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Data deduplication techniques construct an index consisting of fingerprint entries to identify and eliminate

duplicated copies of repeating data. The bottleneck of disk-based index lookup and data fragmentation caused

by eliminating duplicated chunks are two challenging issues in data deduplication. Deduplication-based

backup systems generally employ containers storing contiguous chunks together with their fingerprints to

preserve data locality for alleviating the two issues, which is still inadequate. To address these two issues, we

propose a container utilization based hot fingerprint entry distilling strategy to improve the performance of

deduplication-based backup systems. We divide the index into three parts: hot fingerprint entries, fragmented

fingerprint entries, and useless fingerprint entries. A container with utilization smaller than a given threshold

is called a sparse container. Fingerprint entries that point to non-sparse containers are hot fingerprint entries.

For the remaining fingerprint entries, if a fingerprint entry matches any fingerprint of forthcoming backup

chunks, it is classified as a fragmented fingerprint entry. Otherwise, it is classified as a useless fingerprint

entry. We observe that hot fingerprint entries account for a small part of the index, whereas the remaining

fingerprint entries account for the majority of the index. This intriguing observation inspires us to develop a

hot fingerprint entry distilling approach named HID. HID segregates useless fingerprint entries from the index

to improve memory utilization and bypass disk accesses. In addition, HID separates fragmented fingerprint

entries to make a deduplication-based backup system directly rewrite fragmented chunks, thereby alleviat-

ing adverse fragmentation. Moreover, HID introduces a feature to treat fragmented chunks as unique chunks.

This feature compensates for the shortcoming that a Bloom filter cannot directly identify certain duplicated

chunks (i.e., the fragmented chunks). To take full advantage of the preceding feature, we propose an evolved

HID strategy called EHID. EHID incorporates a Bloom filter, to which only hot fingerprints are mapped. In

doing so, EHID exhibits two salient features: (i) EHID avoids disk accesses to identify unique chunks and

the fragmented chunks; (ii) EHID slashes the false positive rate of the integrated Bloom filter. These salient
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features push EHID into the high-efficiency mode. Our experimental results show our approach reduces the

average memory overhead of the index by 34.11% and 25.13% when using the Linux dataset and the FSL

dataset, respectively. Furthermore, compared with the state-of-the-art method HAR, EHID boosts the aver-

age backup throughput by up to a factor of 2.25 with the Linux dataset, and EHID reduces the average disk

I/O traffic by up to 66.21% when it comes to the FSL dataset. EHID also marginally improves the system’s

restore performance.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy;

Additional Key Words and Phrases: Data deduplication, data backup, storage system, disk bottleneck, data

fragmentation
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1 INTRODUCTION

The explosive growth of data has become an increasing challenge for data storage systems [13, 27].
Data deduplication is a modern technique that can identify and store unique chunks, thereby
significantly reducing the need for storage space [4, 12]. Moreover, data deduplication can min-
imize the network transmission of redundant data in a network storage system [23]. Due to its
high efficiency, data deduplication has been widely investigated. Emerging applications of data
deduplication such as I/O deduplication [18], file system deduplication [33], and memory system
deduplication [15, 16, 32] trumpet the increasing popularity and importance of data deduplica-
tion. The deduplication-based backup system first divides a backup stream into fixed or variable
size chunks [26, 29], then computes an SHA-1 digest [28] (i.e., fingerprint) for each chunk. And to
preserve locality of backup streams, containers [19, 34] are used to store contiguous data chunks
together with their fingerprints. When backing up a chunk, the system issues a lookup request to
a (fingerprint) index to compare the fingerprint of the current chunk to the fingerprints of stored
chunks. If a match occurs, the chunk is a duplicate copy and will be removed from the backup
stream. Otherwise, the chunk is a unique one and will be stored.

Since each chunk backup will cause an index lookup to locate a matched fingerprint, when the
size of the index is too large to be stored in memory, the performance of deduplication downgrades
tremendously because of the poor performance of disk-based index accesses [14]. Prior studies
show that accessing a disk-resident index is at least 1,000 times slower than accessing a memory-
resident index [9]. Frequent disk-based index lookups are one of most important performance
bottlenecks in deduplication-based backup systems [31]. For example, assuming the average size
of a data chunk is 8 KB, backing up an 800-TB dataset will generate at least 2 TB of fingerprints,
which will be too large to be stored in the memory [31]. There is a deduplication system employ-
ing 25 GB of memory to an index [14], and such a huge index will pose a heavy pressure on the
memory and cause a large number of disk I/Os. Another bottleneck in deduplication-based backup
systems is data fragmentation [17, 24]. Fragmentation denotes a phenomenon that logically con-
tinuous data chunks in a backup stream are physically scattered across different containers after
deduplication. The heavily scattered data chunks are considered as fragmented chunks. Data frag-
mentation degrades the performance of restoring backup streams because fragmentation destroys
spatial locality [21].

To avoid the preceding expensive lookup requests to the index, container metadata (i.e., fin-
gerprints stored in containers) is prefetched from disks to memory to quickly identify contiguous
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Fig. 1. The relationship of fingerprint entries and containers.

duplicate chunks in the backup stream. For this reason, an index consisting of multiple fingerprint

entries is formed to facilitate container metadata prefetching, and each fingerprint entry maps
a fingerprint to the address of one or multiple containers [11]. Figure 1 briefly shows several
key concepts (e.g., fingerprint entry, indexing table, and container) and their relationships in
deduplication-based backup systems. Please note that the indexing table is comprised of two
parts: a memory-based index and a disk-based index. In the dashed box, numbers in the first line
represent fingerprints of stored data chunks, whereas numbers in the second line denote IDs of
containers, each of which stores specific data chunks.

Motivation 1. Analyzing the deduplication process reveals that fingerprint entries in the indexing
table can be classified into three categories: hot fingerprint entries, fragmented fingerprint entries,
and useless fingerprint entries. Let us elaborate these terms with the example in Figure 1. At the
bottom of Figure 1 are three containers, among which containers 0 and 2 are non-sparse contain-
ers, and container 1 is a sparse container. In this study, a container with utilization (detailed in
Section 3) smaller than a given threshold is called a sparse container ; fingerprint entries pointing
to non-sparse containers (i.e., containers 0 and 2) are hot fingerprint entries, and cold fingerprint

entries point to sparse containers, and thus we have four cold fingerprint entries 2, 3, 10, and 13
in this example. If a cold fingerprint entry’s fingerprint is identical to the fingerprint of any data
chunk included in future backup streams, this cold fingerprint entry is classified as a fragmented

fingerprint entry. Otherwise, this cold fingerprint entry is a useless fingerprint entry since there
are no matched fingerprints in chunks of future backup streams. The rationale behind classifying
fingerprint entries into three categories is threefold. First, hot fingerprint entries held in mem-
ory help avoid disk-based index accessing, which speeds up duplicated chunk identifications in a
backup stream during the course of deduplication. Second, keeping useless fingerprint entries in
memory wastes scarce memory space since useless fingerprint entries have no contribution to du-
plicated chunk identification. Third, fragmented fingerprint entries reflect fragmented data chunks
(please see the detailed discussion in Section 3), which should be rewritten to new containers for
alleviating data fragmentation.

Motivation 2. Removing the fragmented fingerprint entries from the indexing table makes the
deduplication-based backup system treat the fragmented chunks as unique chunks and directly
rewrite them to new containers, thus alleviating data fragmentation. Now, we demonstrate how
removing the fragmented fingerprint entries make deduplication-based backup systems directly
rewrite the fragmented chunks for alleviating data fragmentation with the preceding example in
Figure 1. Let us first recall some terms as follows. Fragmentation refers to a phenomenon that logi-
cally continuous data chunks in a backup stream are physically scattered across different contain-
ers after deduplication, and such chunks are referred to as fragmented chunks. A sparse container

refers to a container with utilization smaller than a given threshold. Because container 1 in Figure 1
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is a sparse container, its corresponding data chunks represented by fingerprints 2, 3, 10, and 13 will
hardly appear in subsequent backup streams. For the purpose of alleviating data fragmentation,
even if a few of chunks of sparse containers appear in subsequent backup streams, they will be con-
sidered as fragmented chunks and rewritten together with other unique chunks to new containers.
For example, we assume a subsequent backup stream containing four chunks 2, A, B, and C, each
of which issues an index lookup request to the indexing table (global fingerprint entries); then,
only fingerprint 2 matches. Therefore, the new chunk 2 in the subsequent backup stream is a du-
plicated chunk since there exists a duplicate copy of the new chunk 2 in sparse container 1. Instead
of deduplicating the new chunk 2, we regard the new chunk 2 as a fragmented chunk and rewrite
it into a new container together with other unique chunks in the backup stream to alleviate data
fragmentation. Note that traditional deduplication-based systems first identify the new chunk 2
as a duplicated chunk since the fragmented fingerprint entries (e.g., the entry of fingerprint 2) are
not removed, then use additional rewriting algorithms to determine whether the duplicated chunk
is a fragmented chunk or not, which increases computing overhead. If we remove the fragmented
fingerprint entries from the indexing table, the new chunk 2 is identified as a unique chunk and
directly rewritten to a new container for alleviating data fragmentation. Please note that both the
stored chunk 2 in the sparse container 1 and the new chunk 2 in the backup stream are called frag-

mented chunks in this article. The fingerprint entries (e.g., the entry of fingerprint 2) of fragmented
chunks are referred to as fragmented fingerprint entries.

Inspired by the preceding motivations, in this study we first propose a container utilization (de-
tailed in Section 3) based hot fingerprint entry distilling approach—HID—to alleviate the disk I/O
bottleneck and reduce data fragmentation. HID leverages container utilization to identify hot and
cold fingerprint entries. HID separates cold fingerprint entries from the indexing table at the end
of a backup process. Then in the next backup process, only hot fingerprint entries will be used
to construct the indexing table (containing a memory-based index and a disk-based index). In do-
ing so, HID improves the hit ratio of memory-based index lookups since all fingerprint entries in
the indexing table are hot fingerprint entries, thereby avoiding frequent disk-based index access.
Moreover, HID reduces data fragmentation because the separation of fragmented fingerprint en-
tries enables a deduplication-based backup system to treat fragmented chunks as unique chunks
to directly rewrite them into containers.

Motivation 3. It is noteworthy that we propose a salient featurecalled FTU (Fragmented chunks
are Treated as Unique chunks). The mechanism of FTU is that HID only keeps hot fingerprint en-
tries in the indexing table, leaving no fragmented fingerprint entries in the index table. When per-
forming an index lookup on a fragmented chunk, there is no matching entry in the indexing table,
so fragmented chunks are regarded as unique chunks. FTU is introduced to offset the deficiency of
a Bloom filter. The Bloom filter is a deduplication optimization technique used to identify unique
chunks in backup streams. However, the Bloom filter fails to identify duplicate chunks in backup
streams due to the false-positive issue (i.e., the hash collision) [5, 22, 34]. Without FTU, fragmented
chunks may degrade the performance of a deduplication-based backup system. More specifically,
fragmented chunks are a subset of duplicate chunks. Each fragmented chunk in backup streams
is not identified by the Bloom filter and will issue an index lookup request to the indexing table
(see Figure 1), which may cause disk-based index accesses. Fortunately, the Bloom filter mated
with FTU (by map only hot fingerprints to this Bloom filter) regards fragmented chunks as unique
chunks and can effectively identify these fragmented chunks, thereby avoiding the indexing table
lookups.

To exploit the full advantages of FTU and the Bloom filter, we finally propose an evolved con-
tainer utilization based hot fingerprint entry distilling strategy—EHID—to improve our initial HID.
EHID embeds a Bloom filter and maps only hot fingerprints into the Bloom filter. In doing so,
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EHID exhibits three merits. First, EHID effectively avoids disk-based index accesses when iden-
tifying both unique and fragmented chunks. Second, the false-positive rate of the Bloom filter is
reduced by mapping only hot fingerprints into the integrated Bloom filter (please see Section 5.3).
Third, EHID achieves a considerable performance improvement in deduplication-based backup
systems. To sum up, this article makes the following contributions:

• We obtain a handful of compelling and valuable findings. First, to reduce disk-based in-
dex lookups and alleviate data fragmentation, we show that global fingerprint entries can
be divided into three categories: hot fingerprint entries, useless fingerprint entries, and
fragmented fingerprint entries. Useless fingerprint entries are useless to identify duplicate
chunks in the backup stream, so caching them in memory is unwise. Separating useless
fingerprint entries alleviates the problem of disk-based index lookups. The separation of
fragmented fingerprint entries enable a deduplication-based backup system to regard frag-
mented chunks as unique chunks to directly rewrite them to new containers, thus alleviating
data fragmentation. Second, we reveal that container utilization is an effective indicator for
facilitating the three-category classification of fingerprint entries. Fingerprint entries point-
ing to non-sparse containers are hot fingerprint entries, and fingerprint entries pointing to
sparse containers are useless or fragmented fingerprint entries.
• We propose HID to deal with the disk-based index lookup bottleneck and alleviate data frag-

mentation in deduplication-based backup systems.
• We propose an evolved HID called EHID. EHID embeds a Bloom filter and maps only hot

fingerprints to the embedded Bloom filter. In doing so, EHID significantly avoids expensive
disk-based index accesses. Extensive experimental results demonstrate that EHID achieves
considerably higher performance.

The rest of this article is organized as follows. Section 2 summarizes the related work. Sec-
tion 3 introduces related background knowledge. Section 4 presents our motivation and analyses
of the fingerprint entry category conversion. Section 5 demonstrates our design and implementa-
tion. Comprehensive experiments are performed to evaluate the proposed approaches in Section 6.
Section 7 concludes the article.

2 RELATED WORK

Many studies have been conducted to handle the bottleneck of disk-based index lookups. For ex-
ample, a Bloom filter [5] is used by exact deduplication (ED) approaches [22, 34] to identify
unique chunks. However, the efficiency of the Bloom filter declines as the amount of backup data
increases. This is because the false-positive rate [5, 22, 34] of the Bloom filter becomes larger when
its space usage grows. Near-ED methods perform deduplication by coarsely sampling a portion of
all fingerprint entries (e.g., random sampling, uniform sampling) [3, 14, 20, 31]. Since the number of
sampled fingerprint entries is much smaller than the total number of fingerprint entries, near-ED
methods reduce the number of disk accesses caused by index lookups. Although the ED and near-
ED approaches reduce the number of disk I/Os, both of them involve a large number of useless fin-
gerprint entries and fragmented fingerprint entries, which can cause frequent disk accesses during
index lookups. To alleviate data fragmentation, HAR (i.e., a History-Aware Rewriting algorithm)
makes use of container utilization to identify and rewrite fragmented chunks [10]. Please note that
rewriting fragmented chunks refers to allowing a small number of duplicated chunks to be stored
on disk. Unfortunately, HAR ignores the fact that container utilization can facilitate categorizing
fingerprint entries. In this research, we leverage container utilization to classify fingerprint entries,
aiming to speed up index lookups and alleviate data fragmentation. To make the related work more
clear and comprehensive, the following two paragraphs introduce each work in more detail.
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Fig. 2. Example of deduplication for two backup streams.

To reduce accesses to the disk-based index, many deduplication methods have been proposed.
Zhu et al. [34] use a Bloom filter to identify unique chunks and employ a container to preserve the
locality of the backup streams, thereby overcoming the disk bottleneck. MFDedup [35] maintains
the locality of backup workloads by using a data classification approach to generate an optimal
data layout. However, the false-positive rate of the Bloom filter [5] increases sharply as the spatial
usage of this Bloom filter grows. Sparse indexing approaches [20] randomly sample a percentage
of fingerprint entries from all fingerprint entries of stored chunks (intensive index) to construct the
sparse index. The sparse indexing methods reduce the memory overhead of the index and improve
the backup throughput. However, its deduplication ratio relies on the locality of the backup streams
and sampling ratio. Guo and Efstathopoulos [14] apply the sampling method from logical locality
to physical locality. Extreme Binning [3] and ChunkStash [8] take advantage of similarity theory
of files instead of the locality of the backup streams. However, it is sensitive to the similarity of files.
Xia et al. [31] take advantage of both locality and similarity, and it works well for workloads with
weaker or lower similarity. However, the indexing table constructed by the preceding contains
a large number of cold fingerprint entries, and the cold fingerprint entries result in frequently
accessing a disk-based index when performing index lookups.

Since fragmentation greatly degrades the restore performance, many rewriting algorithms for
mitigating fragmentation have been proposed. Most rewriting algorithms [6, 17, 19, 25] allocate
small-size memory to buffer the consecutive data chunks in a backup stream. The sequence of data
chunks in the buffer is called a logical sequence. In contrast, a sequence of data chunks located on
disk is called a physical sequence. If the logical sequence is significantly different from the phys-
ical sequence, the rewriting algorithms determine that the buffer has many fragmented chunks
and rewrites them. However, since the allocating memory only buffers a fraction of a backup
stream, the fragmented chunks are identified inaccurately. To deal with this problem, HAR [10]
uses the global information of previous backup streams to predict the fragmentation of latter
backup streams. HAR overcomes the shortcoming of the other rewriting algorithms and improves
both the restore performance and the deduplication ratio. Unfortunately, HAR fails to consider
that the significant indicator—container utilization—reflects the fingerprint entries’ categories. In
addition, the overhead of updating fragmented fingerprint entries in HAR diminishes the backup
performance.

3 BACKGROUND

Fragmentation. Figure 2 shows that by dealing with the first backup stream, the unique chunks
are aggregated to containers in sequence. The data chunks of the first backup stream are stored in
containers 1, 2, 3, and 4. When the second backup stream arrives, chunkA is identified as duplicated.
Thus, A is not stored, and it is replaced by a pointer to the shared chunk A located in container 1.
The next chunk L is identified as a unique chunk, and thus it is stored in container 5 in this example.
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Following this process, the remaining data chunks of the backup stream are deduplicated one by
one. At the end, all contiguous data chunks of the second backup stream are scattered in different
containers, which is called data fragmentation.

Container utilization. Figure 2 demonstrates that for the first backup stream, container 1 has
three shared chunks: A, B, and C . However, for the second backup stream, container 1 only has
two shared chunks: A and C . There is a high probability that container 1 only has less than two
shared chunks for all latter backup streams, since the backup data is continuously modified (delet-
ing/adding/modifying the data chunks). In other words, the number of shared chunks in a con-
tainer is gradually decreased with the growth of the backup version in the backup and archive
systems. Such effect is reflected by the container utilization and can be expressed as the following
Equation (1). Container utilization is defined as

CU k
i = Rk

i /S, (1)

where k represents the kth backup stream, i represents the ith container, S denotes the container
size (the number of data chunks), Rk

i denotes the number of shared chunks in the ith container for

the kth backup stream, and CU k
i denotes the container utilization of the ith container for the kth

backup stream.
As shown in Figure 2, since CU 1

1 = 3/3 = 100%,CU 2
1 = 2/3 = 66.66%, we can conclude that the

higher the container utilization, the more frequent this container is accessed during data backup
and restore. Container utilization has historical inheritance characteristics [10]. For a container i ,
its container utilization decreases as backup versions (streams) increase. In other words, CU 1

i ≥
CU 2

i ≥ · · · ≥ CU n
i . Therefore, for a typical backup scenario, the container utilization does not

increase unless a rare rollback occurs [10]. However, in those rare cases, the growth of container
utilization has negligible impact on the overall system performance.

Additionally, the intra-backup duplication has no impact on the container utilization. For exam-
ple, as we can see from Figure 2, container 2 contains three data chunks: D, E, and F . Although the
first backup stream contains data chunks E, F and two duplicate copies of D, R1

2 is still calculated as
3. This indicates that no matter how many times E, F , or D repeatedly appears in the first backup
stream, R1

2 remains unchanged. Because S is a fixed value, according to Equation (1), the container

utilization CU 1
2 also remains unchanged.

Sparse container. The sparse container represents the container whose utilization is below a
given threshold. For example, if the threshold P is set to 70%, for the second backup stream, the
container 1 is a sparse container since CU 2

1 = 66.66% < P . According to its historical inheritance
characteristic, if a specific container is identified as a sparse container in the previous backup
stream, the container will still be a sparse container in subsequent backup streams. This is a basic
precondition of our approaches.

Rewriting fragmented chunks. To improve the restore performance, HAR [10] rewrites the frag-
mented chunks and reduces the number of sparse containers. This is shown in Figure 2. For ex-
ample, assuming the sparse threshold P = 50%, since CU 2

4 = 1/3 = 33.33% < P , container 4 is
a sparse container. When processing the second backup stream, the duplicated chunk J (chunk J
in the second backup stream) is identified as a fragmented chunk, since the fingerprint entries of
the shared chunk J points to the sparse container 4. Therefore, the fragmented chunk J is written
to the new container 5 together with unique chunks L and M. When restoring the second backup
stream, chunk J is directly obtained from container 5 cached in the memory, because container 5
has been read from disk to memory when restoring the former chunk L. In contrast, if the frag-
mented chunk J is not rewritten, reading container 4 is inevitable to obtain chunk J, which incurs
a disk I/O and damages the restore performance.
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Detailed data deduplication process. As shown in Figure 3, the indexing table (containing a
memory-based index and a disk-based index) consists of all fingerprint entries of the stored chunks.
Each fingerprint entry maps a fingerprint to the corresponding container ID (logical address). The
containers are located in disk storage, and each container preserves corresponding fingerprints.
The recipes is used to record the logical chunk sequence for restoring data. The active container
is used to store the unique chunks and rewritten chunks. The byte stream (backup stream) has
already been divided into chunks, and the fingerprints have been computed. When backing up a
new chunk, the system first goes to the container metadata cache to locate an identical fingerprint.
If the fingerprint does not hit in the cache, then the system will generate a lookup request for the
indexing table, which may issue accessing the disk-based index. At the end of searching the index,
the attribute of new chunks is determined. If the new chunk is a unique chunk, the system writes
it into the active container, and generates a new fingerprint entry and inserts it to the indexing
table. If the new chunk is a duplicated chunk, it will not be stored. If the new chunk is a fragmented
chunk, the system rewrites it to the active container and then updates the fragmented fingerprint
entry (making the entry point to the active container instead of the sparse container). Note that
updating a fragmented fingerprint entry may require accessing the disk-based index, because it
has to look up the indexing table again to locate the fragmented fingerprint entry and then update
the entry’s value (container ID).

Restore process. After the deduplication process, the data chunks of a file may be completely
disordered and scattered in various containers across all disks, and the fingerprint entries in the
indexing table are also disordered. Therefore, the indexing table cannot be leveraged to restore
the data due to lacking the sequence information of data chunks. File recipes stored on disk are
employed to restore data instead of using the indexing table. The file recipe consists of fingerprints
and the physical addresses of the corresponding data chunks. The sequence of fingerprints in
the file recipe is consistent with the sequence of data chunks in the backup stream. Each backup
version generates a specific file recipe. If the kth backup version is required to restore, the system
will first analyze the metadata of the file recipes, obtain the stored path of the kth file recipe, load
the file recipe into memory, and read the data chunks from disk to restore the data by using the
file recipe information. Because the file recipes are independent of the indexing table, deleting any
of the fingerprint entries from the indexing table does not have any impact on the restore process.

4 MOTIVATION DISCUSSION AND FINGERPRINT ENTRY CATEGORY CONVERSION

ANALYSIS

4.1 Motivation Discussion

Looking up the indexing table and the increasing fragmented chunks cause frequent accesses to
the disk-based index and the data fragmentation, respectively, leading to a major performance
bottleneck in deduplication-based backup systems. Our key idea is that separating useless fin-
gerprint entries has no impact on identifying and eliminating duplicated chunks, and separating
fragmented fingerprint entries makes the systems directly rewrite fragmented chunks and reduces
data fragmentation. Our key observation is that a sparse container reflects useless and fragmented
fingerprint entries. For example, Figure 3 shows that fingerprint entries whose fingerprints are 2,
3, 10, and 13 in the indexing table are cold fingerprint entries, because they all point to container
1, which is assumed to be a sparse container.

These facts enable us to classify the fingerprint entries as hot, fragmented, and useless, and frag-
mented and useless fingerprint entries constitute cold fingerprint entries. For example, in Figure 3,
the fingerprint entries in the indexing table pointing to sparse containers are classified as cold
fingerprint entries, and the remaining are classified as hot fingerprint entries. More specifically,
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Fig. 3. The detailed process of deduplication.

fingerprint entries whose fingerprints are 10 and 13 are useless fingerprint entries, because they
are not accessed in the subsequent backup process due to the characteristics of data backup scenar-
ios (detailed in Section 3.2). Fingerprint entries 2 and 3 are fragmented fingerprint entries, because
there are duplicated fingerprints (chunks) 2 and 3 in the subsequent byte stream but their shared
chunks are located in the sparse container 1. In this article, we call chunks like the duplicated
chunks 2 and 3, as well as the shared chunks 2 and 3, fragmented chunks.

Separating useless fingerprint entries can effectively save memory space, and thus it is always
performed. However, separating fragmented fingerprint entries is optional. In the design of HID,
we choose to separate fragmented fingerprint entries for the following three reasons:

• Separating fragmented fingerprint entries introduces an FTU feature. The FTU feature de-
notes that separating fragmented fingerprint entries make deduplication-based backup sys-
tems treat the fragmented chunks as unique chunks. For example, in Figure 3, after entries
of fingerprints 2 and 3 are separated, fragmented chunks 2 and 3 in the byte stream are
identified as unique chunks by traversing the indexing table.
• Separating fragmented fingerprint entries makes deduplication-based backup systems di-

rectly rewrite fragmented chunks, and such a direct rewriting mechanism alleviates the data
fragmentation and avoids the overhead of updating fragmented fingerprint entries. For in-
stance, thanks to the FTU feature, the fragmented chunks 2 and 3 in the byte stream (see
Figure 2) are transformed into unique chunks (FTU’s unique chunks). The deduplication-
based backup system directly writes these FTU’s unique chunks to the active container and
generates new fingerprint entries for these chunks rather than updating the fragmented
fingerprint entries that are separated.
• The operation of dividing the fingerprint entries pointing to sparse containers (i.e., cold

fingerprint entries) into useless fingerprint entries and fragmented fingerprint entries is ex-
pensive. To avoid this overhead, the fingerprint entries pointing to sparse containers are
directly separated from all fingerprint entries.

Integrating a Bloom filter and FTU. FTU is complementary to a Bloom filter. A Bloom filter in
a deduplication-based backup system can efficiently identify unique chunks by mapping all fin-
gerprints into itself. However, it lacks the ability to identify duplicated chunks due to its false
positive [5, 22]. Specifically, duplicate chunks in a byte stream must look up the index, which may
result in disk-based index accesses. Fortunately, with FTU integrated, the Bloom filter is enabled
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to identify some duplicated chunks, because FTU treats all fragmented chunks as unique chunks.
Note that the fragmented chunks belong to duplicated chunks, and fragmented chunks are only a
small part of duplicated chunks. In summary, the combination of the Bloom filter and FTU further
prevents a deduplication-based backup system from the disk-based index accesses. At the level
of code implementation, As long as we map the hot fingerprints instead of all fingerprints to the
integrated Bloom filter, the Bloom filter and FTU can be integrated very well.

Based on the preceding analysis, we propose EHID to further improve the backup performance
of deduplication-based backup systems by integrating a Bloom filter and FTU. EHID places the
Bloom filter between the container metadata cache and the indexing table, and it maps only hot
fingerprints into this Bloom filter (see Figure 3). In doing so, most of all unique chunks (normal and
FTU’s unique chunks) are identified by the Bloom filter instead of the indexing table. For example,
since cold fingerprint entries (i.e., the entries of fingerprints 2, 3, 10, and 13) are not mapped to the
Bloom filter, when processing new chunks 2 and 3 in the byte stream, the Bloom filter identifies
these chunks as unique ones. Thereby, this avoids looking up the indexing table to determine
the attributes (unique, duplicated, or fragmented) of these two chunks. Note that the traditional
methods will continue to search the indexing table, because they map the cold fingerprints (i.e., 2,
3, 10, and 13) to the Bloom filter considering that the Bloom filter cannot treat new chunks 2 and
3 as the unique chunks. In addition to the mutual gain of FTU and the Bloom filter, mapping only
hot fingerprints instead of all fingerprints into the Bloom filter decreases the false-positive rate.

4.2 Fingerprint Entry Category Conversion Analysis

There are still two key issues that HID and EHID need to solve. Can a useless or fragmented
fingerprint entry can be reclassified as a hot one as the workload evolves? How do HID and EHID
deal with this situation when it happens? To answer these two questions, we conduct the following
analysis. Note that the indexing table (global fingerprint entries) is created to quickly identify
duplicated chunks in the backup streams. Consider the following typical data backup scenarios.

An engineer creates a file, which is represented by {A1,A2,A3,A4}0, the subscript 0 indicates that
the file is the initial version, and each character in “{}” represents a data chunk, the {A1,A2,A3,A4}0
means that the file contains four data chunks: A1,A2,A3, and A4. To protect the file, the engineer
uses a deduplication-based backup system to make the first backup. Since there are no chunks
stored in the backup storage at this moment, the indexing table is empty. The indexing table is
represented by (∅)0, in which the subscript 0 indicates that the indexing table has not been updated
yet, and each character in “()” represents the fingerprint of an entry. When data chunksA1 through
A4 are backed up, the system searches the indexing table (∅)0. As the indexing table is empty,
these data chunks are identified as unique chunks and stored to disks. Then, the system creates
the entries of fingerprints a1 through a4 for the four chunks stored. At this time point, the indexing
table is updated from (∅)0 to (a1 − a4)1.

Later on, the engineer modifies the file and the file becomes {A1,A2,B1,A4}1. At this time, he
makes the second backup. The system traverses (a1 − a4)1 and finds the fingerprints a1,a2, and
a4, respectively. Therefore, data chunks A1,A2, and A4 are identified as duplicated chunks. The
data chunk B1 is identified as a unique chunk, because there is no corresponding fingerprint in
(a1 − a4)1. Then the system creates a fingerprint entry b1 for data chunk B1 and inserts b1 to the
indexing table. Now, the indexing table is updated from (a1−a4)1 to (a1−a4,b1)2. We can find that
during the second backup, only the fingerprint entries a1,a2, and a4 in (a1 − a4)1 are helpful for
identifying the duplicated chunksA1,A2, andA4 in {A1,A2,B1,A4}1. In other words, removing the
entry of fingerprint a3 from indexing table (a1 − a4)1 has no impact on the deduplication process.

After that, the engineer modifies the file again and the file becomes {A1,A2,B1,C1,C2}2. At
this time, she makes the third backup. In the same way, only the entries of fingerprints a1,a2,
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and b1 in (a1 − a4,b1)2 are helpful for identifying the duplicated chunks A1,A2, and B1 in
{A1,A2,B1,C1,C2}2. Therefore, it creates no side effects to remove fingerprint entries a3 and a4
from (a1 − a4,b1)2.

In the preceding backup example, the indexing table is updated in the following sequence:

(∅)0 → (a1,a2,a3,a4)1 → (a1,a2,a3,a4,b1)2

→ (a1,a2,a3,a4,b1, c1, c2)3 → · · · → (a1,a2,a3,

a4,b1, c1, c2, . . . ,xm)n ,

(2)

where n is the number of backups and underlined letters indicate useless fingerprint entries.
This example shows that although the total number of fingerprint entries increases with backup
versions, the number of useless fingerprint entries also increases accordingly. Previous stud-
ies [6, 7, 11] show that as more backups are made, the number of fragmented chunks increases
and the number of fragmented fingerprint entries also increases. Therefore, we can infer that the
number of hot fingerprint entries remains at a stable level or grows slowly as the backup versions
increase.

In a typical data backup scenario, with the increase of backup versions, the changing trend of
the three fingerprint entries are as follows:

• Hot fingerprint entry: If a fingerprint entry is classified as hot in the current backup, it is
possibly a hot fingerprint entry or becomes a useless or a fragmented fingerprint entry in
subsequent backups.
• Useless fingerprint entry: If a fingerprint entry is classified as useless in the current backup,

it is still a useless fingerprint entry in subsequent backups.
• Fragmented fingerprint entry: If a fingerprint entry is classified as fragmented in the current

backup, it is still a fragmented fingerprint entry in subsequent backups.

Due to the characteristics of a typical data backup scenario, a cold fingerprint entry (i.e., a useless
fingerprint entry and a fragmented fingerprint entry) is not reclassified as a hot fingerprint entry
anymore. Therefore, both HID and EHID work efficiently in any backup versions.

5 DESIGN AND IMPLEMENTATION

5.1 Architecture Overview

Figure 4 depicts the overall architecture and the workflow of our EHID strategy. The entire system
can be divided into three large modules: a Fingerprint Lookup Module (FLM), a Container

Utilization Monitoring Module (CUMM), and an Index Separating Module (ISM). These
modules work collaboratively by repeating the following three steps:

• At step 1, FLM is responsible for identifying unique chunks and duplicated chunks when
each new data chunk is backed up. Meanwhile, CUMM computes the utilization of each
container by recording which data chunk belongs to which container in the backup process
and then obtains a list of sparse containers. The list is used for distinguishing hot and cold
fingerprint entries.
• At step 2, ISM identifies cold fingerprint entries and hot fingerprint entries from all finger-

print entries by checking whether a fingerprint entry points to a sparse container that is
recorded on the list. If the fingerprint entry points to a sparse container, it is a cold finger-
print entry. Otherwise, it is hot. In this way, ISM separates cold fingerprint entries and hot
fingerprint entries.
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Fig. 4. Architecture overview of the EHID-based deduplication-based backup system.

• At step 3, hot fingerprint entries (the hot index file) become the indexing table consisting of
the memory-based and disk-based index. Hot fingerprints are used to initialize the Bloom
filter at the beginning of the next backup. Finally, the system goes back step 1 and repeats
the preceding process.

The key process. As the orange arrows shown in Figure 4, the memory-based and disk-based
index constitute the indexing table. As more data are backed up, the number of all fingerprint
entries in the indexing table becomes greater too, even though a part of the fingerprint entries
gradually turn into cold fingerprint entries. The index separating algorithm (see Figure 4) divides
the fingerprint entries in the indexing table into a cold index file and a hot index file at the end of
every backup process. In this way, an increasing number of cold fingerprint entries is saved to the
cold index file, and the number of hot fingerprint entries in the hot index file is kept small. At the
beginning of every backup, only the hot index file is used to construct the indexing table (the disk-
based index and the memory-based index), and this file is also used to initialize the Bloom filter.
The Bloom filter is re-initialized at the beginning of each backup. FLM does not query the cold
index file unless maximizing the deduplication ratio is required in our design (note that traditional
deduplication-based backup systems are provided with only the FLM module).

The cold index file and hot index file are stored on disks. At the initial stage of a specific backup,
the system takes the hot index file as the disk-based index and reads a portion of the disk-based
index into memory. At this time, the indexing table equals the disk-based index, and both the
indexing table and disk-based index contain the fingerprint entries in the memory-based index.
During the backup process, new fingerprint entries are continuously generated and inserted into
the memory-based index. If the allocated memory size is fixed, the inserted fingerprint entries will
trigger replacement of the fingerprint entry in memory. At this stage, the disk-based index may
not include all of the memory-based index. Therefore, the indexing table used for deduplication
should contain both the disk-based index and memory-based index as Figure 4 shows. After the
completion of the current backup, ISM separates the indexing table as a cold index file and a hot
index file and stores them on disk again. Therefore, the hot index file and the cold index file are
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updated for every backup version. Additionally, during the backup process, the indexing table is
updated continuously for the subsequent backup stream.

The overhead of CUMM and ISM is low. CUMM uses a 64-bit integer array to record sparse con-
tainers. One backup has about 3,500 containers in our experiments. Assuming that all containers
are sparse containers, CUMM only takes 27.34 KB of memory space and a little computing over-
head to operate. ISM separates cold and hot fingerprint entries by going through the indexing table
just once. Suppose that the number of all fingerprint entries is N and the time complexity of this
separation process is O (N ). It is noteworthy that the time complexity is also O (N ) for a lookup
request for accessing a disk-based index. Moreover, separating the index can be done offline to
minimize the overhead before starting the next backup.

5.2 The Algorithm of Distilling Hot Fingerprint Entries

Algorithm 1 demonstrates the basic working process of HID. It is outlined as the following three
important steps:

• When the nth backup starts, hot fingerprint entries distilled by the separates function in the
(n − 1)th backup (e.g., hIndexn−1) construct the indexing table in the current backup (e.g.,
дlIndexn ), regardless of coIndexn−1.
• In the backup process, the lookup function inserts the fingerprint entries of unique chunks

(e.g., entryuniq_chunk ) into the indexing table (e.g., дlIndexn ). Meanwhile, a small part of all
fingerprint entries in the indexing table is converted to cold fingerprint entries.
• When the backup process completes, the separates function distills hot fingerprint entries

(e.g., hIndeXn ) and stores them to disk for the next backup. When the next backup begins,
Algorithm 1 goes back to the first step once again.

5.3 EHID

Figure 4 outlines the architecture and workflow of EHID. EHID has two advantages:

• EHID takes full use of FTU and the Bloom filter to effectively identify the normal
unique chunks and FTU’s unique chunks (i.e., fragmented chunks). This design prevents
deduplication-based backup systems from accessing a disk-based index when identifying
unique chunks in the backup stream.
• The Bloom filter employed by EHID works in high efficiency. The false-positive rate of the

Bloom filter increases with the growth of its space usage. Fortunately, EHID separates the
cold fingerprint entries in a timely manner while minimizing the number of hot fingerprint
entries. Such effects reduce the space usage taken by a hot fingerprint of the Bloom filter.

5.3.1 Analyses of Accessing the Disk-Based Index. The following formally analyzes the efficiency
of EHID. Suppose that the number of data chunks in one backup stream is fixed, and each unique
data chunk must trigger a request to look up the disk-based index. On the opposite side, each
duplicated chunk may trigger a search of the disk-based index with similar probability, because
an index lookup request of a duplicated chunk can be served in the container metadata cache or
memory-based index. The average probability of each duplicated chunk triggering a disk-based
index lookup request is supposed to be equal and denoted by Pf ind . Suppose that uniqs and dups
denote the number of unique chunks and duplicated chunks, respectively. Then, for the traditional
deduplication-based backup systems, the number of lookup requests for accessing the disk-based
index in one backup stream is defined as

disk_lookupstr adis = uniqs + dups ∗ pf ind . (3)
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ALGORITHM 1: Hot Fingerprint Entries Distilling Algorithm

Input: listn ; //list of sparse container IDs in the nth backup
дlIndexn ; // all fingerprint entries in the nth backup stream

Output: hIndexn ; // hot fingerprint entries in the nth backup stream
coIndexn ; // cold fingerprint entries in the nth backup stream

1: function init()
2: дlIndexn ← hIndexn−1;
3: end function

4: function lookup( )
5: while (new_chunk � endbackupStr eam ) do

6: if (new_chunk = uniq_chunk) then

7: insert (дlIndexn , entryuniq_chunk );
8: end if

9: new_chunk ← new_chunk− > next ;
10: end while

11: end function

12: function separates()
13: get f irst in дlIndexn ;
14: while ( f irst � endдl Indexn

) do

15: if f irst− > data.value in set (listn ) then

16: write ( f irst− > data, coIndexn );
17: else

18: write ( f irst− > data,hIndexn );
19: end if

20: f irst ← f irst− > next ;
21: end while

22: end function

We assume that the false-positive rate of the Bloom filter is 0; for traditional deduplication-based
backup systems configured with a Bloom filter, the number of disk-based index lookup requests is
defined as

disk_lookupstr adis+Bloomf il ter = dups ∗ pf ind . (4)

For EHID, the number of disk-based index lookup requests is defined as

disk_lookupsEH I D = dups
′ ∗ pf ind . (5)

Note that dups
′
< dups , because EHID treats some duplicated chunks (i.e., fragmented chunks)

as unique chunks (i.e., the FTU feature). In other words, the number of unique chunks identified by
EHID is larger than that identified by traditional deduplication-based backup systems (i.e.,uniqs ′ ≥
uniqs). Correspondingly, the number of duplicated chunks identified by EHID is smaller than that
of traditional deduplication-based backup systems (i.e., dups ′ ≤ dups). Therefore, we can derive
thatdisk_lookupstr adis ≥ disk_lookupstr adis+Bloomf il ter ≥ disk_lookupsEH I D , and this expression
demonstrates that EHID requires the minimal number of lookup requests for accessing a disk-
based index.

We will give an example to illustrate the reason the EHID strategy can leverage a Bloom fil-
ter to identify fragmented chunks and avoid index access on disks, thus improving the backup
throughput. Please note that the Bloom filter employed by traditional approaches cannot identify
fragmented chunks. Suppose that there is a fragmented chunk J1 stored on disk, and a new backup
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Fig. 5. False-positive rate vs. percentage of hot fingerprint entries.

chunk J2 is a duplicated chunk of J1. To alleviate the data fragmentation, J2 has to be written to
disk although it is a duplicated chunk. Since EHID does not map the fragmented fingerprints to
the Bloom filter (to integrate the Bloom filter and FTU), the system cannot find the mapping bit
of the chunk J1’s fingerprint. Therefore, the new chunk J2 is identified as a unique chunk and will
be written to disk. If the fragmented fingerprints are mapped to the Bloom filter, the mapping bit
of chunk J1 will be located. Due to the false positive of the Bloom filter, the system has to fur-
ther check the memory-based index and disk-based index in sequence to identify the attribute of
chunk J2 including the unique chunk, duplicated chunk, and fragmented chunk. Looking up the
fingerprint (entry) may trigger disk I/Os in the following steps.

5.3.2 False-Positive Rate of EHID’s Bloom Filter. Another fascinating feature of EHID is that it
reduces the false-positive rate of the integrated Bloom filter. The calculation formula of the false-
positive rate (FPR) of the Bloom filter can be expressed as

FPR = (1 − e (−kn/m) )k , (6)

where k denotes the number of hash functions, m is the size of the Bloom filter (bits), and n is
the number of mapping fingerprints. Assuming a 128-KB Bloom filter with k hash functions and
250,000 fingerprints, the false-positive rate is 14.28%, implying that there are about 14 lookup
requests for accessing the indexing table to process every 100 chunks. EHID only maps hot fin-
gerprints (37.8% of all fingerprints on the Linux trace) to the Bloom filter, and accordingly the
false-positive rate is decreased to 0.78%. This example shows that accesses to the indexing table
are significantly reduced. Figure 5 shows the relationship between the false-positive rate and the
percentage of hot fingerprint entries. It is demonstrated that when the percentage is decreased
from 100% to 37.8%, the false-positive rate of the Bloom filter is reduced from 14.2% to 0.8%. Please
note that the percentage of hot fingerprint entries on the x-axis is generated by different backup
versions from 1 to 213 of the Linux dataset.

6 EXPERIMENT EVALUATION

6.1 Evaluation Environment

In this section, we conduct a group of experiments to evaluate the performance of the distilling
approaches of our hot fingerprint entries. We implemented both HID and EHID on an open source
project named destor [11]. To quantitatively evaluate the performance, we leverage four metrics,
including the memory overhead of the indexing table, backup performance, restore performance,
and storage overhead (more intuitive than the deduplication ratio). The ED method identifies and
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Table 1. Characteristics of Workloads Used for Evaluation

Dataset Name TS1 DR2 ACS3 Versions (#)

Linux 99 GB 97.85% 3.1 KB 213

FSL 1.95 TB 98.73% 4.4 KB 173
1T S stands for the total size of the trace.
2DR stands for the deduplication ratio of the trace.
3ACS stands for the average chunk size of the trace.

deletes every duplicated chunk and does not use any rewriting algorithms. It serves as the base-
line for performance evaluation. Furthermore, the performance of HID and EHID are compared
against the state-of-the-art algorithm HAR [10]. Since HID and EHID only differ in the backup
performance, the other three metrics (the memory overhead of the indexing table, restore perfor-
mance, and storage overhead) of the experimental results of HID are omitted.

The experimental operating system is CentOS release 7.4 (Linux version 3.10.0-693.11.1. el7.x86-
64). The container size is 4 MB (containing about 1,000 data chunks). The sparse threshold is a very
important parameter for both HAR and EHID.

The number of sparse containers grows with the increase of the sparse threshold. This results
in more fragmented chunks, useless chunks, and cold fingerprint entries. Because both EHID and
HAR improve the restore performance by rewriting fragmented chunks, a higher sparse thresh-
old results in that both EHID and HAR rewrite more fragmented chunks, and thus both of them
achieve a higher restore performance and a lower deduplication ratio. Additionally, in contrast to
HAR, EHID separates cold fingerprint entries from the indexing table. Therefore, a higher sparse
threshold results in that EHID separates more cold fingerprint entries, which will further reduce
the memory overhead of the indexing table. As a result, EHID further improves the backup per-
formance, whereas HAR cannot improve. When the threshold is decreased to a lower value, it will
generate an opposite process. It has been proved by HAR that setting the threshold at 50% can strike
a good balance between the deduplication ratio and restore performance. Therefore, to have a fair
comparision with HAR, we set the threshold at 50% across all of the experiments in this article.

The Linux dataset and the FSL dataset [1, 2] are commonly used public datasets [30]. The char-
acteristics of these two datasets are shown in Table 1. Since the FSL trace does not have the byte
stream of the data chunks, we cannot evaluate the actual throughput on the FSL trace like on the
Linux trace. We analyze the disk I/O behaviors caused by index lookup in the deduplication pro-
cess and use the number of disk I/Os to measure the throughput and evaluate the efficiency of our
approaches on the FSL dataset.

We use the speed factor [19] as a metric to evaluate the restore performance. The speed factor
indicates the original data size that can be restored by reading a container from disk on average.
A higher value of speed factor indicates better restore performance.

6.2 Evaluating the Memory Overhead of the Indexing Table

We evaluate the memory overhead of the indexing table on Linux and FSL datasets. Please note
that the memory overhead means reading all fingerprint entries of the indexing table into memory
for completely avoiding disk-based index accesses. In Figure 6(a), the y-axis represents the size
of the indexing table that is used to perform deduplication, and the x-axis is the IDs of backup
versions. The curves of ED and HAR depicted in Figure 6(a) are completely overlapped. This trend
is expected, because these two methods do not separate cold fingerprint entries from the indexing
table. EHID can effectively reduce the memory overhead of the indexing table. In addition, with the
increase of backup versions, EHID becomes more efficient. For example, the memory overhead of
the indexing table incurred by EHID is only 37.80% of the other two methods (ED and HAR) when
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Fig. 6. Memory overhead of the indexing table.

the backup version reaches 213. Figure 6(b) depicts the experimental results when we conduct
our experiment on the FSL trace. Figure 6(b) shows similar performance to that on the Linux
trace. For instance, the fingerprint entries generated by EHID only account for 71.38% of the other
two methods when the backup version reaches 173. These experiments confirm that EHID can
effectively reduce the memory overhead of the indexing table and avoid the bloated indexing table
caused by system aging.

Figure 6 demonstrates that when using the Linux dataset, EHID can save more memory than
that of the FSL dataset. There are two reasons behind this. The first one is that the portion of
sparse containers of the Linux dataset is higher than that of the FSL dataset. This is because a large
portion of the Linux dataset is self-referenced [10]. The second one is, in contrast to the 173 backup
versions of the FSL dataset, that the Linux dataset has 213 backup versions. This is a very important
feature in which EHID can save more memory with the growth of backup versions. Additionally,
for the Linux dataset, we employ Linux-3.x for the evaluation before backup version 191. The next
backup version, 192, uses Linux-4.x. Since the kernel of Linux has a major revision update, the new
backup data incurs a large number of unique chunks and corresponding fingerprint entries. This
is the reason we observe a spike in Figure 6(a). However, both parts of Figure 6 demonstrate the
same trend that with the increase of backup versions, the memory overhead of the indexing table
generated by ED and HAR grows significantly. In contrast, the memory overhead of the indexing
table incurred by EHID grows much more slowly than that of ED and HAR.

6.3 Evaluating the Backup Performance

We evaluate the backup performance when the Bloom filter is disabled on two datasets (i.e., the
Linux and FSL datasets). Figure 7(a) depicts the backup throughput of ED, HAR, and HID when
using the Linux dataset. The results reveal that the throughput of HID is the highest one. HAR
and ED are ranked second and third, respectively. The reason the throughput of HID with the
first 23 backup versions is low is that the inability to cache sparse containers of HID damages the
efficiency of distilling hot fingerprint entries.

Since the FSL trace does not contain byte streams of the data chunks, it is infeasible to evaluate
the actual throughput on the FSL trace like on the Linux trace. In this part of the study, we investi-
gate the I/O behavior of the methods. Figure 7(b) shows the backup performance of ED, HAR, and
HID on the FSL dataset. Due to the large fluctuations in I/O, to make the results more intuitive and
understandable, we perform a ln(I/Os ) operation on the number of I/Os (the y-axis in Figure 7(b)).
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Fig. 7. Backup performance of ED, HAR, and HID.

Fig. 8. Backup performance of ED+BF, HAR+BF, and EHID.

Figure 7(b) reveals that compared to the other two methods (i.e., ED and HAR), HID generates the
least amount of I/Os.

Now we are in the position to evaluate EHID—an evolved version of HID that integrates a Bloom
filter to further boost backup performance. For fair comparison purposes, we configure a Bloom
filter for both ED and HAR approaches as well. Figure 8(a) shows the throughput of ED+BF (Bloom
filter), HAR+BF, and EHID. The results from Figure 8(a) indicate that the throughput of EHID is
much higher than that of the other two methods. There are two factors contributing to EHID’s
high throughput. First, EHID improves the efficiency of memory and reads more useful finger-
print entries from disk into memory when the same memory size is configured. Second, since all
fingerprint entries preserved in memory are hot fingerprint entries, the hit ratio of memory-based
index lookups is significantly increased, and thus lookup requests for accessing the disk-based
index are noticeably avoided. As expected, the throughput of ED+BF gradually decreases as the
backup version increases. This is because the fragmentation of data chunks gradually grows with
the increase of the backup versions. Therefore, more lookup requests have to be satisfied with
the disk-based index, and such effects result in performance degradation. It is very interesting
to observe that the throughput of HAR+BF fluctuates around the curve of ED+BF. The reason
behind the throughput fluctuation is that HAR has to update the fingerprint entries of all frag-
mented chunks, which involves additional disk I/Os. When the number of fragmented chunks
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Fig. 9. Average backup performance.

Fig. 10. Speed factor with the Linux dataset.

grows, the throughput of HAR decreases correspondingly due to a large number of generated
disk I/Os.

Figure 8(b) demonstrates that the number of disk I/Os issued by EHID for index lookup is sig-
nificantly lower than that of the other two methods with the Bloom filter enabled when using the
FSL dataset. The reason is that EHID significantly alleviates sending lookup requests for the disk-
based index. The disk I/Os generated by ED+BF and HAR+BF illustrate a similar behavior on the
FSL dataset to that on the Linux dataset. Note that all of these three methods greatly benefit from
the Bloom filter, because the Bloom filter effectively avoids accessing the disk-based index incurred
by identifying unique chunks. Nevertheless, EHID benefits the most. The average performance of
the preceding six methods is shown in Figure 9, which confirms that EHID is significantly better
than the other five methods.

6.4 Evaluating the Restore Performance

Now we pay attention to the restore performance. Figure 10 shows the speed factor when using
the Linux dataset. Since HAR uses an Optimal Cache Replacement (OPT) algorithm, for the
sake of fairness, the three methods ED, HAR, and EHID in our experiments are all configured with
the OPT algorithm. OPT’s cache size is set to 30, 60, and 90, and the cache unit is a container. It
can be seen from Figure 10 that the speed factor of ED is the lowest one. As the backup version
increases, the speed factor becomes lower. The reason is that ED does not employ a rewriting
algorithm to alleviate the fragmentation. The speed factors of HAR and EHID are very similar.
More specifically, when the cache size is 30, the average speed factors of HAR and EHID are 2.75
and 2.68, respectively (see Figure 10(a)). When the backup version grows from 115 to 175, HAR
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Fig. 11. Speed factor with the FSL dataset.

slightly outperforms EHID. This is because HAR rewrites more fragmented chunks than EHID
does in these backup versions, which leads to more storage space usage. However, as the cache size
increases, the speed factor of EHID becomes better than that of HAR. For example, when the cache
size is 60, the average speed factors of HAR and EHID are 2.8327 and 2.8806, respectively. And when
the cache size is 90, the average speed factors of HAR and EHID are 2.8328 and 2.8807, respectively.

Additionally, we can see that in both 60- and 90-cache-size cases, EHID outperforms HAR
slightly. This change is because EHID only rewrites one fragmented chunk once, whereas HAR
may rewrite one fragmented chunk many times. For example, suppose that when there is a frag-
mented fingerprint entry I1 pointing to a sparse container C0, the fingerprint of a new backup
chunk J1 is duplicated with the fingerprint of the fragmented fingerprint entry. The new chunk J1
will be rewritten to a new container C1 to alleviate the data fragmentation. Since a new container
is normally not a sparse container, the system should timely update the fragmented fingerprint
entry I1 and point it to the container C1. If this fragmented fingerprint entry I1 is not updated
before another new chunk J1 is required to back up, the system will rewrite the new chunk J1
to another new container C2. In the original HAR, due to the synchronization of multi-threads
and dirty buffer, occasionally the fragmented fingerprint entries may not be able to be updated
timely. In doing so, the over-rewritten chunks in HAR waste the storage space and the disk band-
width when restoring data. In contrast to HAR, EHID is not required to update the fragmented
fingerprint entries because all of the fragmented fingerprint entries have been separated from the
indexing table. Therefore, EHID does not have the possibility of rewriting the same fragmented
chunk many times.

Figure 11 depicts the speed factor when using the FSL dataset. The experimental results are
very similar to those of the Linux dataset. As expected, Figure 11 demonstrates that the speed
factor of ED is still the lowest one, and the speed factor of EHID is very close to that of HAR.
More specifically, as the cache size increases, EHID becomes superior to HAR in terms of the
speed factor. For instance, first, when the cache size is 30, the average speed factors of HAR and
EHID are 2.6272 and 2.6240, respectively. Next, when the cache size is increased to 60, the average
speed factors of HAR and EHID becomes 3.2273 and 3.2311, respectively. Last, when the cache size
reaches 90, the average speed factors of HAR and EHID turn into 3.5595 and 3.5738, respectively.
It is worth noting that in emergency recovery scenarios, using a larger cache size to restore data
is tremendously valuable.

6.5 Evaluating the Storage Overhead

Our experimental results indicate that the average deduplication ratio of the three methods (i.e.,
ED, HAR, and EHID) ranges from 96.73% to 98.73% on the Linux and FSL datasets. Since the dedu-
plication ratio of these three methods are very similar, to make the performance comparison more
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Fig. 12. Storage overhead evaluation.

intuitive and clearer, we evaluate the storage overhead instead of the deduplication ratio. Here,
the storage overhead refers to the total size of stored chunks accumulated until the deduplication-
based backup systems finish the first x (i.e., backup id + 1) backups.

Figure 12(a) shows the comparison of the storage overhead between these three methods with
the Linux dataset. It can be seen from Figure 12(a) that the disk space used by the ED is the smallest
one, and this is because ED does not consider the restore performance and only stores the unique
chunks. The storage overhead of HAR is slightly higher than that of EHID, and this is because
HAR has an over-rewriting phenomenon. The phenomenon means that a fragmented chunk is
rewritten more than two or more times in a backup. This over-rewriting operation reduces the
utilization of containers and generates more sparse containers. As a result of the increased number
of sparse containers, rewriting algorithms rewrite more fragmented chunks and waste storage
space. Experimental results from Figure 12(a) demonstrate that the rewriting ratio of EHID, on
average, is 2.83% lower than that of HAR with the Linux dataset. This means that when HAR
rewrites 10-GB data chunks, EHID can save about 290 MB of storage space.

Figure 12(b) shows the storage overhead of ED, HAR, and EHID when the dataset is FSL. Simi-
larly, the storage overhead of ED is the smallest one. Since the over-rewriting influence of HAR in
the FSL dataset case is not as strong as that in the Linux dataset case, the storage overhead of HAR
and EHID is very close. For example, in the 173rd version of the backup, the storage overhead of
HAR reaches 21,590,404,782 bytes, whereas the storage overhead of EHID reaches 21,617,550,154
bytes. The storage overhead of EHID is only 0.13% higher than that of HAR, which is negligible.

7 CONCLUSION

In this study, we found that fingerprint entries in the index of traditional deduplication-based
backup systems can be classified into three categories: useless fingerprint entries, fragmented fin-
gerprint entries, and hot fingerprint entries. Useless fingerprint entries and fragmented fingerprint
entries waste memory space and increase disk I/Os. Additionally, separating fragmented finger-
print entries enables deduplication-based backup systems to directly rewrite fragmented chunks,
thereby alleviating data fragmentation. To deal with the performance bottleneck caused by cold
fingerprint entries (i.e., useless and fragmented fingerprint entries), we first proposed HID, which
separates cold fingerprint entries and preserves only hot fingerprint entries in memory. Compared
with the state-of-the-art HAR approach, HID improves both memory utilization and backup perfor-
mance. Thanks to the reduction in data fragmentation, HID improves restore performance as well.

We introduced the FTU feature to compensate for the shortcoming of the Bloom filter. To this
end, we proposed an evolved HID strategy—EHID. EHID embeds a Bloom filter that only maps
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hot fingerprints, which decreases the false-positive rate. Accordingly, EHID exhibits two salient
advantages: EHID avoids disk-based index accesses when identifying unique chunks, and EHID
decreases the false-positive rate of the integrated Bloom filter, thus further reducing disk accesses.
These salient features keep EHID in high-efficiency mode. Furthermore, EHID can effectively im-
prove the throughput of deduplication-based backup systems. The reason is twofold. First, EHID
only stores hot fingerprint entries in memory, which can improve the hit ratio of fingerprint
lookups. Second, EHID significantly reduces the number of disk I/Os incurred by disk-based in-
dex lookups. More specifically, to speed up fingerprint lookups, EHID separates the indexing table
and stores them as two files after a backup completes: a hot index file and a cold index file. If a
memory miss occurs, EHID will look up the missed fingerprint entry in the disk-based index. Be-
cause the disk-based index in EHID only contains the hot index file, which is a tiny part of the
entire indexing table, the size of the disk-based index of EHID is much smaller than that of tradi-
tional approaches. Therefore, EHID is much faster than traditional approaches in terms of looking
up a fingerprint entry in the disk-based index.

We conducted extensive experiments to quantitatively evaluate the performance of EHID. Ex-
perimental results and analysis indicate that EHID can significantly improve the performance of
deduplication-based backup systems.

Possible directions for future work include combining EHID and near-ED to further explore the
performance behavior of EHID.
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