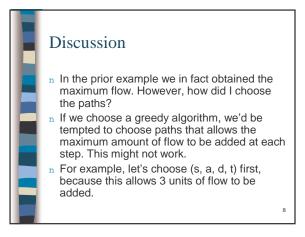
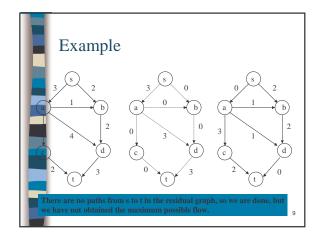
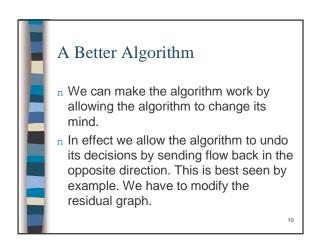
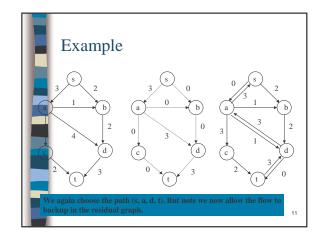


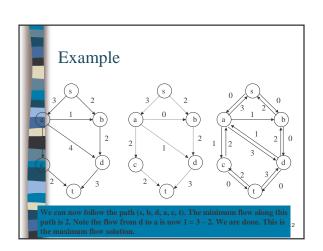
Maximum Flow Algorithm Now use three graphs, the original graph G, a flow graph G_t and a residual graph $G_r = G - G_t$. We proceed in stages. Each stage we choose a path in G_t from S_t to S_t . The minimum edge on this path is the amount of flow that can be added to every edge on that path. We do this by adjusting G_t and recomputing G_t . We continue until there are no paths from S_t to S_t . We can't follow any edges that have capacity 0.











- n This better greedy algorithm will always find the maximum flow solution if the edge capacities are rational numbers.
- n Although we have used an acyclic graph in the example, the algorithm works on arbitrary graphs!

13