
T
u

H
a

b

c

d

a

A
R
R
A
A

K
G
U
P

1

u
o
a
a
i
d
b
a

c

h
(

h
0

The Journal of Systems and Software 99 (2015) 20–35

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

owards energy-efficient scheduling for real-time tasks under
ncertain cloud computing environment

uangke Chena, Xiaomin Zhua,∗, Hui Guob, Jianghan Zhua, Xiao Qinc, Jianhong Wud

Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, PR China
School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia
Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849-5347, USA
Department of Mathematics and Statistics, York University, Toronto M3J1P3, Canada

 r t i c l e i n f o

rticle history:
eceived 13 January 2014
eceived in revised form 4 July 2014
ccepted 28 August 2014
vailable online 6 September 2014

eywords:
reen cloud computing
ncertain scheduling
roactive and reactive

a b s t r a c t

Green cloud computing has become a major concern in both industry and academia, and efficient
scheduling approaches show promising ways to reduce the energy consumption of cloud computing
platforms while guaranteeing QoS requirements of tasks. Existing scheduling approaches are inadequate
for real-time tasks running in uncertain cloud environments, because those approaches assume that
cloud computing environments are deterministic and pre-computed schedule decisions will be statically
followed during schedule execution. In this paper, we address this issue. We introduce an interval num-
ber theory to describe the uncertainty of the computing environment and a scheduling architecture to
mitigate the impact of uncertainty on the task scheduling quality for a cloud data center. Based on this
architecture, we present a novel scheduling algorithm (PRS1) that dynamically exploits proactive and

reactive scheduling methods, for scheduling real-time, aperiodic, independent tasks. To improve energy
efficiency, we propose three strategies to scale up and down the system’s computing resources according
to workload to improve resource utilization and to reduce energy consumption for the cloud data center.
We conduct extensive experiments to compare PRS with four typical baseline scheduling algorithms. The
experimental results show that PRS performs better than those algorithms, and can effectively improve
the performance of a cloud data center.

© 2014 Elsevier Inc. All rights reserved.
. Introduction

Cloud computing has become a paradigm for enabling ubiq-
itous, convenient, on-demand network access to a shared pool
f configurable computing resources (e.g., networks, servers, stor-
ge, applications and services) that can be rapidly provisioned
nd released with minimal management effort or service provider
nteraction (Mell and Grance, 2009). To satisfy such a soaring
emand of computing services, IT companies (e.g., Google and Face-

ook) are rapidly deploying distributed data centers in different
dministrative domains around the world.

Consequently, tens of thousands of hosts in these data centers
onsume enormous energy for computing and equipment cooling

∗ Corresponding author.
E-mail addresses: hkchen@nudt.edu.cn (H. Chen), xmzhu@nudt.edu.cn (X. Zhu),

uig@cse.unsw.edu.au (H. Guo), jhzhu72@gmail.com (J. Zhu), xqin@auburn.edu
X. Qin), wujh@mathstat.yorku.ca (J. Wu).

1 Proactive and Reactive Scheduling.

ttp://dx.doi.org/10.1016/j.jss.2014.08.065
164-1212/© 2014 Elsevier Inc. All rights reserved.
operations (Luo et al., 2012). It is reported that the energy con-
sumed in data centers is about 1.5% of the global electricity in
2010, and the percentage will be doubled by 2020 if the current
trends continue (Koomey, 2011). Apart from the operating cost,
high energy consumption will result in low reliability of the system
since the failure rate of hosts doubles for every 10-degree increase
in temperature (Cameron et al., 2005). In addition, high energy
consumption has a negative impact on environment because gen-
erating electrical energy from fossil fuels produces a large amount
of CO2 emissions, which are estimated to be 2% of the global emis-
sions (Pettey, 2007). Therefore, reducing energy consumption or
conducting green computing has become a grand challenge when
deploying and operating cloud data centers.

With the development of virtualization technology (Barham
et al., 2003), a single physical host can run multiple virtual machines

(VMs) simultaneously. In addition, the VMs can be relocated by live
operations, such as VM creation, VM live migration and VM dele-
tion, to achieve fine-grained optimization of computing resources
for cloud data centers. This technology offers significant oppor-
tunities for green computing (Beloglazov et al., 2012). Leveraging

stems

t
d
t
t
m
H
p
h

l
m
I
s
a
I
a
p
v
t
d
i
c

c
t
t
B
m
d
a
(
s
d
e
m

c
s
V
p
n
o
m
b
t
t
c
r

•

•

•

•

w
t
a

H. Chen et al. / The Journal of Sy

he capabilities of virtualization technology, one can scale up or
own VMs rapidly according to the current workloads in the sys-
em. When the system is overloaded, more VMs are added; when
he system is underloaded, the VMs can be consolidated to a mini-

al number of physical hosts and the idle hosts can be turned off.
osts in a completely idle state can dissipate over 70% as much
ower as when they fully utilized (Ma et al., 2012). Turning-off idle
osts, therefore, means significant power savings.

Nevertheless, the virtualization also brings about new chal-
enges to the resource management in clouds due to the fact that

ultiple VMs can share the hardware resources (e.g., CPU, memory,
/O, network, etc.) of a physical host (Kong et al., 2011). The resource
haring may cause the performance of VMs subjecting to consider-
ble uncertainties in cloud computing environments mainly due to
/O interference between VMs (Bruneo, 2014; Armbrust et al., 2010)
nd hosts are overloaded (Beloglazov and Buyya, 2013). For exam-
le, the ready time and the computing capacity of a VM arbitrarily
aries over time, which makes it difficult to accurately measure
he execution timing parameters and resource usage of VMs. Such
ynamic and non-deterministic characteristics of the VM comput-

ng cause great difficulties for efficient resource management in
louds.

In addition, a primary fraction of computing applications in
loud data centers are real-time tasks. The arrival times of these
asks are dynamic and the predictions of their execution dura-
ion can also be difficult and sometimes impossible (Van den
ossche et al., 2010), since most real-time tasks are fresh and no
uch information is available to help the accuracy of the pre-

ictions. The imprecise execution prediction and dynamic task
rrival time leave the associated scheduling timing constraints
i.e., start time, execution time and finish time) under con-
iderable uncertainty. Furthermore, real-time tasks often need
eadlines to guarantee their timing requirements, which further
xacerbates the problem of efficient task scheduling and resource
anagement.
Motivation: Due to the dynamic and uncertain nature of cloud

omputing environments, numerous schedule disruptions (e.g.,
horter or longer than expected task execution time, variation of
M performance, arrival of urgent tasks, etc.) may occur and the
re-computed baseline schedule may not be executed and may
ot be effective in real execution. Unfortunately, the vast majority
f researches did not consider the uncertainties of clouds, which
ay leave a large gap between the real execution behavior and the

ehavior initially expected. To address this issue, we study how
o describe these uncertain parameters, how to control uncertain-
ies’ impact on scheduling results, and how to reduce the energy
onsumption in cloud data centers, while guaranteeing the timing
equirements of real-time tasks.

Contributions: The major contributions of this work are:

An uncertainty-aware architecture for scheduling real-time tasks
in the cloud computing environment.
A novel algorithm named PRS that combines proactive with
reactive scheduling methods for scheduling real-time tasks and
computing resources when considering the uncertainties of the
system.
Three system scaling strategies according to dynamic workloads
to reduce energy consumption.
The experimental verification of the proposed PRS algorithm
based on randomly generated test instances and real world traces
from Google.
The remainder of this paper is organized as follows. The related
ork in the literature is summarized in Section 2. Section 3 presents

he scheduling model and the problem formulation. The energy-
ware scheduling algorithm for real-time tasks considering the
 and Software 99 (2015) 20–35 21

uncertainties of the system is introduced in Section 4. Section 5
conducts extensive experiments to evaluate the performance of
our algorithm by comparing it with four baseline scheduling algo-
rithms. Section 6 concludes the paper with a summary and future
directions.

2. Related work

In recent years, the issue of high energy consumption in cloud
data centers has attracted a great deal of attention. In response to
that, a large number of energy-aware scheduling algorithms have
been developed. Among them, there are two typical approaches.
One is DVFS (dynamic voltage and frequency scaling) based and
another is machine virtualization based.

The DVFS technique makes trade-offs between processor power
and performance and has been commonly used to reduce the
power consumption of data centers. For example, Garg et al. (2011)
proposed near-optimal energy-efficient scheduling policies that
leverages DVFS to scale down the CPU frequency as far as possible to
minimize the carbon emission and maximize the profit of the cloud
providers. Li and Wu (2012) proposed a Relaxation-based Itera-
tive Rounding Algorithm (RIRA) for DVFS-enabled heterogeneous
multiprocessor platforms to minimize overall energy consump-
tion while meeting tasks deadlines. Rizvandi et al. (2011) focused
on the issue of high energy consumption in cluster, and pre-
sented the MVFS-DVFS algorithm to fully utilize slack times and
reduce energy consumption on processors. Zhu et al. (2013) pro-
posed an energy-efficient elastic (3E) scheduling strategy to make
trade-offs between users’ expected finish time and energy con-
sumption by adaptively adjusting CPU’s supply voltages according
to the system workload. However, the DVFS is mainly implemented
on host processor machines and their energy consumption con-
tributes about one-third of the total system power (Ahmad and
Vijaykumar, 2010). In addition, only the dynamic power (about
30% of the processor power Beloglazov et al., 2012) can be mod-
erated by DFVS. Due to those limitations of DVFS, the virtualization
technique, used to consolidate VMs for low energy consump-
tion of data centers, is becoming popular and is the focus in this
paper.

The vast majority of the energy-aware scheduling research
efforts over the past several years have concentrated on dynam-
ical consolidation of VMs according to the system workload, to
reduce the number of physical hosts so that the idle hosts can be
switched off for low energy consumption. Hermenier et al. exam-
ined the overhead of migrating a VM to its chosen destination, and
proposed a resource manager named Entropy for homogeneous
clusters. The Entropy can dynamically consolidate VMs based on
constraint programming and explicitly takes into account the cost
of the migration plan (Hermenier et al., 2009). Younge et al. (2010)
developed a novel green framework where green computing was
realized by energy efficient scheduling and VM management com-
ponents. Srikantaiah et al. (2008) explored the inter-relationships
among energy consumption, resource utilization, and performance
of consolidated workloads, and designed a heuristic scheme for
minimizing system energy consumption while meeting the per-
formance constraint. Hsu et al. (2014) studied how to dynamically
consolidate tasks to increase resource utilization and reduce energy
consumption, and presented an energy-aware task consolidation
(ETC) method to optimize energy usage in cloud systems. Our work
also leverages the VM consolidation technique to reduce the sys-
tems’ energy consumption. However, unlike the above existing

approaches, where uncertainties of tasks’ execution times and VMs’
performance were not considered, our design takes the uncertain-
ties into account, and we employ proactive and reactive methods
to mitigate the impact of uncertainties on the scheduling quality
for cloud data centers.

2 stems

s
s
s
m
c
p
o
r
p
e
v
a
t
a
t
o
d
d
f
m
p
t
a
t

3

b
s
c
l

3

i
T
s

D
r
l
l
a
o
a
d

D
[
o
l

[
i∑
2 H. Chen et al. / The Journal of Sy

There also exist some work investigating the task scheduling
trategies under uncertain computing environments. Qiu et al.
tudied the problem of assigning computing units to each task in a
ystem to achieve energy savings at a minimum cost. The system is
odeled by a Probabilistic Data Flow Graph (PDFG) and the timing

onstraint of the system was satisfied with a guaranteed confidence
robability (Qiu and Sha, 2009). Li et al. (2011) studied the impacts
f inaccurate execution time information on the performance of
esource allocation, and presented an evaluation method to com-
are the performance of three widely used greedy heuristics. Xian
t al. (2008) presented an approach to combine intra- and intertask
oltage scheduling for energy reduction in hard real-time systems
ssuming that the probabilistic distributions of tasks’ execution
ime are available. Kong et al. (2011) focused on uncertain avail-
bilities of virtualized server nodes and workloads, and utilized
he type-I and type-II fuzzy logic systems to predict the availability
f resources and workloads to improve performance of virtualized
ata centers. The algorithms in these work need the probability
istributions or membership functions of tasks’ execution times
or deterministic proactive schedule decisions. Unlike the afore-

entioned approaches, the algorithm in this paper firstly builds
roactive baseline schedules; the proactive baseline schedules are
hen dynamically repaired when disruptions (e.g., the urgent tasks
rrive, systems’ load become too heavy, and the like) occur during
he course of executions.

. Modeling and formulation

In this section, we firstly introduce the theory of interval num-
er for description of uncertain parameters encountered in the task
cheduling, then propose a scheduling architecture for cloud data
enters. Based on this architecture, we form our scheduling prob-
em.

.1. Interval number and arithmetic operations

Interval number can be used to specify imprecise, uncertain and
ncomplete data and/or decision variables (Sengupta and Pal, 2009).
he related definitions and operations that will be used in our task
cheduling are given below.

efinition.1. (Sengupta and Pal, 2009) Let R be the set of all
eal numbers, and a−, a+ ∈ R. An interval number is defined as fol-
ows: ã = [a−, a+] = {t|a− ≤ t ≤ a+, t ∈ R}, where a− and a+ are the
ower and upper bounds of the interval number ã, respectively. If
− = a+ = t, then ã = [t, t] = t is a real number. We denote the set
f all interval numbers by I(R). The interval between the lower
nd upper bounds of an uncertain number reflects its uncertainty
egree.

efinition.2. (Sengupta and Pal, 2009) If ã = [a−, a+], b̃ =
b−, b+] ∈ I(R), then the addition operation ⊕ and the subtraction
peration � between the two interval numbers are defined as fol-
ows.

ã ⊕ b̃ = [a− + b−, a+ + b+];

ã � b̃ = [a− − b+, a+ − b−]. (1)

Inference 1. Given a set of interval numbers ã1 = [a−1 , a+1], ã2 =
a−, a+], . . ., ãn = [a−n , a+n], then the sum of these interval numbers
2 2
s:

n

i=1

ãi =
n∑

i=1

[a−
i

, a+
i

] =
[

n∑
i=1

a−
i

,

n∑
i=1

a+
i

]
. (2)
 and Software 99 (2015) 20–35

By Inference 1, we know that the interval of
∑n

i=1ãi is the sum
of the interval of each interval number. The uncertainty increases
with the count of interval numbers.

Definition.3. (Sengupta and Pal, 2009) If ã = [a−, a+], b̃ =
[b−, b+] ∈ I(R), then the multiplication operation ⊗ and the divi-
sion operation ø between the two interval numbers are defined as
follows.

ã⊗ b̃ = [min{a−b−, a−b+, a+b−, a+b+},
max{a−b−, a−b+, a+b−, a+b+}];

ãøb̃ = [a−, a+] ⊗ [1/b−, 1/b+].

(3)

We use interval numbers to model the uncertain execution tim-
ing parameters in the cloud computing. Our optimization problem
of task scheduling can therefore be formed based on those param-
eters, which will be detailed in the next section.

3.2. System architecture and scheduling model

In this paper, the targeted system is a large-scale data center
consisting of n heterogeneous physical hosts H = {h1, h2, . . ., hn}.
Each host is characterized by hj = {cj, mj, sj, pj, VMj}, where cj is
the host CPU performance measured in Millions Instructions Per
Second (MIPS), mj the memory size, sj the storage capacity, and
pj the energy consumption when the host is fully utilized; a set
of VMs on the host are denoted by VMj, VMj = {vmjk, k = 0, 1, . . .,
|VMj|}, and vmjk is the kth virtual machine (VM) on host hj. A VM is,
in turn, modeled as vmjk = {̃cjk, mjk, sjk, wtkjk, etkjk}, where c̃jk, mjk

and sjk are respectively the CPU performance (in MIPS), memory
and storage capacity required for VM vmjk; the wtkjk and etkjk rep-
resent the waiting and executing task on VM vmjk, respectively.
Note that the CPU performance of VMs arbitrarily varies over time,
and their lower and upper bounds can be gained before scheduling,
e.g., by utilizing the Markov Chain prediction method (Beloglazov
and Buyya, 2013), so we utilize interval number to present them.

In this paper, we focus on real-time, aperiodic, independent
tasks, denoted as T = {t1, t2, . . ., tm}. For a certain task ti ∈ T, it can be
modeled by ti = {ai, di, l̃i, dzi}, where ai, di, l̃i and dzi represent the
arrival time, deadline, length (in MI) and data size (in MB) of task
ti, respectively. Note that the length of a task is uncertain before
scheduling, and its lower and upper bounds can be gained, e.g.,
via machine learning method proposed in Berral et al. (2011). So
we employ interval number to describe the computing length of a
task.

Each real-time task has a level of urgency, which can be deter-
mined in many ways, for example, deadline (Mills and Anderson,
2010), and laxity (Oh and Yang, 1998). Here we use the laxity for
the task urgency, which is given below.

Definition.4. The laxity (Oh and Yang, 1998) Li of task ti is

Li = di −
l+
i

min{c−
jk
} − ct. (4)

where l+
i

and di are the computation length upper bound and dead-
line of task ti, respectively; min{c−

jk
} is the computing capacity lower

bound of the VM with minimal CPU performance; l+
i

/ min{c−
jk
} rep-

resents the upper bound of task ti’s maximal execution time and ct
is the current time.

Comparing with the deadline-only-based urgency used in the

traditional Earliest Deadline First (EDF) (Mills and Anderson, 2010)
policy the laxity proposed here can better reflect tasks’ urgency by
considering both their computation lengths and deadlines since the
processing requirements of these tasks are heterogeneous. The task
with the smallest laxity should be first considered for execution

H. Chen et al. / The Journal of Systems

w
c

D
L
l
L

i
s
c
r
s
t
l
t

q
T
s
s
s
t
a
e
V

a
w
i
W
a
t
c

•

k=1
Fig. 1. The uncertainty-aware scheduling architecture.

hen scheduling. If Li is negative, task ti cannot be successfully
ompleted before its deadline di.

efinition.5. Urgent task: a task becomes urgent when its laxity
i is equal to or less than a preestablished threshold Ld. In this paper,
et Ld be the time for turning on a host and creating a VM on it (e.g.,
d = 120 s).

The scheduling architecture of a cloud data center introduced
n this paper is shown in Fig. 1. Similar to traditional multiproces-
or systems (Ma et al., 2012), the scheduling model in cloud data
enters consists of three layers: user layer, scheduling layer and
esource layer. However, the most difference between these two
ystems are that the resource layer in cloud data centers can be fur-
her divided into two layers: host layer and virtual machine (VM)
ayer, and that the VM layer can be scaled up and down according
o the workload in the cloud data centers.

The scheduler consists of a waiting queue (WQ), an urgent task
ueue (UTQ), a resource monitor, and a schedulability analyzer.
he WQ accommodates both new tasks and waiting tasks to be
cheduled, while the UTQ holds all the urgent tasks that should be
cheduled immediately. The resource monitor detects the system’s
tatus, and the schedulability analyzer is responsible for scheduling
ask and dynamically allocating computing resources. In addition,
ny VM vmjk has a local queue (LQ), which holds the executing task
tkjk and the waiting task wtkjk that have been scheduled on this
M.

The overview of the scheduling process for this architecture is
s follows. When non-urgent task arrives, it will be added into the
aiting queue (WQ), and the tasks in WQ are arranged in an ascend-

ng order by their laxity. When urgent task arrives or some tasks in
Q become urgent over time, they will be delivered to UTQ directly,

nd these tasks will be scheduled to VMs as executing or waiting
asks immediately. In addition, when any one of the two following
ases occurs, some tasks in WQ will be scheduled to VMs.

The first case is that when the arrival rate of tasks increases and
the resources required for tasks in WQ exceed the initiated com-
puting resources in the system, which can be approximated as
Formula (5), computing resources will be scaled up for the new
arrival tasks.

∃ti in WQ,

n∑
j=1

|VMj |∑
k=1

c−
jk

(di − max(rt+
jk

, ct)) <
∑
ts∈Ti

l+s . (5)
where rt+
jk

is the ready time’s upper bound of VM vmjk, i.e.,
the time that VM vmjk will finish all the tasks that have been
mapped to it, Ti = {ts|ds ≤ di} represents the subset of tasks
in WQ whose deadlines are smaller or equal to the deadline
 and Software 99 (2015) 20–35 23

of task ti, and ls is the computing length of task ti. Besides,∑n
j=1

∑|VMj |
k=1 c−

jk
(di − max(rt+

jk
, ct)) represents the available com-

puting resources before task ti’s deadline di, and
∑

ts∈Ti
l+s

represents the computing resources required by the subset of
tasks Ti = {ts|ds ≤ di}.
• The second case is when a VM finishes a task. On a task com-

pletion by a VM, the waiting task on the VM starts to execute
immediately, and searching a new waiting task for the VM from
WQ will be performed.

The unique features in this scheduling architecture are that most
of waiting tasks are waiting in the WQ instead of waiting on the LQs
of VMs and at most one task is allowed to wait on the LQ of each
VM. The benefits of this scheduling architecture are summarized as
follows.

• It can prohibit propagation of uncertainties throughout the
schedule. According to Inference 1, we know that as the count
of waiting tasks increases, the uncertainty degrees of waiting
tasks become larger, which will significantly affect the stability of
schedule. Therefore, we need to control the count of tasks waiting
on LQs (i.e., waiting on VM directly) to prevent the propagation
of uncertainties.
• This design allows each task waiting on LQ to start as soon as its

preceding task has finished, so the possible execution delay for a
new task is removed.
• This design enables overlapping of communications and compu-

tations. When VM is executing a task and the LQ is empty, VM can
simultaneously receive another task as a waiting task. By doing
so, communications and computations are efficiently overlapped
to save time, and overlapping of communications with compu-
tations has been proved to be an efficient method to improve
scheduling performance (Hu and Veeravalli, 2013).
• It also can reduce the overheads of task transfer among hosts

when corresponding VMs need to migrate. The reason is that
when consolidate VMs by live migrations, the waiting tasks on
VMs will also be migrated with VMs, which may cause overheads.
But this scheduling architecture maintains most waiting tasks in
WQ instead of LQs of VMs, and thus reduces the moving tasks’
data among hosts during VM migrations.

3.3. Problem formulations

As host resources are limited, the amount of resources required
for VMs on a host must not be greater than the capacity of the host.
The requirement forms the first scheduling constraint, as can be
formally expressed below.

cj �
|VMj |∑
k=1

c̃jk≥0, ∀hj ∈ H;

mj −
|VMj |∑
k=1

mjk≥0, ∀hj ∈ H;

sj −
|VMj |∑

sjk≥0, ∀hj ∈ H.

(6)
We utilize assignment variable xijk to reflect the mapping of task
ti to VM vmjk on host hj in a cloud data center. The assignment

24 H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35

Fig. 2. The reactive disruptions in a time axis.

on of

v
e

x

fi
f

o
b
a
u

l

c

e

a

f̃

v
V

s

w

e
b
1
V
r
t
i
r
a

Fig. 3. The illustrati

ariable xijk is 1 when task ti is assigned to VM vmjk, otherwise, xijk
quals 0, i.e.,

ijk =
{

1, if ti is assigned to vmjk,

0, otherwise.
(7)

We let s̃tijk, ẽtijk and f̃tijk be the start time, execution time and
nish time of task ti on VM vmjk, respectively. Since the CPU per-

ormance c̃jk of VM vmjk vary over the time and the total amount

f computation length l̃i of task ti cannot be exactly determined
efore scheduling, the parameters (i.e., s̃tijk, ẽtijk, f̃tijk, c̃jk, and l̃i)
re uncertain and we utilize the interval number to describe these
ncertain parameters (e.g., l̃i = [l−

i
, l+

i
] and c̃jk = [c−

jk
, c+

jk
] etc). For

−
i

, l+
i

, c−
jk

, c+
jk

> 0, the execution time of task ti on VM vmjk can be
alculated via Definition.3 as follows.

t̃ijk = l̃iø̃cjk = [l−
i

, l+
i

]ø[c−
jk

, c+
jk

] = [l−
i

, l+
i

] ⊗ [1/c−
jk

, 1/c+
jk

]

= [min{l−
i

/c−
jk

, l−
i

/c+
jk

, l+
i

/c−
jk

, l+
i

/c+
jk
}, max{l−

i
/c−

jk
, l−

i
/c+

jk
,

l+
i

/c−
jk

, l+
i

/c+
jk
}] = [l−

i
/c+

jk
, l+

i
/c−

jk
]. (8)

The finish time f̃tijk of task ti on VM vmjk can be easily determined
s follows.

tijk = s̃tijk ⊕ ẽtijk. (9)

In turn, the finish time f̃tetjk
of the executing task etjk on the VM

mjk determines the start time stwtjk
of the waiting task wtjk on the

M vmjk, which can be described as follows.

t̃wtjk
= f̃tetjk

. (10)

In addition, let ftr
ijk be the actual finish time of task ti on VM vmjk,

hich can be any value in the interval, f̃tijk. For example, assume the

stimated finish time of task t1 on VM vm11 is f̃t111 = [100, 150] s
efore scheduling; the actual finish time ftr

111 should be between
00 s and 150 s (e.g., 120 s) after the task t1 has been finished on
M vm11. Under the uncertain cloud computing scheduling envi-

onments, it is the actual finish time ftr

ijk that determines whether
he task’s timing requirement has been guaranteed or not. So, we
ntroduce the status variable oijk to record whether the timing
equirement of task ti on VM vmjk has been guaranteed or not. If

 task ti is assigned to VM vmjk and its actual execution time is
property 3, 4 and 5.

smaller or equal to its deadline, the time requirement of this task
is guaranteed, as specified in Formula (11).

oijk =

⎧⎨⎩
1, if ((ftr

ijk ≤ di) and (xijk = 1)),

0, otherwise. (11)

Since only one result of each task is needed, the second con-
straint:

n∑
j=1

|VMj |∑
k=1

oijk ≤ 1, ∀ti ∈ T. (12)

Subjecting to aforementioned constraints, the primary opti-
mization objective is to maximize the ratio of tasks finished before
their deadlines, which can be represented as follows.

Maximize
m∑

i=1

n∑
j=1

|VMj |∑
k=1

oijk

m
. (13)

where m and n are the count of tasks submitted and hosts in the
system, respectively.

Another objective needed to be optimized under uncertain envi-
ronments is to minimize the stability cost function

∑
wi(|st+

ijk
−

str
ijk
|) (Van de Vonder et al., 2008), defined as the weighted sum

of the absolute deviations between the predicted starting time’s
upper bound st+

ijk
of task ti in the baseline and their true start-

ing times str
ijk

during actual execution, which can be described as
follows.

Minimize
m∑

i=1

wi(|st+
ijk
− str

ijk|). (14)

where wi represents the marginal cost of time deviation between
the predicted starting time’s upper bound and the realized starting
time, and we let wi the reciprocal of real execution time etr

ijk
of task

ti on VM vmjk, i.e., wi = 1/etr
ijk

.
Apart from the guarantee ratio and stability, the total energy

consumption for executing a set of tasks T is also an important met-
ric to evaluate the performance of a cloud data center. So, in this
paper, we also focus on minimizing the total energy consumption,

which can be represented as follows (Beloglazov et al., 2012).

Minimize
n∑

j=1

∫ et

st

(k · pj · yt
j + (1 − k) · pj · u(t))dt. (15)

stems

w
t
y

t
(
u

4

c
e
t
t
t
t
s
s
c
fi
a
c

a
a
a
t
d
c
c

s

R

R

R

e
L
u
i
o
v
e
r

R

R

F
e
t
v

13: hostList ← hj; return vmjk;
14: end if

In the function ScaleUpComputingResource(), as shown in
Algorithm 2, we propose two strategies to add a new VM on a cer-
tain physical host. The strategy one is creating a new VM on original
H. Chen et al. / The Journal of Sy

here n is the number of hosts in the system; st and et are the start
ime and the end time of executing the task set T, respectively;
t
j
∈ {1, 0} denotes whether host hj is active at time instant t; k is

he fraction of energy consumption rate consumed by the idle host
e.g., 70%); pj is the host overall power consumption; u(t) is the CPU
tilization of host hj at time instant t.

. Algorithm design

In this section, we present our algorithm for real-time task and
omputing resource scheduling under uncertain cloud computing
nvironments. The algorithm incorporates both the proactive and
he reactive scheduling methods. The proactive scheduling is used
o build baseline schedules based on redundancy, where a pro-
ective time cushion between tasks’ finish time lower bounds and
heir deadlines is added to guarantee task deadlines. The reactive
cheduling is dynamically triggered to generate proactive baseline
chedules in order to account for various disruptions during the
ourse of executions (e.g., urgent tasks arrive, tasks just have been
nished, system’s workload become too heavy, and the like). In
ddition, we propose three strategies to scale up and down the
omputing resources according to system workload.

We treat the following five events as disruptions: (1) a new task
rrives; (2) the system becomes overloaded; (3) a new urgent task
rrives or tasks waiting in WQ become urgent; (4) a VM finishes

 task; and (5) some VMs’ idle time exceeds the preestablished
hreshold Iu, as demonstrated with a system execution timing
iagram shown in Fig. 2. These five disruptions take place dis-
retionarily, and arbitrarily; if any of the disruptions occurs, the
orresponding reactive scheduling will be triggered.

To facilitate the presentation of our scheduling strategies. Our
cheduling rules are given below.

ule 1. Each virtual machine can only execute one task at any time
instant.

ule 2. When a task ti cannot be finished in worst-case on any VMs
before its deadline (i.e., ft+ijk > di, ∀vmjk), we still schedule
it to a certain VM if its finish time’s lower bound is not larger
than its deadline on some VM (i.e., ft−ijk ≤ di, ∃vmjk).

ule 3. An urgent task is allowed to replace the non-urgent waiting
task as a new waiting task on a certain VM, and the replaced
non-urgent waiting task will be returned to WQ. Fig. 3(a)
illustrates an example of property 3.

In Fig. 3(a), the task t2 is waiting in the VM vm11, thus, wtk11
quals to t2. As the waiting task t2’s laxity L2 is 200 that is larger than
d = 120, and the task t3’s laxity L3 is 80 that is less than Ld = 120, t2 is
rgent and t3 is non-urgent. According to Rule 3, the urgent task t3

s allowed to replace the non-urgent task t2 to be a new waiting task
n VM vm11, and task t2 is returned from the local queue (LQ) of VM
m11 to the waiting queue (WQ). Rule 3 makes urgent tasks start
arlier, increasing possibility of meeting the urgent tasks’ timing
equirements.

ule 4. Task transfer is overlapped with the task execution on the
same VM. Therefore, a task transfer time is hidden and has
no impact on the starting time of the task.

ule 5. The waiting task on a VM is allowed to start as soon as the
executing task on the same VM has finished.
Fig. 3(b) shows an example of property 4 and property 5. In
ig. 2(b), ttijk represents the transmission time of task ti to VM vmjk,
.g., t211 represents the transmission time of task t2 to VM vm11. As
his figure shows that the transmission time t211 of task t2 to VM
m11 is overlapped with the execution of task t1, and task t2 can be
 and Software 99 (2015) 20–35 25

executed as soon as task t1 is just finished. Therefore, the time cush-
ion (time= ft+111 − ftr

111) is removed and the resource utilization of
VM vm11 is improved.

The PRS performs the following operations when a new task
arrives, as shown in Algorithm 1.

Algorithm 1. PRS – On the arrival of new tasks
1: WQ← NULL, UTQ← NULL;
2: for each new task ti do
3: if Li < Ld then
4: UTQ ← ti;
5: else
6: WQ ← ti;
7: Sort all the tasks in the WQ by their laxity Li in a non-descending order;
8: if inequality (5) comes into existence then
9: vmjk← ScaleUpComputingResource();
10: if vmjk ! = NULL then
11: Move task ti from WQ to VM vmjk as executing task;
12: vmjk← SearchWaitingTask();
13: end if
14: end if
15: end if
16:end for

When a new task ti arrives, algorithm PRS will check whether
this task is urgent. If this task is urgent, it will be delivered to
the urgent task queue (UTQ) (Lines 3–4). Otherwise, task ti will be
added to the waiting queue (WQ) (Line 6) and then all the waiting
tasks in WQ are sorted by their laxity in an ascending order (Line 7).
After that, algorithm PRS will estimate whether the requirements
of waiting tasks in WQ exceed the computing resources in the sys-
tem, i.e., whether inequality (5) comes into existence (Line 8). If
inequality (5) is true, the function ScaleUpComputingResource()
is called to add a new VM vmjk for the new arrival task ti (Line 9).
After task ti has been scheduled to VM vmjk as an executing task
(Line 11), the function SearchWaitingTask() is called to search a
task from WQ to this new VM as a waiting task (Line 12).

Algorithm 2. Function ScaleUpComputingResource()
1: hostList← all the active hosts;
2: Select a VM vmjk with minimal MIPS that can finish

task ti within its deadline considering the delay of
creating vmjk;

3: if vmjk ! = NULL then
4: for each host hj in hostList do
5: if VM vmjk can be created on host hj then
6: Create VM vmjk on host hj; return vmjk;
7: end if
8: end for
9: end if
10: Select a VM vmjk with minimal MIPS that can finish

task ti within its deadline considering the delays of
turning on a host and creating VM vmjk;

11: if vmjk ! = NULL then
12: Turn on a host hj and then create VM vmjk on it;
host that meets the timing requirement of the corresponding tasks
(Lines 2–9). If the strategy one is infeasible, the strategy two turns
on a new host and creates a VM on this host (Lines 10–14).

Let sthj
and atvmjk

be the startup time of host hj and the creation
time of VM vmjk, respectively.

2 stems

o
c

s

A
c

t
t
i
u
W
w
5
t
f

b
t
S
U

A
r

idle hosts can be finally turned off (Lines 14–16) to reduce energy
consumption.
6 H. Chen et al. / The Journal of Sy

When task ti is scheduled to a new VM vmjk, the start time s̃tijk

f task ti on VM vmjk is determined by how vmjk was created, which
an be described as follows.

t̃ijk =
{

ct + atvmjk
, if strategy one,

ct + sthj
+ atvmjk

, if strategy two.
(16)

lgorithm 3. Function SearchWaitingTask() – On the reaction to
ompletion of a task or creation of a VM
1: ti← get the task at the head in WQ;
2: while ti ! = NULL do
3: Calculate the start time s̃tijk execution time ẽtijk and

finish time f̃tijk of task ti waiting on VM vmjk;
4: if ft+ijk ≤ di then
5: Move task ti from WQ to VM vmjk as a waiting task;
6: break;
7: else
8: ti← get the next task in WQ;
9: end if
10: end while

In function SearchWaitingTask(), as given in Algorithm 3, the
ask with low laxity will be considered first (Line 1 and Line 8)
ogether with the proactive method (Lines 4) to guarantee the tim-
ng constraints. In addition, as the finish time of a task on a VM is
ncertain, we regard the completion of a task by a VM as an event.
hen this event occurs, if there exists a waiting task on the VM, the
aiting task starts to execute immediately, as shown in Property

; this event also triggers the operation of finding a new waiting
ask for the VM from the waiting queue, which is performed by the
unction SearchWaitingTask().

When a new urgent task arrives or some tasks waiting in WQ
ecome urgent as shown in Fig. 2 at times 25, 38 and 46, these
asks are delivered to the urgent task queue (UTQ), and the function
cheduleUrgentTasks() is triggered to schedule the urgent tasks in
TQ.

lgorithm 4. Function ScheduleUrgentTasks() – On the occur-
ence of urgent tasks
1: for each urgent task ti in UTQ do
2: minFinishTimeUpper← + ∞, vmUpper← + ∞;
3: minFinishTimeLower← + ∞, vmLower← + ∞;
4: for each VM vmjk in the system do
5: if etkjk = = NULL ‖ wtkjk = = NULL ‖ wtkjk is

non-urgent then
6: Calculate the start time s̃tijk execution time ẽtijk

and finish time f̃tijk of task ti on VM vmjk;
7: if ft+ijk ≤ di & ft+ijk ≤ minFinishTimeUpper then
8: minFinishTimeUpper ← ft+ijk; vmUpper ← vmjk;
9: else if vmUpper = = NULL

& ft−ijk ≤ minFinishTimeLower then
10: minFinishTimeLower ← ft−ijk; vmLower ← vmjk;
11: end if
12: end if
13: end for
14: if vmUpper ! = NULL then
15: Move task ti from UTQ to VM vmUpper as

executing or waiting task;
16: else
17: vmjk← ScaleUpComputingResource();
18: if vmjk ! = NULL then
19: Move task ti from UTQ to VM vmjk as executing

task;
20: vmjk← SearchWaitingTask();
21: else if vmLower ! = NULL then
22: Move task ti from UTQ to VM vmLower as

executing or waiting task;

23: else
24: Reject task ti;
25: end if
26: end if
27: end for
 and Software 99 (2015) 20–35

In function ScheduleUrgentTasks(), as shown in Algorithm 4,
we employ three policies to schedule an urgent task to a VM. In
policy one, three kinds of initiated VMs (i.e., a VM’s executing task
etkjk is null, a VM’s waiting task wtkjk is null, a VM’s waiting task
wtkjk is non-urgent) are considered for this urgent task (Line 5), and
the initiated VM that can finish the urgent task with the minimum
earliest finish time is selected for this urgent task (Lines 7–8). If the
first policy can select a VM for this urgent task, it will be scheduled
to the selected VM (Lines 14–15). If the first policy is infeasible,
function ScaleUpComputingResource() will be called to scale up
VM for this urgent task (Line 17). Besides, if the second policy is
feasible and the urgent task has been scheduled to the new VM as
an executing task (Line 19), then the function SearchWaitingTask()
will be called to search a task from WQ for this new VM as a waiting
task (Line 20). If the above two policies are infeasible, but the finish
time’s lower bound of this urgent task on some initiated VMs is
not greater than its deadline (Lines 9–10), we schedule it to the
VM with the minimum earliest finish time (Lines 21–22). If all the
above three policies cannot schedule this task, it will be rejected
(Line 24).

Theorem.1. The time complexity for scheduling a task set T with
algorithm PRS is O(|T|Nwtlog(Nwt) + |T|Nvm), where |T| represents the
count of tasks in T, Nwt is the count of waiting tasks in WQ, Nvm is the
count of initiated VMs.

Proof. It takes O(Nwtlog(Nwt)) to sort all the waiting tasks in
WQ (Line 7, Algorithm 1). In Algorithm 2, it takes O(Na) to
check if a new VM can be created on an active host directly
(Lines 4–8, Algorithm 2), where Na is the count of active hosts
in the system. It takes O(Na) to add a new VM by turning on a
shut host (Lines 11–14, Algorithm 2). Thus, the time complex-
ity of function ScaleUpComputingResource() is O(Na). In addition,
the time complexity of function SearchWaitingTask() is O(Nwt)
(Algorithm 3). Thus, the time complexity of Algorithm 1 is
O(Nwtlog(Nwt) + Na + Nwt) = O(Nwtlog(Nwt) + Na). In function Sched-
uleUrgentTask(), it takes O(Nvm) to find a feasible VM for a
urgent task (Lines 4–13, Algorithm 4). In addition, the time
complexity of function ScaleUpComputingResource() and Search-
WaitingTask() are O(Na) (Line 17, Algorithm 4) and O(Nwt) (Line
20, Algorithm 4), respectively. The time complexity of sched-
uling an urgent task by Algorithm 4 is O(Nvm + Na + Nwt). Based
on the aforementioned analysis, the time complexity for sched-
uling a task set T is calculated as O(|T|)max{O(Nwtlog(Nwt) + Na),
O(Nvm + Na + Nwt)} = O(|T|Nwtlog(Nwt) + |T|Nvm), since Na ≤ Nvm. �

If the workload of the system become light and there exist some
VMs whose idle times are larger than the idle upper threshold Iu,
as shown in Fig. 2 at time 28 or 52, then function scaleDown-
ComputingResource(), as shown in Algorithm 5, will be called
to scale down the computing resources by turning off idle VMs
and physical hosts. Firstly, it turns off those VMs whose idle time
exceeds Iu (Lines 1–5). Then it separates all the idle hosts and
active hosts (Line 6), and sorts all the active hosts by their CPU
capacity utilized in a non-descending order (Line 7). After these
operations, all the initiated VMs on active physical hosts will be
consolidated to a minimal number of hosts (Lines 8–13), and all the
Theorem.2. The time complexity of function ScaleDownComputin-
gResource() is O(N2

a + Nvm), where Na is the count of active hosts and
Nvm is the count of VMs before scaling down the system’s computing
resources.

stems

A

P
t
1
b
A
i
|
I
t
5
s
O

5

w
M
E
c
(
a
a

g
A
t

n
o
a
s
t

p
c
b
e

i
b
V

h
e
M
t

H. Chen et al. / The Journal of Sy

lgorithm 5. Function ScaleDownComputingResource()
1: for each idle VM vmjk in the system do
2: if vmjk ’s idle time exceeds Iu then
3: Delete VM vmjk;
4: end if
5: end for
6: idleHostList← all the idle hosts; activeHostList← all the

active hosts;
7: Sort activeHostList by CPU capacity utilized in a

non-descending order;
8: for each host hj in activeHostList do
9: if all the working VMs on host hj can be migrated to

other active hosts then
10: Migrate all the working VMs on host hj to

corresponding hosts;
11: Move host hj from activeHostList to idleHostList;
12: end if
13: end for
14: for each host hj in idleHostList do
15: Delete all the VMs on host hj , then turn off host hj;
16: end for

roof. The time complexity of deleting all the idle VMs whose idle
ime exceeds the preestablished upper threshold is O(Nvm) (Lines
–5, Algorithm 5). It takes O(Nalog(Na)) to sort all the active hosts
y their CPU capacity utilized in a non-descending order (Line 7,
lgorithm 5). The time complexity of reallocating the initiated VMs

n the system is O(Na|VMj|Na) (Lines 8–13, Algorithm 5). Since the
VMj| is a value that is not greater than 12, O(Na|VMj|Na) = O(N2

a).
t takes O(Ni), where Ni is the count of idle hosts in the system,
o delete all the idle hosts in the system (Lines 14–16, Algorithm
). Therefore, the complexity of function ScaleDownComputingRe-
ource() is O(Nvm + Na log(Na) + N2

a + Ni). Since Ni is less than Na,
(Nvm + Na log(Na) + N2

a + Ni) = O(N2
a + Nvm). �

. Performance evaluation

To demonstrate the performance improvements gained by PRS,
e quantitatively compare it with a baseline algorithm non-
igration-PRS (NMPRS in short) and three existing algorithms –

arliest Deadline First (EDF) (Mills and Anderson, 2010), minimum
ompletion time (MCT) (Li et al., 2011) and complete rescheduling
CRS) (Van de Vonder et al., 2007). The brief explanation of these
lgorithms and the motivation for selecting them as competing
lgorithms are as follows.

NMPRS: NMPRS does not employ the VM migration strate-
ies while scaling down the computing resources, (See Lines 7–13,
lgorithm 5). Through comparing with algorithm NMPRS, the effec-

iveness of the VM migration strategies in PRS can be tested.
EDF: all the tasks are arranged on VMs by their deadlines in a

on-descending order while guaranteeing the timing constraints
f these tasks. In order to guarantee the deadlines of tasks, this
lgorithm utilizes the worst-case execution time of tasks during
cheduling, and all the waiting tasks will be executed exactly as
he baseline schedule.

It is noting that EDF is an optimal scheduling algorithm for inde-
endent real-time tasks on preemptive uniprocessors, the goal of
omparing PRS with EDF is to demonstrate that PRS can produce
etter scheduling performance for real-time tasks with uncertain
xecution time.

MCT: MCT maps a new task on a VM that can complete this task
n the earliest time while maintaining the finish time upper bound
efore the task’s deadline. In addition, all the tasks are allocated to
Ms upon their arrivals.
MCT is a widely used greedy algorithm and Li et al. (2011)
ave proved that MCT has the best performance under uncertain
nvironment comparing with another two greedy algorithms (i.e.,
in–min and Max–min). Therefore, we select MCT as the represen-

ative of classic greedy scheduling algorithms to demonstrate the
 and Software 99 (2015) 20–35 27

performance improvements gained by PRS comparing with classic
greedy scheduling algorithms.

CRS: when new tasks arrive, CRS will completely reschedule
the new tasks and all the waiting tasks in the system. Notice that
accurate task execution times are assumed to be available before
scheduling in this algorithm, and schedule results of CRS can be
considered as near-optimal because the schedule is reoptimized at
any decision point by fully using all information available at that
time (Herroelen and Leus, 2005).

However, the high time complexity of this algorithm limits its
application in real-time cloud system (Van de Vonder et al., 2007).
Through comparing PRS with CRS, we can analyze how near the
performance between PRS and near-optimal algorithm.

In order to compare the efficiency of the algorithms, we utilize
the following performance metrics to evaluate their performances.

(1) Guarantee Ratio: the ratio of tasks finished before their dead-
lines;

(2) Resource Utilization: the average host utilization, which can be
calculated as: RU =

(∑m
i=1

∑n
j=1

∑|VMj |
k=1 lr

i
· oijk

)
/
(∑n

j=1cj · wtj

)
,

where lr
i

is the realized length of task ti, and wtj is the active time
for host hj during an experiment.

(3) Total Energy Consumption: the total energy consumed by the
hosts in a cloud data center for executing a task set T.

(4) Stability: the weighted sum of the absolute deviations between
the predicted starting time of tasks in the baseline schedule and
their realized starting time during actual schedule execution.

5.1. Experiment on a real cluster

In this experiment, we deploy an experimental cloud environ-
ment using Apache CloudStack 4.2.0. We set up a KVM cluster
with five Dell Optiplex 7010 MT, each of physical host has a CPU
(i3 3.9 GHz 4 cores), 3.7 G memory and 500 G disk storage, and the
peak power of a host is 200 W. In addition, the CPU and memory
required for each VM are two CPU cores (i.e., 2×3.9 GHz) and 1.5 G,
respectively. Besides, the five machines run on a 1 Gbps Ethernet
network.

Two applications are selected to perform our evaluation in
this subsection. The first application is to compute an approxima-
tion of �, and it is called �-App (Hagimont et al., 2013). For the
second application, we utilize CloudSim that performs aforemen-
tioned algorithms as a real runnable application, which is named
CloudSim-App.

Firstly, we want to verify that the performance of VMs subjects
to degradation or uncertainties when multiple VMs share the hard-
ware resources of a physical host. In the experiment, two VMs with
the same parameters are collocated in a physical host. Two execu-
tion conditions are tested. In Condition 0, only one VM executes
an application and the other VM is idle, while in Condition 1 the
two VMs execute simultaneously. Table 1 shows the sampled exe-
cution times (in ms) of the applications �-App and CloudSim-App
at the two different conditions. For each case, 15 execution times
are sampled.

For each sample data set in Table 1, we can obtain its mean
(denoted by x) and variance (denoted by s2) values. For application
�-App, the sample means of the two conditions are x0 = 8333.4
and x1 = 8372.8; their sample variance are s2

0 = 1.2571 and s2
1 =

273.46.

To show that change of execution condition will result in

uncertain execution time, we investigate two hypotheses: the null
hypothesis that the execution times of the two execution condi-
tions are the same, and the alternative hypothesis that the two
execution times are different. The null and alternative hypotheses

28 H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35

Table 1
Execution times for applications in different conditions.

Application �-App CloudSim-App

Condition 0 8334 8334 8334 8332 8334 45555 45806 46230 47448 46921
8334 8333 8333 8334 8330 46246 47921 46136 47061 46240
8334 8333 8334 8334 8334 46621 46530 45723 46666 45729

Condition 1 8383 8381 8380 8380 8376

8357 8330 8344 8387 8386

8384 8382 8379 8373 8370

Table 2
Performance comparison in real cluster.

Metric Algorithm

PRS NMPRS EDF MCT

Guarantee ratio 95.23% 95.82% 91.25% 90.93%

f
e

H

a

|

w

d
t
v
t
b
d
f
r
V
s

i
a
t
o
t
a
t
e
t
t
e

p
r
t
i
d
w
t
f
a
t

di = ai + U[deadlineBase, a × deadlineBase]. (19)

where parameter deadlineBase determines whether the deadline of
a task is loose or not. In this paper, we set the value of a is a = 4.
Resource utilization 0.8837 0.4382 0.7742 0.5476
Total energy(×107J) 0.7328 1.0325 0.8423 0.9504
Stability 0.1154 0.1097 0.8527 0.2031

or the two-tailed test for �-App are written as follows (Anderson
t al., 2013).

0 : �0 = �1 vs H1 : �0 /= �1. (17)

The test statistic t for above hypothesis tests can be calculated
s follows.

t| = |x0 − x1|√
s2
0

n0
+ s2

1
n1

= 39.4
4.3

= 9.2, (18)

here n0 and n1 are the sample size; n0 = n1 =15.
Using a significance level of ̨ = 0.01 and (n0 + n1− 2)

egrees of freedom, the t distribution can be calculated as
(1−˛/2)(n0 + n1− 2) = t0.995(28) = 2.763. Comparing the computed
alue of |t| = 9.2 with t0.995(28) = 2.763, it can be concluded that
he null hypothesis is clearly rejected, i.e., there exists difference
etween the execution times of application �-App from the two
ifferent execution conditions. This difference is more noticeable
or CloudSim-App where |t| = 52.17 and t0.995(28) = 2.763. As a
esult, there is overwhelming evidence that the performance of
Ms subjects to degradation or uncertainties when multiple VMs
hare the hardware resources of a physical host.

According to the execution times of �-App and CloudSim-App
n Table 1, we assume their execution times to be ẽtijk = [8.2, 8.4]s
nd ẽtijk = [45, 62]s, respectively. To emulate the diverse execution
imes of real-time tasks, we control the repeat times (rt in short)
f �-App and CloudSim-App, and calculate the execution times of
asks with rt × ẽtijk. In this experiment, we utilize �-App to produce

 task set, denoted as T1 = {ti, i = 1, b, · · · , 10}, where ti means a
ask that repeats �-App i times, and the execution time of task ti is
xpressed as ẽtijk = i × [8.2, 8.4]s. Similarly, CloudSim-App is used
o form another task set, denoted as T2 = {ti, i = 11, 12, · · · , 20}, where
i means a task that repeats CloudSim-App (i − 10) times, and the
xecution time of task ti is expressed as ẽtijk = (i − 10) × [45, 62]s.

To realize the dynamic nature of real-time tasks in cloud com-
uting environment, the tasks in task set T1 and T2 are selected
andomly after a time interval and submitted to scheduler. The
ime interval between two consecutive tasks is a variable, and let
t be uniformly distributed among 30 s and 120 s. In addition, the
eadline of each task is calculated as di = ai + ẽt

+
ijk + U(0, 600) s,
here U(0, 600) s denotes a variable that subjects to uniformly dis-
ributed among 0 s and 600 s. The task count for evaluating the
our algorithms (i.e., PRS, NMPRS, EDF and MCT) is 500, and the
lgorithm CRS is not implemented since the accurate task execu-
ion time cannot be gained in real environment. Table 2 shows the
61157 61211 61426 59013 59102
61137 58514 56830 58660 58673
59071 57939 59211 59254 59366

performance comparison for the four algorithms in this experimen-
tal cloud environment.

As shown in Table 2, the guarantee ratios of algorithm PRS,
NMPRS, EDF and MCT are 95.23%, 95.82%, 91.25% and 90.93%,
respectively. The reason for the higher guarantee ratios for algo-
rithm PRS and NMPRS is that these two algorithms employ
strategies to control the impact of uncertainties. It is obvious that
PRS and EDF are efficient in the context of the resource utilization,
this is because these two algorithms utilize VM migration policies
when scaling down computing resources. This result indicates that
our strategies for scaling up and down computing resources are
effective in practice. The energy consumed by algorithm NMPRS
and MCT is higher than that from other two algorithms, which can
be due to that their resource utilizations are low. Furthermore, PRS
and NMPRS outperform EDF and MCT in terms of stability, this is
because PRS and NMPRS employ strategies to prohibit the propa-
gation of uncertainties.

5.2. Simulation experiments

In order to ensure the repeatability of the experiments, we
choose the way of simulation to evaluate the performance of afore-
mentioned algorithms. The CloudSim toolkit (Calheiros et al., 2011)
is chosen as a simulation platform, and we add some new settings
to conduct our experiments, which is similar to (Beloglazov et al.,
2012).

Since most data centers provide enough capacity to handle their
peak utilization while the average usage is much lower (Burge et al.,
2007), we assume that the number of hosts in a cloud data center is
infinite. Each host is modeled to have one CPU core with the perfor-
mance equivalent to 1000, 2000, and 3000 MIPS, 8 GB of RAM and
1 TB of storage, and the peak power of the three different hosts are
250 W, 300 W or 400 W, respectively2. Besides, each VM requires
one CPU core with 250, 500, 750, 1000 MIPS, 128 MB of RAM and
1 GB of storage (Beloglazov and Buyya, 2012). Each VM carries out
a task with variable CPU performance, and only upper and lower
bounds of CPU performance are available before scheduling via the
technique in Beloglazov and Buyya (2012). In addition, the start-up
time of a host is 90 s and the creation time of a VM is 15 s, and the
migration time of a VM is determined by its RAM capacity and the
bandwidth of the system, which is similar to the model described
in Hermenier et al. (2009).

In addition, we let U[a, b] be an uniformly distributed random
variable between a and b.

We employ parameter deadlineBase to control a task’s deadline
that can be calculated as.
2 http://www.google.com.hk/search?q=Energy+Star+computer+server+qualified
+product+list.

H. Chen et al. / The Journal of Systems

Table 3
Parameters for simulation studies.

Parameter Value (Fixed) − (Varied)

Task count (104) (2.0)-(1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0)
deadlineBase (s) (200)-(100,150,200,250,300,350,400)
intervalTime (s) ([0,5])

i
u

t
r
l

w

t

f

e
i

5

o
r
v

g
s
T
t
i
U
t
t
l
t
o
a
b
p
P
u
3
N
t
u
g

r
a
b
t
P

taskLength (105 MI) ([1,2])
taskUncertainty (0.2)-(0.0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40)
vmUncertainty (0.2)-(0.0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40)

The parameter intervalTime is used to determine the time
nterval between two consecutive tasks, and it is assumed to be
niformly distributed among 0 and 5.

The parameters taskUncertainty and vmUncertainty represent
he uncertainty upper bounds of tasks and VMs in the system,
espectively, and the lower and upper bonds of task ti’s computing
ength and a VM’s performance are modeled as follows.

l−
i
= U[1 × 105, 2 × 105];

l+
i
= l−

i
× (1 + U[0, taskUncertainty]);

c−
jk
= c+

jk
× (1 − U[0, vmUncertainty]).

(20)

here c+
jk

is the CPU performance capacity required for VM vmjk.
In this experiment, we calculate the realized finish time for a

ask as follows.

tr
ijk = ft−ijk + (ft+ijk − ft−ijk) × U[0, 1]. (21)

Note that the parameter ftr
ijk is not available before scheduling,

xcept in algorithm CRS. The values of these parameters are listed
n Table 3.

.2.1. Number of tasks
In this group of experiments, we study the impact of the number

f tasks on system performance. Fig. 4 illustrates the experimental
esults of PRS, NMPRS, EDF, MCT and CRS when the number of tasks
aries from 10,000 to 80,000 with an increment of 10,000.

In Fig. 4(a), we can see that with the task count increases, the
uarantee ratios for algorithm PRS, NMPRS, EDF, MCT and CRS are
table at 94.42%, 94.66%, 91.06%, 88.03% and 97.92%, respectively.
his is because there are enough resources in a cloud, thus when
he workload of the system becomes overloaded, more comput-
ng resources will be scaled up to satisfy the surplus workload.
nfortunately, tasks’ timing constraints never be totally guaran-

eed although there are enough resources. This is due to the fact
hat the time overheads for scaling up computing resources vio-
ate some urgent tasks’ timing constraints. In addition, we observe
hat the guarantee ratio of PRS is close to the highest performance
ffered by CRS. PRS improves the guarantee ratio of MCT by an
verage of 7.26%. This performance improvement is made possible,
ecause PRS and NMPRS employ policies to control the uncertainty
ropagation. In addition, it can be found that the guarantee ratio of
RS is close to that of CRS which is assumed to be the performance
pper bound, and on average is higher than that of EDF and MCT by
.70% and 7.26%, respectively. This can be explained that PRS and
MPRS employ policies to control the propagation of uncertain-

ies and to take a risk of wasting computing resources by allocating
rgent tasks that only lower bounds of their finish time are not
reater than their deadlines, to VMs.

Fig. 4(b) shows that the resource utilization of these five algo-

ithms can be roughly classified into three categories. CRS and PRS
re the best performer, while NMPRS and MCT the worst. This can
e attributed that these algorithms employ different VM reloca-
ion policies when scaling down computing resources. The CRS,
RS and EDF employ the VM migration policies that can make
 and Software 99 (2015) 20–35 29

the host computing resources utilized efficiently. Besides, CRS and
PRS significantly outperform EDF with respect to resource utiliza-
tion. This is because EDF does not employ the early start policy to
execute waiting tasks, which incurs delay (i.e., the time between
task’s realized finish time and the next task’s start time) between
two adjacent tasks on the same VM. On average, PRS outperforms
NMPRS, EDF and MCT by 14.98%, 7.22% and 17.25%, respectively.

Fig. 4(c) reveals that the total energy consumptions of the four
tested algorithms are linearly increases with the number of tasks.
This is because the guarantee ratios of these four algorithms vary
slightly around different constants; the total tasks’ computation
lengths are linear to the number of tasks and the total energy con-
sumption of the system is almost linear to the total computation
length. We observe that the total energy consumptions of CRS, PRS
and MCT are similar, whereas NMPRS consumes the most energy in
each test case. NMPRS is not energy efficient, because NMPRS does
not adopt the VM migration strategy to consolidate VMs. The low
energy consumption of MCT is attributed to its low guarantee ratio.

Fig. 4(d) shows that the stability of PRS, NMPRS, EDF, MCT and
CRS are 0.1078, 0.1077, 0.8579, 0.3021 and 0.4577, respectively.
Increase of these five algorithms is that the increase of task count
seldom affects the baseline schedule. It is not a surprise that the
stability of EDF is high (0.8579) since all the waiting tasks on VMs
are sorted by their deadlines, such that scheduling a new task to a
VM will update the start time of these tasks whose deadlines are
not less than the new task’s deadline on the same VM. The reason
for the high variation of CRS can be contributed to the fact that
CRS will completely rescheduling all the waiting tasks and new
tasks when new tasks arrive. The high variation of MCT is because
MCT schedules all the tasks to VMs as soon as they arrive, thus
resulting in the propagation of uncertainties. Finally we see that
the stability of PRS and NMPRS always keep at a better level, which
demonstrates the efficiency of our strategies in term of controlling
the uncertainties while scheduling.

5.2.2. Task deadlines
Fig. 5 shows the impacts of deadlines on the performance of our

proposed PRS and NMPRS as well as the existing algorithms – EDF,
MCT and CRS.

We observe from Fig. 5(a) that the guarantee ratios of the five
algorithms increase correspondingly with the increase of dead-
lineBase (i.e., task deadline becomes looser). This can be interpreted
that as the deadlines of tasks are prolonged, the need of scaling up
computing resources, hence the related time overhead, is reduced,
therefore the tasks’ timing constraints become weaker. In addi-
tion, Fig. 5(a) shows that PRS and NMPRS have higher guarantee
ratios than EDF and MCT. This is due to the following three rea-
sons. First of all, PRS and NMPRS employ reactive strategies, which
gives urgent tasks high priority so that more tasks can meet their
deadline; therefore, they are better than MCT. Secondly, PRS and
NMPRS use start early policy to eliminate the waste of time cush-
ion between two adjacent tasks on the same VM, so they perform
better than EDF. Thirdly, PRS and NMPRS can efficiently control the
propagation of uncertainties by limiting the waiting tasks on VMs,
therefore they are better than EDF and MCT on guarantee ratio.
When the deadlineBase is not greater than 200s, PRS guarantees
more tasks’ timing constraints than EDF and MCT by, on average,
10.59% and 12.87%, respectively.

From Fig. 5(b), we can see that when deadlineBase increases,
the resource utilization of the five algorithms increase. This can be

contributed to the fact that as the deadlines of tasks become looser,
more tasks can be finished in the current active hosts without start-
ing more hosts, thus the utilization of active hosts is higher. When
deadlineBase is larger than 300 s, the resource utilization of PRS
outperforms NMPRS, EDF and MCT by 18.55%, 8.94% and 18.43%,

30 H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35

(a) (b)

(c) (d)

e impa

r
t

N
d
m
w
l
h
f
o
w
d
t
c

i
t
i
e
w
i

Fig. 4. Performanc

espectively. The explanation for this experimental result is similar
o that in Fig. 4(b).

Fig. 5(c) shows that the total energy consumption of PRS,
MPRS, EDF, MCT and CRS become larger with the increase of
eadlineBase. This is because that as the deadlineBase increases,
ore tasks will be executed, thus more hosts and VMs need to
ork longer, resulting in more energy being consumed. When dead-

ineBase is less than 200 s, the total energy consumption of PRS is
igher than that of EDF and MCT. This may be contributed to the

ollowing two reasons. Firstly, PRS completes more tasks than the
ther algorithms. Secondly, in order to complete more tasks, PRS
ill schedule some tasks that cannot be completed before their
eadlines to VMs which dissipates much computing resources. Fur-
hermore, when deadlineBase is greater than 250 s, the total energy
onsumption of PRS is close to CRS.

From Fig. 5(d), we can observe that when the deadlineBase
ncreases, the stability of EDF and CRS increases significantly, but

hat of other algorithms is almost constant. The reason for EDF
s that when tasks’ deadlines become looser, more tasks can tol-
rate to wait on the same VMs longer and more urgent tasks
ill be inserted before them, which results in updating wait-

ng tasks’ start time. For CRS, when deadline becomes looser,
ct of task number.

more tasks can tolerate to be rescheduled more. Besides, the sta-
bility of PRS and NMPRS outperform MCT and CRS on average
by 192.33% and 298.77%, respectively. The reasons are similar
to Fig. 4(d).

5.2.3. Task uncertainty
Fig. 6 illustrates the performance of PRS, NMPRS, EDF, MCT and

CRS when the taskUncertainty value varies from 0.00 to 0.40 with
an increment of 0.05.

Fig. 6(a) shows that the guarantee ratios of the five algorithms
descend at different rate as the taskUncertainty increases, and this
trend is especially outstanding with EDF and MCT. This is because
EDF and MCT do not employ any strategies to control the uncertain-
ties while scheduling. Besides, the guarantee ratio of PRS is close
to that of CRS and NMPRS, and on average is higher than EDF and
MCT by 4.02% and 7.03%, respectively.

Fig. 6(b) reveals that the resource utilization of PRS, NMPRS and

EDF descend significantly, but that of CRS and MCT stay at a fixed
level. This is due to a few reasons. Firstly, PRS and NMPRS take
a risk of dissipating some computing resources to execute those
urgent tasks whose deadlines are between their lower and upper
finish time. Secondly, for EDF, the interval between tasks’ finish

H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35 31

(a) (b)

(c) (d)

impac

t
i
r
c
c
w
t
t
i
k

t
n
t
p
w
i
i
r
o
r
n

s
v

Fig. 5. Performance

ime lower and upper bounds becomes larger as the taskUncertainty
ncreases, thus the time cushions wasted by EDF become larger,
esulting in lower resource utilization. Thirdly, since the accurate
ompletion time is available in CRS, the resource utilization of CRS
an keep stable at a high level. Lastly, MCT only schedules the tasks
hose upper completion time is not greater than their deadlines

o VMs, and employs the start early policy to eliminate dissipating
ime cushion, but does not employ VM migration policy when scal-
ng up and down computing resources, thus its resource utilization
eeps stable in low level.

Fig. 6(c) depicts that with the increase of taskUncertainty, the
otal energy consumptions of PRS, NMPRS and EDF increase sig-
ificantly. For algorithm PRS and NMPRS, it is reasonable that as
askUncertainty becomes larger, more tasks that cannot be com-
leted before their deadlines are scheduled to VMs, thus the system
astes more computing resources. For EDF, with taskUncertainty

ncreases, the time cushion between tasks’ predicted and real-
zed finish time becomes larger, thus the idle time of computing
esources becomes longer. Besides, the total energy consumptions
f MCT and CRS are basically stable. For CRS, its guarantee ratio and

esource utilization keep stable. For MCT, its resource utilization is
early unchanged while its guarantee ratio descends.

Fig. 6(d) shows that when the taskUncertainty increases, the
tability of PRS, NMPRS and MCT increases. This is because the inter-
al between tasks’ finish time lower and upper bounds increases
ts of task deadlines.

with the taskUncertainty, thus the variation between the predicted
and realized start time of next tasks becomes larger. In contrary,
the stability of EDF decreases as the taskUncertainty increases.
This is because when taskUncertainty increases, the urgent tasks’
finish time upper bounds become larger, and less urgent tasks will
be accepted. Besides, the stability of PRS is, on average, (184.46%)
lower than that of MCT, since MCT does not control the propagation
of uncertainties among waiting tasks. Furthermore, the stability of
CRS stays almost at a fixed level (about 0.4432). This is because
when a new task arrives CRS will completely reschedule all the
waiting tasks together with the new task.

5.2.4. Virtual machine uncertainty
We conduct a group of experiments to observe the impact of

virtual machine uncertainty on the performance of the four algo-
rithms (see Fig. 7). We vary the vmUncertainty value from 0.00 to
0.40 with an increment of 0.05.

From Fig. 7(a) we can see that when vmUncertainty increases,
the guarantee ratios of the five algorithms descend, especially the
trends of EDF and MCT are outstanding. The explanation for this

experimental result is similar to that for Fig. 6(a). Furthermore, on
average the guarantee ratio of PRS outperforms EDF and MCT by
11.06% and 13.94%, respectively.

Fig. 7(b) reveals that the resource utilization of the five algori-
htms descend significantly with the increase of vmUncertainty. This

32 H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35

(a) (b)

(c) (d)

mpac

i
d
r
a

t
T
u
V
F
r
i
t
d
M

i
t
v
e

5

r
r

All the three values can be obtained in the tracelog. CCPU repre-
sents the processing capacity of the CPU in Google cloud, because
the data of machines’ capacity is not included in the trace we
Fig. 6. Performance i

s because as the vmUncertainty increases the performance degra-
ation of VMs will become significant, resulting in consuming more
esources of physical hosts. The reason of PRS outperforming other
lgorithms is similar to that for Fig. 4(b).

Fig. 7(c) depicts that with the increase of vmUncertainty, the
otal energy consumption of PRS, NMPRS, EDF and CRS increase.
he reason for PRS and NMPRS is that they will allocate more
rgent tasks that cannot be completed before their deadlines to
Ms as vmUncertainty becomes larger, thus costing more resources.
or algorithm CRS, its guarantee ratio is basically constant, but its
esource utilization decreases significantly with vmUncertainty. It
s not a surprise that MCT shows an opposite trend as compared
o other algorithms, which can be explained with the significant
ecrease in the guarantee ratio and stable resource utilization of
CT.
Fig. 7(d) shows that the stabilities of PRS, NMPRS and MCT

ncrease when vmUncertainty varies from 0.00 to 0.40. In con-
rast, the stability of EDF decreases from 0.8686 to 0.6697 when
mUncertainty varies from 0.00 to 0.40. The explanation for this
xperimental result is similar to that in Fig. 6(d).
.2.5. Real-world traces
To further evaluate the practicality and efficiency of our algo-

ithms, in this subsection, we compare these algorithms based on
eal-world trace which is the latest version of the Google cloud
t of task uncertainty.

trace log.3 We choose 955,626 continuous tasks starting from times-
tamp = 1, 468, 890 to timestamp = 1, 559, 030. Fig. 8 shows the task
distribution over the period.

Since the trace log does not contain definite information about
computation length and deadlines of tasks, we set these two param-
eters of tasks as follows, which is similar to (Moreno et al., 2013).

• Task computation length lower bound l−
i

is calculated based on
the execution duration and the average CPU utilization. Since the
tracelog does not contain the data of task length in MI, we employ
the method proposed in (Moreno et al., 2013) to estimate the task
length.

l−
i
= (tsfinish − tsschedule) × Uavg × CCPU, (22)

where tsfinish and tsschedule represent the timestamp of finish and
schedule event; Uavg denotes the average CPU usage of this task.
assume that it is similar to our experiment settings for hosts,
CCPU =1000 MIPS.

3 http://code.google.com/p/googleclusterdata/wiki/ClusterData2011 1.

H. Chen et al. / The Journal of Systems and Software 99 (2015) 20–35 33

(a) (b)

(c) (d)

Fig. 7. Performance impact of vm Uncertainty.

•

b

Table 4
Performance comparison using Google cloud tasks.

Metric Algorithm

PRS NMPRS EDF MCT CRS

Guarantee ratio 89.07% 90.68% 86.31% 85.83% 92.38%

ing constraints. It is worthwhile noting that regarding to resource
Fig. 8. The task distribution over time for Google traces.

The deadline of each task is rounded up to 10% more of its maxi-
mum execution time. Other parameters are assigned in the way

described in Section 5.1.

Table 4 shows the comparative results of the five algorithms
ased on the Google cloud workload traces.
Resource utilization 0.9059 0.4783 0.7839 0.5669 0.9381
Total energy(×108J) 2.2148 3.6160 2.7534 3.1369 2.3548
Stability 0.1043 0.1051 0.7223 0.1717 0.1659

From the above table, algorithm PRS, NMPRS, EDF, MCT and
CRS have high guarantee ratios (89.07%, 9068%, 86.31%, 85.83% and
92.38%, respectively). The high guarantee ratios for all algorithms
may be because of the supercomputing capacity of cloud data cen-
ters. However, there still exist some tasks that cannot be completed
before their deadlines. This can be due to the following two reasons.
First, the uncertainties of tasks’ computing length and VMs’ com-
puting capacity make the execution time of the tasks longer, but
their deadlines are fixed. Secondly, the time overheads of scaling
up computing resources may lead to violation of some tasks’ tim-
utilization, those algorithms (i.e., PRS, EDF and CRS) that utilize VM
migration policies when scale down computing resources are as
efficient on the Google data as on synthetic traces, but algorithms
NMPRS and EDF perform worse on the Google data than on the

3 stems

s
i
p
s
a
t
N
t
t
r
l
t
t
F
b
i
a
t

6

c
g
W
c
n
r
a
e
l
t
a

v
m
o
m

A

F
P
(
r

R

A

A

A

B

B

B

B

4 H. Chen et al. / The Journal of Sy

ynthetic data. This can be contributed to the fact that the workload
n real traces varies significantly as shown in Fig. 8, thus the com-
uting resources required for the workload in the system also varies
ignificantly. This result indicates that our strategies for scaling up
nd down computing resources can improve the resource utiliza-
ion of cloud data centers in practice. In addition, PRS outperforms
MPRS, EDF and MCT by 89.40%, 15.56% and 59.80%, respectively, in

erms of the resource utilization. The energy consumed by the sys-
em is more than that in the previous synthetic workload case. It is
easonable because the task count in Google workload traces is far
arger than that in previous synthetic workloads, and the average
ask length of real-world tasks is much larger than that of syn-
hetic tasks, which definitely results in more energy consumption.
urthermore, the stability of PRS, NMPRS, EDF, MCT and CRS are
ecoming small as compared to the synthetic workload case, which

s especially evident for CRS and EDF. Obviously, the stability of CRS
nd EDF is less than that in synthetic workloads. We attribute it to
he fact that the tasks’ deadlines in Google traces are tight.

. Conclusions and future work

In this paper, we investigate how to reduce the system’s energy
onsumption while guaranteeing the real-time constraints for
reen cloud computing where uncertainty of task execution exists.
e proposed an uncertainty-aware scheduling architecture for a

loud data center, and developed a novel scheduling algorithm,
amely PRS, to make good trade-offs among tasks’ guaranteeing
atio, system’s resource utilization, system’s energy consumption
nd stability. To evaluate the effectiveness of PRS, we conducted
xtensive simulation experiments with both the synthetic work-
oads and Google workload traces. Experimental results showed
he effectiveness of the algorithm PRS compared with other related
lgorithms (NMPRS, EDF, MCT, CRS).

As a future research direction, we will aim at implementing and
alidating our strategies in a real-world cloud computing environ-
ent. Further, we plan to study a way of improving the precision

f estimated task execution time. We expect that accurately esti-
ating execution time leads to good scheduling decisions.

cknowledgements

This research was supported by the National Natural Science
oundation of China under grant (no. 71271213 and 91024030) and
ublic Project of Southwest Inst. of Electron. & Telecom. Technology
2013001). In addition, we greatly appreciate all the anonymous
eviewers for their constructive comments and suggestions.

eferences

hmad, F., Vijaykumar, T., 2010. Joint optimization of idle and cooling power in
data centers while maintaining response time. ACM SIGPLAN Notices 45 (3),
243–256.

nderson, D., Sweeney, D., Williams, T., Camm, J., Cochran, J., 2013. Statistics for
Business & Economics. Cengage Learning.

rmbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., et al., 2010. A view of cloud computing. Commun.
ACM 53 (4), 50–58.

arham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A., 2003. Xen and the art of virtualization. ACM SIGOPS Oper. Syst.
Rev. 37 (5), 164–177.

eloglazov, A., Abawajy, J., Buyya, R., 2012. Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28 (5), 755–768.

eloglazov, A., Buyya, R., 2012. Optimal online deterministic algorithms and adap-

tive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers. Concurr. Comput.: Pract. Exp. 24 (13),
1397–1420.

eloglazov, A., Buyya, R., 2013. Managing overloaded hosts for dynamic consol-
idation of virtual machines in cloud data centers under quality of service
constraints. IEEE Trans. Parallel Distrib. Syst. 24 (7), 1366–1379.
 and Software 99 (2015) 20–35

Berral, J.L., Gavalda, R., Torres, J.,2011. Adaptive scheduling on power-aware man-
aged data-centers using machine learning. In: IEEE/ACM 12th International
Conference on Grid Computing. IEEE, pp. 66–73.

Bruneo, D., 2014. A stochastic model to investigate data center performance and
QoS in IAAS cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 25 (3),
560–569.

Burge, J., Ranganathan, P., Wiener, J.L.,2007. Cost-aware scheduling for heteroge-
neous enterprise machines (CASHEM). In: IEEE International Conference on
Cluster Computing. IEEE, pp. 481–487.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011. Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41 (1), 23–50.

Cameron, K., Ge, R., Feng, X., 2005. High-performance, power-aware distributed
computing for scientific applications. Computer 38 (11), 40–47.

Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R., 2011. Environment-conscious sched-
uling of HPC applications on distributed cloud-oriented data centers. J. Parallel
Distrib. Comput. 71 (6), 732–749.

Hagimont, D., Kamga, C.M., Broto, L., Tchana, A., De Palma, N.,2013. DVFS aware CPU
credit enforcement in a virtualized system. In: Middleware 2013. Springer, pp.
123–142.

Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.,2009. Entropy: a consol-
idation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. ACM,
pp. 41–50.

Herroelen, W., Leus, R., 2005. Project scheduling under uncertainty: Survey and
research potentials. Eur. J. of Oper. Res. 165 (2), 289–306.

Hsu, C.-H., Slagter, K.D., Chen, S.-C., Chung, Y.-C., 2014. Optimizing energy consump-
tion with task consolidation in clouds. Inform. Sci. 258, 452–462.

Hu, M., Veeravalli, B., 2013. Requirement-aware strategies for scheduling real-time
divisible loads on clusters. J. Parallel Distrib. Comput. 73 (8), 1083–1091.

Kong, X., Lin, C., Jiang, Y., Yan, W., Chu, X., 2011. Efficient dynamic task scheduling
in virtualized data centers with fuzzy prediction. J. Netw. Comput. Appl. 34 (4),
1068–1077.

Koomey, J., 2011. Growth in data center electricity use 2005 to 2010. The New York
Times 49 (3).

Li, D., Wu, J.,2012. Energy-aware scheduling for frame-based tasks on heterogeneous
multiprocessor platforms. In: IEEE 41st International Conference on Parallel
Processing (ICPP). IEEE, pp. 430–439.

Li, J., Ming, Z., Qiu, M., Quan, G., Qin, X., Chen, T., 2011. Resource allocation robustness
in multi-core embedded systems with inaccurate information. J. Syst. Archit. 57
(9), 840–849.

Luo, J., Rao, L., Liu, X.,2012. eco-idc: Trade delay for energy cost with service delay
guarantee for internet data centers. In: Cluster Computing (CLUSTER), 2012 IEEE
International Conference on. IEEE, pp. 45–53.

Ma, Y., Gong, B., Sugihara, R., Gupta, R., 2012. Energy-efficient deadline scheduling
for heterogeneous systems. J. Parallel Distrib. Comput. 72 (12), 1725–1740.

Mell, P., Grance, T., 2009. The nist definition of cloud computing. Natl. Inst. Stand.
Technol. 53 (6), 50.

Mills, A.F., Anderson, J.H.,2010. A stochastic framework for multiprocessor soft
real-time scheduling. In: IEEE 16th International Conference on Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, pp.
311–320.

Moreno, I.S., Garraghan, P., Townend, P., Xu, J.,2013. An approach for characterizing
workloads in google cloud to derive realistic resource utilization models. In: IEEE
7th International Symposium on Service Oriented System Engineering (SOSE).
IEEE, pp. 49–60.

Oh, S.-H., Yang, S.-M.,1998. A modified least-laxity-first scheduling algorithm for
real-time tasks. In: IEEE 5th International Conference on Real-Time Computing
Systems and Applications. IEEE, pp. 31–36.

Pettey, C., 2007. Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2

Emissions, Available from: https://www.gartner.com/newsroom/id/503867
(14, 2013).

Qiu, M., Sha, E.H.-M., 2009. Cost minimization while satisfying hard/soft timing con-
straints for heterogeneous embedded systems. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 14 (2), 25.

Rizvandi, N.B., Taheri, J., Zomaya, A.Y., 2011. Some observations on optimal fre-
quency selection in DVFS-based energy consumption minimization. J. Parallel
Distrib. Comput. 71 (8), 1154–1164.

Sengupta, A., Pal, T.K., 2009. Fuzzy Preference Ordering of Interval Numbers in Deci-
sion Problems, vol. 238. Springer.

Srikantaiah, S., Kansal, A., Zhao, F.,2008. Energy aware consolidation for cloud com-
puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, vol. 10. USENIX Association.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., 2007. A classifica-
tion of predictive-reactive project scheduling procedures. J. Sched. 10 (3),
195–207.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., 2008. Proactive heuristic pro-
cedures for robust project scheduling: an experimental analysis. Eur. J. of Oper.
Res. 189 (3), 723–733.

Van den Bossche, R., Vanmechelen, K., Broeckhove, J.,2010. Cost-optimal sched-

uling in hybrid IAAS clouds for deadline constrained workloads. In:
IEEE 3rd International Conference on Cloud Computing (CLOUD). IEEE,
pp. 228–235.

Xian, C., Lu, Y.-H., Li, Z., 2008. Dynamic voltage scaling for multitasking real-time
systems with uncertain execution time. IEEE Trans. Comput.-Aided Des. Integr.
Circ. Syst. 27 (8), 1467–1478.

stems

Y

Z

a
t
o

H. Chen et al. / The Journal of Sy

ounge, A.J., Von Laszewski, G., Wang, L., Lopez-Alarcon, S., Carithers, W.,2010.
Efficient resource management for cloud computing environments. In: IEEE
International Conference on Green Computing. IEEE, pp. 357–364.

hu, X., Ge, R., Sun, J., He, C., 2013. 3e: energy-efficient elastic scheduling for
independent tasks in heterogeneous computing systems. J. Syst. Softw. 86 (2),
302–314.

Huangke Chen received the B.S. degree in information
systems from National University of Defense Technology,
China, in 2012. Currently, he is a M.S. student in the Col-
lege of Information System and Management at National
University of Defense Technology. His research interests
include task and resources scheduling in cloud computing
and green computing.

Xiaomin Zhu received the B.S. and M.S. degrees in
computer science from Liaoning Technical University,
Liaoning, China, in 2001 and 2004, respectively, and
Ph.D. degree in computer science from Fudan Univer-
sity, Shanghai, China, in 2009. In the same year, he won
the Shanghai Excellent Graduate. He is currently an asso-
ciate professor in the College of Information Systems
and Management at National University of Defense Tech-
nology, Changsha, China. His research interests include
scheduling and resource management in green comput-
ing, cluster computing, cloud computing, and multiple
satellites. He has published more than 50 research arti-
cles in refereed journals and conference proceedings such

s IEEE TC, IEEE TPDS, JPDC, JSS and so on. He is also a frequent reviewer for interna-
ional research journals, e.g., IEEE TC, IEEE TNSM, IEEE TSP, JPDC, etc. He is a member
f the IEEE, the IEEE Communication Society, and the ACM.

Hui Guo received her BE and ME degrees in Electrical and
Electronic Engineering from Anhui University and Ph.D.
in Electrical and Computer Engineering from the Univer-
sity of Queensland. Prior to start her academic career, she
had worked in a number of companies/organizations for

information systems design and enhancement. She is now
a lecturer in the School of Computer Science and Engineer-
ing at the University of New South Wales, Australia. Her
research interests include Application Specific Processor
Design, Low Power System Design, and Embedded System
Optimization.
 and Software 99 (2015) 20–35 35

Jianghan Zhu was born in 1972. He received his M.S.
and Ph.D. degrees in management science and technology
from National University of Defense Technology, China, in
2000 and 2004, respectively. He is currently a professor
and doctoral supervisor in College of Information Sys-
tems and Management in National University of Defense
Technology. His research interests include combinato-
rial optimization, space-based information systems, and
satellite application information link.

Xiao Qin received the B.S. and M.S. degrees in computer
science from Huazhong University of Science and Tech-
nology in 1992 and 1999, respectively. He received the
PhD degree in computer science from the University of
Nebraska-Lincoln in 2004. He is currently an associate
professor in the Department of Computer Science and
Software Engineering at Auburn University. Prior to join-
ing Auburn University in 2007, he had been an assistant
professor with New Mexico Institute of Mining and Tech-
nology (New Mexico Tech) for three years. He won an NSF
CAREER award in 2009. His research is supported by the
US National Science Foundation (NSF), Auburn University,
and Intel Corporation. He has been on the program com-

mittees of various international conferences, including IEEE Cluster, IEEE MSST, IEEE
IPCCC, and ICPP. His research interests include parallel and distributed systems, stor-
age systems, fault tolerance, real-time systems, and performance evaluation. He is
a member of the ACM and a senior member of the IEEE.

Jianhong Wu is an internationally recognized mathe-
matical authority in delay differential equations, infinite
dimensional dynamical systems, non-linear analysis,
mathematical biology and neural dynamics. His award-
winning contributions continue to play a key role in
advancing scientific research and development, and in
assisting industry through “real-world” applications. He
has published four major books and over 140 research
papers in peer-reviewed journals, which are highly valued
among scientific and industrial communities. He conducts
comprehensive, multidisciplinary research in industrial
and applied mathematics. He and his expert team are
interacting and collaborating with university researchers
in related fields, and with industrial data mining experts. Together, they are ana-
lyzing the information processing capabilities of neural networks modeled by
differential equations to develop effective mathematical formulas and software for
pattern recognition, classification and prediction. The team will also work with
industrial partners to assess the effectiveness of their research discoveries in solving
actual data analysis tasks.

