write
bandwidth in RapidRAID is less than 135/3 = 45 MBps.
The available sending/receiving bandwidth of each node
is approximately 800 Mbps'. Analytically, disk 1/Os
rather than network I/Os become a performance bottle-
neck of the archiving process in the RapidRAID scheme.

5 EXPERIMENTAL EVALUATION

We implement our DP and 3X schemes along with the three
alternatives (i.e., SynE, DE, and RapidRAID) in a real-world
storage cluster. We conduct extensive experiments to quan-
titatively compare the archival performance of the five
solutions.

1. The sending/receiving bandwidth of bidirectional communica-
tion is lower than that of unidirectional communication (e.g., 800 versus
900 Mbps), since evidence shows that the performance ratio (i.e., a ratio
between measured and theoretical bandwidth) of bidirectional commu-
nication is lower than that of unidirectional communication [34].

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

2990
! |
5 Blocks | | NIC 3 Blocks i 1 Block | NIC |
3 —= |8 i
oy ‘ = ‘
1 Node Ng ! Node Ng !
1 Blocks 1 Block
=Y Do
(a) SynE
,,,,,,,, R
1 Block | NIC 2 Blocks | 2 Blocks! |NIC 1 Block |
> | e . T i T
: Node N7 /‘ ‘ Node Ng /‘
2BlocksT l/lBlock 2Blocks/r ¢1 Block
(b) DE(I=k)
0T . T \ T T T T |
1 Block ! NIC 1 Block 1 Block ! NIC 1 Block
| = + - T
i I i i i i
1 Node Ny J ‘ Node Ng !

(c¢) RapidRAID

! |
2 Blocks\ NIC 2 Blocks\ 2 Blocks! NIC i
—=|-8 |
| | TITIT |
1 Node Ny j ‘ NodeNg !
2 Blocks \LZ Blocks
’ Come)
(d) pp
77777777 1 B T Ne 1
3 Blocks\ NIC 3 Blocks, 3 Blocks LNC ‘
T —> |
| ! T |
' Node Ny 1 NodeNg !
Blocks l/S Blocks
(o (o)
(e) 3X

Fig. 6. Comparisons of the data flows in the five erasure-coded archival
schemes (i.e., SynE, DE(/ = k), RapidRAID, DP, and 3X), with coding
parameters k =6 and r = 3.

5.1 Experimental Setup

Our testbed is a storage cluster that consists of 12 storage
nodes connected through a Cisco GibE switch. Each storage
node contains an Intel(R) E5-2650 @ 2.0 GHz CPU, 16 GB
DDR3 memory, and Intel C600 Chipset Mainboard with
1 GbE integrated NIC. Four disks are attached to each node;
all the disks are Western Digital’s Enterprise WD1003FBYX
SATA2.0 disks. The operating system running in the storage
nodes is Ubuntu 10.04 X86 64 (Kernel 2.6.32).

5.2 Evaluation Methodology

Prior evidence shows that a configuration of ‘r = 3" achieves
a sufficiently large mean-time-to-data-loss or MTTDL for
archival storage [24]. Furthermore, r is set to 3 (i.e., » = 3) in
GFS 1I [7], HydraStor [35], and QFS [28]; r is set to 4 (i.e.,
r = 4) in WAS [21] and HDFS-RAID [36] in Facebook [22].
We adopt ‘r = 3" and ‘r = 4’ in our experiments to resemble
real-world storage cluster systems, while keeping the r
value smaller than & (i.e., r < k).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

In our experiments, the linear combination of a set of
blocks is performed using the finite field arithmetic offered
from the open-source Jerasure coding library [37].

The amount of an original data copy stored on each stor-
age node is set to 8,192 MBytes (i.e., 128 x 64 MB), which is
large enough to evaluate the archiving times of the tested
solutions. The archival performance is measured in terms of
time spent in archiving data of k£ x 8,192 MB. We clear data
buffered in memory to ensure a cold cache prior to running
each experiment, which is repeatedly conducted five times
to calculate the average archiving time.

We primarily focus on the ‘single-disk’ case in which
each node is equipped with a single disk. To make a fair
comparison, we incorporate both the write aggregation and
shuffle mapping techniques to the DE and RapidRAID
schemes. Furthermore, more often than not the read/write
bandwidth of a node equipped with multiple disks is larger
than that with a single disk. As such, we also investigate the
five archival schemes under the ‘multiple-disk’ case, where
each disk either stores a raw-data block or an encoded-par-
ity block within one group. Taking node N; in RapidRAID
as an example (see Fig. 5c¢), N4 should handle two data-
block reads (i.e., blocks d; and d4) and one encoded-block
write (i.e., block z3). In the multiple-disk case, we place two
data blocks and one encoded block on three different disks,
thereby enabling each disk to service either reads or writes.

A study conducted by Lang et al. confirmed that chained
declustering offers power savings [38]. To quantitatively
measure the power consumed by the storage cluster run-
ning the DP and 3X schemes and their corresponding
power-efficient archival schemes (i.e., DPpoyer and 3Xower),
we use an electric power analyzer of model ZH-101 [39] to
record the current of each storage node in a sample of 1 Hz.

5.3 Experimental Results

We examine the sensitivity of the five schemes to several
performance factors, including the number of data nodes,
the redundancy of erasure codes, the size of a storage
request unit, and the number of disks in each node.

5.3.1 k-Number of Data Nodes

To constitute a (k + 7, k) erasure-coded archival storage, we
generate r parity blocks from k essential data blocks. We
evaluate the impacts of the number k of data blocks on
archival performance by setting k to 6 and 9, respectively.
Fig. 7 plots the archiving times of the five schemes when
SRU and r are set to 64 and 3 KB, respectively.

We observe from Fig. 7 that with the increasing value of
k, the SynE scheme exhibits poorer archival performance.
Such a poor performance lies in the fact that a large k value
makes an excessive number of data blocks loaded to gener-
ate r = 3 parity blocks, which in turn leads to a long receiv-
ing time experienced by the encoding node.

DE(I = k) exhibits long archiving time when parameter k
is large, and the reason is two-fold. First, one of the r encod-
ing nodes should read at least [k/r] blocks, implying that
the encoding node tends to process more read requests with
the increasing value of k. Second, write bandwidth is
reduced when an increased number of read requests com-

ete against one write request for disk bandwidth.

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

HUANG ET AL.:

1000
k=6 Bk=9

800

600

400 | p 317.0 337.1

200

Total Archiving Time(s)

0

Fig. 7. Total archiving times of the five archival schemes with respect to
parameter k (k = 6 and 9), with SRU = 64 KB, and r = 3.

In RapidRAID, k has a slim impact on the archival perfor-
mance, because k + 3 nodes constitute an archiving pipeline
and the k— 3 slow nodes {Ng4, N5, ..., N;} undertake an
equal number of disk I/Os regardless of the k value. The
k — 3 nodes are slow due to the following two reasons. First,
the write bandwidth of these k& — 3 nodes is lower than that
of other nodes due to the bandwidth competition. Second,
the write bandwidth restricts the overall archival perfor-
mance (see analysis in Section 4.2).

Similar to RapidRAID, the DP and 3X schemes are
slightly sensitive to parameter k in terms of archival perfor-
mance. Either in DP or in 3X, all involved nodes deal with
equal disk and network load when £ is set to 6 and 9. Fig. 7
shows that when the & value is 6, DP outperforms SynE, DE
(I = k), and RapidRAID in terms of archiving time by a fac-
tor of 4.41, 3.46, and 3.42, respectively; 3X surpasses SynE,
DE(l = k), and RapidRAID in terms of archiving time by a
factor of 4.39, 3.45, and 3.41, respectively.

Fig. 8 shows the network traffic and the archiving times
of SynE, DE(I = k), RapidRAID, DP, and 3X in the ‘k = 6,
r = 3’ case. We observe that the trend of the network traffic
is dissimilar to that of the archiving time, implying that the
traffic induced by the archiving process is not a singular
crucial factor affecting archival performance.

To assess computation load caused by encoding opera-
tions, we constantly monitor the CPU utilization of nodes in
the storage cluster governed by the five archival schemes.
Fig. 9 illustrates the average CPU utilization of nine (.e.,
k + r =9) nodes {Ny, N, ..., Ny} under the evaluated archi-
val schemes (i.e., SynE, DE(I = k), RapidRAID, DP, and 3X)
when SRU, k, and r are set to 64, 6, and 3 KB, respectively.

We draw the following three observations from Fig. 9:

o The encoding nodes in RapidRAID exhibit the low-
est computation overhead. The reason is two-fold: 1)
encoding load is decentralized among all nine nodes
during the entire archival process; 2) the write

50% r
EAN1 BN2 N3

o

Q

X
T

30%
20%

CPU Utilization(%)

Q
X

EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL

Encoding Nodes

2991

S

~ o

Traffic (# of Blocks)

S}

Archiving Time (s)

5&‘&/ (o\\//@ Q&\O X s+

,5& \\4\0 @,\0 0‘3 ~
¥

(a) Network traffic (b) Archiving time

Fig. 8. Network traffic and archiving times of the SynE, DE(/ = k), Rapi-
dRAID, DP, and 3X schemes. k=6 and r = 3.

bandwidth restricts the archival speed, thereby
resulting in low encoding intensity;

o For DP and 3X, the first encoding node in an encoding
pipeline has lower CPU utilization than the other
encoding nodes. This is because that only CPU over-
head for local disk I/Os is involved to the first encod-
ing step, while CPU cycles are required by both disk
and network I/Os for the other encoding steps;

o Although the encoding nodes” CPU utilization in both
DP and 3X is higher than that in the other three archi-
val schemes, the encoding nodes” CPU utilization is
considered reasonably low (i.e., around 30 percent);
this means that computation overhead is not a domi-
nating factor of archival performance in DP and 3X.

5.3.2 r-Redundancy of Erasure Codes

In this group of experiments, we examine the sensitivity of
the five archiving schemes to the redundancy r of erasure
codes. We conduct the experiments on the storage cluster
where the size of a request unit is 64 KB and the number k
of data nodes is 6.

Fig. 10 reveals that parameter r has no noticeable impact
on the archiving times of the SynE, DE(I = k), and Rapi-
dRAID schemes. The reasons are given as follows: (1) for
SynE, the network bandwidth of encoding node Ny domi-
nates the overall archiving performance (see Fig. 5a). In par-
ticular, the total archiving time is bounded by the receiving
bandwidth of node Ng when r is smaller than &k — 1 G.e., r <
k—1); (2) in DE(I = k), one of r encoding nodes would deal
with at least [k/r] reads and one writes. Especially, in this
group of tests, node N; deals with [6/3] = 2 reads and
[6/4] = 2 reads when r = 3 and r = 4, respectively. This
means that the same disk I/O overhead occurs in both con-
figurations of ‘k =6, r =3’ and ‘k = 6, r = 4’; (3) in the Rapi-
dRAID case, each of k — r slow nodes {N,.1, N, 2,..., Ni}

N4 BNS N6

EN7

EIN8 EIN9

|
ISENEEENREERNES |

0% EE i 8 2oz o o B
SynE DE(I=k)

Fig. 9. Average CPU utilization of nodes {N;, Ns, ...

RapidRAID DP

w
=

, No} under the five archival schemes. Parameters k = 6, r = 3, and SRU = 64 KB. Encoding

nodes are highlighted using a blue rounded rectangle; symbol * indicates that a node does not participate in data archival.
Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

500
Br=4

408.7 4133

Fig. 10. Total archiving times of the five archival schemes with respect to
parameter r (r = 3 and 4). SRU = 64 KB, and k= 6.

responds to two reads and one write. Therefore, nodes {/V4,
N5, Ng} for ‘k =6, r = 3" and nodes {N;, Ng} for ‘k=6,r =4’
undertake equal amount of disk I/Os, which constrain the
entire archival process.

As for the DP scheme, each encoding node sends r — 1
intermediate parity blocks, and each of r — 1 nodes {NNs,
Nii3, ..., Ni.} receives two blocks. If the condition of
‘r —1 > 2’ holds, then the block-sending phase is still a per-
formance bottleneck of the archival process. It is observed
that when the r value is increased from 3 to 4, archiving
time is enlarged by approximately 55 percent.

As to the 3X scheme, each encoding node sends r inter-
mediate parity blocks; each of r nodes {Nj11, Niyo,. .., Nji}
receives k/[k/3] blocks. If the condition of ‘r > k/[k/3]" is
met, then the block-sending phase dominates the archiving
performance. In particular, the block-sending phase limits
the archival speed when 7 is greater than or equal to 3 (i.e., r
> 3). The archiving-time ratio between the ‘r = 4’ and
‘r = 3’ cases is around 1.32, which approximates to the theo-
retical ratio (r =4)/(r = 3) ~ 1.33.

5.3.3 SRU—Size of Storage Request Unit

To assess the impact of the request unit size or SRU, we con-
duct experiments on the storage cluster by setting the value
of SRU to 64, 128, 256, 512, 1,024, and 2,048 KB, respectively.
Fig. 11 illustrates the archiving times of the five schemes
when parameters k and r are set to 6 and 3, respectively.

Fig. 11 shows that SynE, DP, and 3X are not sensitive to
SRU because of two reasons. First, each node involved in the
archival process responds to either reads or writes in the three
schemes, and it is possible to enable the node to accomplish
sequential I/Os. Second, rather than disk I/Os, it is network
I/0Os that dominate the overhead of the archival process.

We observe that the archival performance of the DE and
RapidRAID schemes is affected by the SRU size, because there
is still a proportion of non-sequential accesses even though

800

600 |

N9 5 D 5N
N S RO A
400 p .

200

Total Archiving Time(s)

SynE DE(I1=k)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26,

NO. 11, NOVEMBER 2015

1000

Single-disk EMultiple-disk

800 |

600

400 |

200

Total Archiving Time(s)

0

Fig. 12. Total archiving times of the five schemes in the single-disk and
multiple-disk scenarios. k = 6, SRU = 64 KB, and r= 3.

the write aggregation and shuffle mapping techniques are
incorporated. Specifically, a large SRU size helps in improv-
ing the archival performance because large SRUs boost disk
I/0 bandwidth by mitigating random I/O accesses. Interest-
ingly, when the SRU size is larger than 512 KB, the archiving
times of the two schemes are insensitive to the SRU size,
because DE and RapidRAID gain very little benefit from satu-
rated disk I/O bandwidth when SRUs are sufficiently large.

5.3.4 Deploying Multiple Disks

The previous sections are focused on the ‘single-disk’ case.
Now we are positioned to evaluate the five archival
schemes under the multiple-disk scenario, where a raw
data block or an encoded parity block is located on a sepa-
rate disk. Fig. 12 plots the archiving times of the five
schemes in both the single-disk and multiple-disk cases,
where k, SRU, and r are set to 6, 64, and 3 KB, respectively.
Note that the archival results in the single-disk case are
reported in Section 5.3.1.

From Fig. 12, we observe that regardless of SynE, DP,
and 3X, each scheme exhibits similar archival performance
in both cases. The reason is that it is network I/Os that dom-
inate the archival performance of the three schemes. Take
the DP scheme as an example, the network bandwidth
available to two blocks is about 800 Mbps; the disk band-
width available to two blocks is around 120 MBps in the sin-
gle-disk case, and the disk bandwidth available to one block
is approximately 120 MBps in the multiple-disk case (see
Table 7).

The DE(l = k) and RapidRAID schemes exhibit smaller
archiving times in the multiple-disk case than in the single-
disk case, because multiple disks offer higher available disk
bandwidth than a single disk. It is deduced that the archival
performance of DE(I = k) is limited by disk I/Os in the sin-
gle-disk case—as shown in Fig. 6b, two blocks should be
sent by node N7, then the network bandwidth available to

HE64KB E128KB 256KB [1512KB E11024KB 2048KB

NS 5 A
P GV

AR
PP 7 o

=\

RapidRAID DpP 3X

Fig. 11. Comparisons of archiving times with respect to different SRUs (64, 128, 256, 512, 1,024, and 2,048 KB). k =6 and r = 3.
Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

HUANG ET AL.: EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL 2993
TABLE 7
Comparisons of Network and Disk Bandwidths in the Five Archival Schemes
Item Scheme SynE DE(I1=k) RapidRAID DP 3X
Network bandwidth in ~800 Mbps ~800 Mbps ~800 Mbps ~800 Mbps ~800 Mbps
both cases [five blocks] [two blocks] [one block] [two blocks] [3 blocks]
Disk bandwidth single-disk ~120 MBps ~120 MBps ~120 MBps ~120 MBps ~120 MBps
[one block] [three blocks] [three blocks] [two blocks] [3 blocks]
multiple-disk ~120 MBps ~120 MBps ~120 MBps ~120 MBps ~120 MBps
[one block] [one block] [one block] [one block] [1 block]

one block would be about 400 Mbps, which is larger than
the disk bandwidth available to one block (e.g., about 40
MBps). In contrast, the network I/Os restrict the archival
performance of DE(I = k) in the multiple-disk case, because
the disk bandwidth available to one block increases (e.g.,
about 120 MBps). Furthermore, RapidRAID maximizes the
utilization of both network and disk bandwidths in the mul-
tiple-disk case, thereby achieving the archival performance
comparable to that of the DP and 3X schemes.

5.3.5 Power Efficiency

To compare the power consumption of the storage cluster
governed by the tested archival schemes, we collect the
power consumption of each node in the nine-node storage
cluster with sample rate of 1 Hz. Fig. 13a shows archiving
times under four archival scenarios (i.e., DP, DPoyer, 3X,
and 3X,ower); In Fig. 13b, we plot the average total power
consumed by the storage cluster governed by each archival
scheme during an entire archival process. This group of
tests are conducted using parameters £ = 6, » = 3, and
SRU = 64 KB.

Three observations drawn from Fig. 13 are summarized
as follows.

o The power-efficient archival schemes (i.e., DPpower,
and 3Xpowe) offer power savings at the cost of
degraded archival performance. The tradeoff
between archival performance and power efficiency
is reasonable, because reducing the number of
encoding pipelines allows some encoding nodes to
be transitioned into the low-power mode, which in
turn results in low archival parallelism;

o The power efficiency of the DP scheme is higher than
that of the 3X scheme. Specifically, the power con-
sumption in DP is lower than that in 3X; both the DP
and 3X schemes complete the entire archival process

w
=3
S

1000

[S]
=3
S

o
S

Archiving Time(s)
Average Power (Watts)

(a) Archiving time

(b) Power during archival process

Fig. 13. Comparisons of average archiving times and average power
consumption under the four archival scenarios (i.e., DP, DPpower, 3X,
and 3X,,ower). k=6, 7 =3, and SRU = 64 KB.

within a similar duration. The reason lies in the fact
that only eight nodes are involved in the archival
process in DP, whereas there are nine nodes contrib-
uting to the archival process in 3X;

o The DPpyer scheme outperforms the 3X,,ower Scheme.
On one hand, the archiving time of DP,,oye, is smaller
than that of 3X,we because the encoding nodes in
DPpower and 3X,ower transfer two and three interme-
diate blocks, respectively; on the other hand, the
DPower and 3X,ower SChemes consume similar energy
since the same number of nodes (i.e. five nodes) are
involved in the two schemes.

6 RELATED WORK

Erasure-coded storage has increasingly become a cost-effec-
tive and fault-tolerant solution for archive storage systems
[24], [40], [22], [41], [42]; most of erasure-coded archive stor-
age systems are constructed upon TCP/IP-based storage
clusters. For example, Pergamum is an energy-efficient
disk-based archival storage [24]; Cleversafe is a cost-effec-
tive storage system for active archive storage [42]; Tahoe-
LAFS is a decentralized storage system with provider-inde-
pendent security for long-term storage [41].

Reed Solomon codes and their variants are widely
adopted in archival storage to provide high reliability. For
example, Facebook manages rarely-accessed files by
deploying an open source HDFS Module called HDFS
RAID, which relies on RS codes [22]; Google’s GFS II adopts
RS codes to archive infrequently-accessed data [7], and
Windows Azure Storage (WAS) adopts a variant of RS
codes (i.e., local reconstruction codes, LRC) to implement a
four-fault-tolerant cluster system [21].

Most archival storage systems are designed to store
newly created data using erasure codes. It is worth noting
that the study of migrating existing data replicas into era-
sure-coded archival is rather rare. Among all the related
methods found in the literature, synchronous encoding, DE
and RapidRAID are the most relevant solutions to our
approaches. The synchronous encoding approach creates
parity blocks from three-replica redundancy using classical
erasure codes [5]. Pamies-Juarez et al. proposed two solu-
tions, namely, DE for efficient data archival [8] and Rapi-
dRAID for fast data archival [9].

In synchronous encoding, erasure encoding operations are
conducted by a single node and the parity generation pro-
cess does not exploit the three existing data replicas.

In the DE scheme, the redundancy-generation process is
completed by a subset of » nodes, which act as the storing
location of the encoded parity blocks. Thus, the existing k

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

2994

nodes holding data blocks can be deactivated to conserve
energy. Although redundancy generation traffic in DE can
be significantly reduced, the traffic does not determine the
overall archiving time. Furthermore, the fault tolerance is a
function of the number [of blocks stored in the r coding
nodes; the DE codes cannot guarantee the MDS feature
unless the value of [is 2k.

RapidRAID is a family of erasure codes that realize the
idea of pipelined erasure coding to speed up the data archival
process. RapidRAID codes are non-systematic, meaning that
it is required to decode the archived data to service any read
request, thereby introducing data-access overhead. The (k +r,
k) RapidRAID codes might have a fault tolerance problem if
the redundancy parameter r is larger than three (i.e., r > 3).

Different from RapidRAID, our DP and 3X schemes
migrate data replicas to encoded blocks using the Reed
Solomon codes. Both DP and 3X allow fore-end users to
access archived data without imposing decoding opera-
tions. Contrary to DE and RapidRAID that suffer from
the problem of undetermined fault tolerance, both DP
and 3X are able to guarantee the MDS property for all
coding parameters k and r. With layouts [D+ P], and
[3X].q in place, the DP and 3X schemes allow [(k+1)/2]
and k—[k/3] nodes to be transitioned into the low-power
mode while keeping other nodes active to perform the
archival process, respectively.

7 FURTHER DISCUSSIONS

Although [D + P] , and [3X],, are capable of tolerating dou-
ble failures, the storage overhead of the [D + P] , layout is
smaller than that of [3X] . Specifically, [3X] , suffers from
200 percent storage overhead since it replicates three copies
for each block [5], whereas the storage overhead of [D + P]
is reduced down to 1+ 2/k.

If k (for, k > 3) is not a multiple of three in the 3X archival
scheme, there are just two archiving pipelines, which
deliver approximately 2/3 of the archival performance of
the case of k%3 = 0’. In most production clusters, the k
value is a multiple of three; for example, k is set to six in
both GFS 1II [7] and QFS [28], k equals to 9 in HYDRAstor
[35], and k is configured to 12 in WAS [6].

It is supposedly true that the performance bottleneck
(i.e., block-receiving stage) of SynE is eliminated by the 10
Gbps-Ethernet network of a storage cluster. However, a
majority of data centers (e.g., Google [7], WAS [6], and Face-
book [22]) are employing 1-Gbps Ethernet due to its high
cost-effectiveness. Therefore, it is indispensable to take the
GDbE interconnect into account when one designs archival
schemes in the context of storage clusters.

It is unnecessary to deploy the ‘shuffle mapping’ solution
to the DE(I = k), RapidRAID, DP, and 3X schemes to improve
the I/O sequentiality in the multi-disk case, where each
requested block within a stripe is residing on an individual
disk, naturally guaranteeing high disk I/O bandwidth.

We have investigated the DE scheme in the case of ‘I = k'.
The DE(I = 2k) scheme is expected to have lower archival
performance than that of DE(I = k), because the write band-
width in the ‘I = 2k’ case is suppressed by the disk band-
width competition between an increased number of reads
and one write.

cd

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed two pipelined archival
schemes called DP and 3X to boost the erasure-coded
archival performance on storage clusters. We incorpo-
rated the chained-declustering mechanism into both Mir-
rored RAID-5 and triplication redundancy groups,
resulting in data layouts [D +P], and [3X] .. These two
data layouts enable a subset of involved nodes to consti-
tute an encoding pipeline, and they allow two or three
encoding pipelines to generate parity blocks in parallel.
We implement both the DP and 3X schemes and three
existing solutions (i.e., SynE, DE, and RapidRAID) in a
real-world storage cluster. Extensive experimental results
show that our archival schemes respectively outperforms
SynE, DE(l = k), and RapidRAID by a factor of at least
4.39, 3.45, and 3.41 in a nine-node storage cluster. We
draw two interesting observations in this study. First,
the performance bottleneck of SynE lies in its block-
receiving stage; the dominant factor of archival perfor-
mance is disk I/Os rather than network I/Os in both DE
and RapidRAID. Second, there exists a tradeoff between
energy efficiency and archival performance in the two
pipelined archival schemes, where the performance-ori-
ented schemes exhibit higher archival performance than
the energy-efficient archival schemes.

In this study, we paid particular attention to the off-line
archival process—no user I/Os are issued and raw data
blocks are retrieved from disks. As a future research direc-
tion, we plan to investigate an online archival process, in
which we intend to optimize archival performance by (1)
exploiting the existence of hot user data and (2) caching the
hot data in an in-memory system.

ACKNOWLEDGMENTS

This work is supported in part by the National High Tech-
nology Research Program of China under Grant
No. 2013AA013203, the National Basic Research Program of
China under Grant No. 2011CB302303, and the Fundamen-
tal Research Funds for the Central Universities under
No. 2014QN012. Xiao Qin’s work is supported by the U.S.
National Science Foundation under Grants CCF-0845257
(CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR), CNS-
0831502 (CyberTrust), and CCF-0742187 (CPA). Shu Yin's
work is supported by the National Natural Science Founda-
tion of China under Grant NO.61402158. The authors also
appreciate Zhongyuan Min for his assistance in the power
evaluation for this study. Changsheng Xie is the corre-
sponding author of this paper.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file sys-
tem,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29-43, 2003.

[2] D. Borthakur. (2009). The Hadoop distributed file system: Archi-
tecture and design, Hadoop Apache Project [Online]. Available:
http:/ /hadoop.apache.org/common/docs/current/hdfs_design.
html

[3] Amazon-INC. (2010). Amazon simple storage services (Amazon
S3) [Online]. Available: http://aws.amazon.com/s3

[4] H. Weatherspoon, and J. D. Kubiatowicz, “Erasure coding vs. rep-
lication: A quantitative comparison,” in Proc. 1st Int. Workshop
Peer-to-Peer Syst., 2002, pp. 328-337.

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

HUANG ET AL.: EXPLOITING PIPELINED ENCODING PROCESS TO BOOST ERASURE-CODED DATA ARCHIVAL

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Diskreduce: Repli-
cation as a prelude to erasure coding in data-intensive scalable
computing,” Proc. Int. Conf. High Perform. Comput. Netw., Storage
Anal., 2011, pp. 6-10.

B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J, Haridas, C.
Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R.
Abbasi, A. Agarwal, M. F. ul Haq, M. L. ul Haq, D. Bhardwaj, S.
Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas, “Windows azure storage: A highly available
cloud storage service with strong consistency,” in Proc. 23rd ACM
Symp. Oper. Syst. Principles, 2011, pp. 143-157.

D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in Proc. 9th USENIX Symp. Oper. Syst. Des. Imple-
mentation, 2010, pp. 61-74.

L. Pamies-Juarez, F. Oggier, and A. Datta, “Decentralized erasure
coding for efficient data archival in distributed storage systems,”
in Distributed Computing and Networking. New York, NY, USA:
Springer, 2013, pp. 42-56.

L. Pamies-Juarez, A. Datta, and F. Oggier, “RapidRAID: Pipelined
erasure codes for fast data archival in distributed storage sys-
tems,” in Proc. 32nd IEEE Int. Conf. Comput. Commun., 2013,
pp- 1294-1302.

H.-I. Hsiao, and D. J. DeWitt, “Chained declustering: A new avail-
ability strategy for multiprocessor database machines,” in Proc.
6th Int. Conf. Data Eng., 1990, pp. 456—465.

S. Chen, and D. Towsley, “A performance evaluation of RAID
architectures,” IEEE Trans. Comput., vol. 45, no. 10, pp. 1116-1130,
Oct. 1996.

H. Zhu, P. Gu, and]. Wang, “Shifted declustering: A placement-

ideal layout scheme for multi-way replication storage
architecture,” in Proc. 22nd Annu. Int. Conf. Supercomput., 2008,
pp. 134-144.

Q. Xin, E. L. Miller, T. Schwarz, D. D. Long, S. A. Brandt, and W.
Litwin, “Reliability mechanisms for very large storage systems,”
in Proc. 20th IEEE/11th NASA Goddard Conf. Mass Storage Syst.
Technol., 2003, pp. 146-156.

K. M. Greenan, E. L. Miller, T. J. Schwarz, and D. D. Long,
“Disaster recovery codes: Increasing reliability with large-stripe
erasure correcting codes,” in Proc. ACM Workshop Storage Security
Survivability, 2007, pp. 31-36.

B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “DiskReduce:
RAID for data-intensive scalable computing,” in Proc. 4th Annu.
Workshop Petascale Data Storage, 2009, pp. 6-10.

D. Borthakur, “The Hadoop distributed file system: Architecture
and design,” Hadoop Project Website, vol. 11, p. 21, 2007.

K. M. Greenan, D. D. Long, E. L. Miller, S. Schwarz, and J. J. Wylie,
“A spin-up saved is energy earned: Achieving power-efficient,
erasure-coded storage,” in Proc. 4th Conf. Hot Topics Syst. Depend-
ability, 2008, pp. 4-9.

J. Huang, F. Zhang, X. Qin, and C. Xie, “Exploiting redundancies
and deferred writes to conserve energy in erasure-coded storage
clusters,” ACM Trans. Storage, vol. 9, no. 2, p. 4, 2013.

J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-tolerance
in RAID-like Systems,” Softw. Pract. Exp., vol. 27, no. 9, pp. 995-
1012, 1997.

M. Manasse, C. Thekkath, and A. Silverberg, “A reed-solomon
code for disk storage, and efficient recovery computations for era-
sure-coded disk storage,” Proc. Inform., 2009, pp. 1-11.

C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in
Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 15-26.

A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sarma, R.
Murthy, and H. Liu, “Data warehousing and analytics infrastruc-
ture at Facebook,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 1013-1020.

I. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, 1960.

M. Storer, K. Greenan, E. Miller, and K. Voruganti, “Pergamum:
Replacing tape with energy efficient, reliable, disk-based archival
storage,” in Proc. 6th USENIX Conf. File Storage Technol., 2008,
pp- 1-16.

J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’'Hearn, “A
performance evaluation and examination of open-source erasure
coding libraries for storage,” in Proc. 7th Conf. File Storage Technol.,
2009, pp. 253-265.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

2995

T. Karslsson and L. Lundberg, “Performance evaluation of cauchy
reed-solomon coding on multicore systems,” in Proc. IEEE 7th Int.
Symp. Embedded Multicore Socs, 2013, pp. 165-170.

J. S. Plank, M. Blaum, and J. L. Hafner, “SD codes: Erasure codes
designed for how storage systems really fail,” in Proc. 11th USE-
NIX Conf. File Storage Technol., 2013, pp. 95-104.

M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” Proc. VLDB Endowment, vol. 6, no. 11,
pp- 1092-1101, 2013.

Q. Yang and Y. Hu, “DCD—Disk caching disk: A new approach
for boosting 1/O performance,” in Proc. 23rd Annu. Int. Symp.
Comput. Archit., 1996, pp. 169-181.

J. Wang and Y. Hu, “WOLF-A novel reordering write buffer to
boost the performance of log-structured file systems,” in Proc. 1st
USENIX Conf. File Storage Technol., 2002, pp. 47-60.

J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An effi-
cient scaling scheme for rs-coded storage clusters,” IEEE Trans.
Parallel Distrib. Syst., vol. 99, no. 1, p. 1, PrePrints, doi:10.1109/
TPDS.2014.2326156, 2014.

S. B. Morris and R. E. Hartwig, “The generalized faro shuffle,”
Discrete Math., vol. 15, no. 4, pp. 333-346, 1976.

T.IOMETER. (1997). IOMETER: I/O subsystem measurement and
characterization tool open source code distribution [Online].
Available: http:/ /www.iometer.org

S. Sumimoto, K. Ooe, K. Kumon, T. Boku, M. Sato, and A. Ukawa,
“A scalable communication layer for multi-dimensional hyper
crossbar network using multiple gigabit ethernet,” in Proc. 20th
Int. Conf. Supercomput., 2006, pp. 107-115.

C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Cal-
kowski, C. Dubnicki, and A. Bohra, “HydraFS: A high-throughput
file system for the HYDRAstor content-addressable storage sys-
tem,” in Proc. 8th USENIX Conf. File Storage Technol., 2010,
pp- 225-238.

D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “HDFS
RAID,” technical Talk. Yahoo! Developer Network, 2010.

J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions-version 1.2,” Univ. Tennessee, Knoxville, TN, USA, Tech.
Rep. CS-08-627, 2008.

W. Lang, J]. M. Patel, and]. F. Naughton, “On energy manage-
ment, load balancing and replication,” ACM SIGMOD Rec.,
vol. 38, no. 4, pp. 35-42, 2010.

Zyhd. (2010). ZH-101 portable electric power fault recorder and
analyzer [Online]. Available: http://www.zyhd.com.cn/cN/
Bs_Product.asp

S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “A
decentralized algorithm for erasure-coded virtual disks,” in Proc.
Int. Conf. Dependable Syst. Netw., 2004, pp. 125-134.

Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The least-authority fil-
esystem,” in Proc. 4th ACM Int. Workshop Storage Security Surviv-
ability, 2008, pp. 21-26.

I. CLEVERSAEFE. (2008). Cleversafe dispersed storage [Online].
Available: open source code distribution: http://www.cleversafe.
org/downloads

Jianzhong Huang received the PhD degree in
computer architecture in 2005 and the postdoc-
toral research in information engineering in 2007
from the Huazhong University of Science and
Technology (HUST), Wuhan, China. He is cur-
rently an associate professor in the Wuhan
National Laboratory for Optoelectronics at HUST.
His research interests include computer architec-
ture and dependable storage systems. He
received the National Science Foundation of
China in Storage System Research Award in

2007. He is a member of the China Computer Federation (CCF).

Yanqun Wang received the BS degree in com-
puter science and technology in 2013 from the
Changsha University of Science and Technology,
China. She is currently working toward the MS
degree at the Huazhong University of Science and
Technology. Her research interests include clus-
tered storage and erasure-coded data archival.

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

2996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.11, NOVEMBER 2015

Xiao Qin (S’00-M’04-SM’09) received the BS
and MS degrees in computer science from the
Huazhong University of Science and Technology,
Wuhan, China, and the PhD degree in computer
science from the University of Nebraska-Lincoln,
in 1992, 1999, and 2004, respectively. He is cur-
rently an associate professor with the Depart-
ment of Computer Science and Software
Engineering, Auburn University. His research
interests include parallel and distributed systems,
storage systems, fault tolerance, real-time sys-
tems, and performance evaluation. He received the US National Science
Foundation (NSF) Computing Processes and Artifacts Award and the
NSF Computer System Research Award in 2007, and the NSF CAREER
Award in 2009. He is a senior member of the IEEE.

Xianhai Liang received the BS degree in com-
puter science and technology in 2012 from the
Wuhan University of Technology, China. He is
currently working toward the MS degree at the
Huazhong University of Science and Technology.
His research interests include networked storage
systems and file system.

?7."

Shu Yin received the BS and MS degrees in
communication engineering from the Wuhan Uni-
versity of Technology, China, and the PhD
degree in computer science from Auburn Univer-
sity, in 2006, 2008, and 2012, respectively. He is
currently an assistant professor in Hunan Univer-
sity, China. His research interests include storage
systems, reliability modeling, fault tolerance,
energy-efficient computing, high-performance
computing, and wireless communications.

Changsheng Xie received the BS and MS
degrees in computer science both from the Huaz-
hong University of Science and Technology
(HUST), Wuhan, China, in 1982 and 1988,
respectively. He is currently a professor in the
Department of Computer Engineering at HUST.
He is also the director of the Data Storage Sys-
tems Laboratory of HUST and the deputy director
of the Wuhan National Laboratory for Optoelec-
tronics. His research interests include computer
architecture, 1/0 system, and networked storage

system. He is the vice chair of the expert committee of Storage Network-
ing Industry Association (SNIA), China. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2024 at 13:45:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

