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Abstract—This paper describes a method of linearizing the 
nonlinear characteristics of many sensors using an embedded 
neural network.  The proposed method allows for complex neural 
networks with very powerful architectures to be embedded on a 
very inexpensive 8-bit microcontroller.  In order to accomplish 
this unique training software was developed as well as a cross 
compiler.  The Neuron by Neuron process was as developed in 
assembly language to allow the fastest and shortest code on the 
embedded system.  The embedded neural network also required 
an accurate approximation for hyperbolic tangent to be used as 
the neuron activation function.  This process was then 
demonstrated on a robotic arm kinematics problem.   

Keywords-component; Neural Networks, Embedded, Nonlinear 
Sensor Compenstatoin, Microcontroller. 

I.  INTRODUCTION 
One common cause of nonlinearity in otherwise linear 

control systems is the sensors.  By linearizing the sensors the 
system as a whole becomes easier to control and often a simple 
PID controller is adequate.  The nonlinear compensations can 
be performed using neural networks imbedded in inexpensive 
microcontrollers.  Another advantage of the proposed approach 
is to convert the sensor outputs to a digital format that can 
easily be transmitted relatively long distances without 
distortion. 

Sensors can be divided into three categories: 

1. Linear sensors where output signal is proportional to 
measured value. 

2. Nonlinear Sensors where output is nonlinear function of 
the measured value.  Examples of such nonlinear sensor 
are a thermostat or capacitive sensors measuring distance 
between plates.  

3. So called sensorless measurement where measured vales 
are estimated indirectly.  One example of such sensorless 
sensors measurement estimation of torque and position of 
the rotor in an inductive motor by measuring electrical 
parameters on the output terminals of the motor [6,7].  A 
more complex example of this approach is the 
measurement of the parameters of the "Oil Well Diagnosis 
by Sensing Terminal Characteristics of the Induction 
Motor" by measuring the characteristics of the electrical 
motor driving the oil well [5]. 

The sensors the second and third category require relatively 
advanced signal conversion.  In the case of the second type 
only nonlinear transformations of one parameter are usually 

required.  This linearization has been accomplished using 
neural networks for multiple applications [8,9] 

In the case of the "sensorless" approach a complex 
nonlinear transformation of several variables are needed.  Such 
complex transformations cannot be done with look-up-tables 
(LUT) because for multi dimensional transformations the size 
of the LUT would be too large to be practical.  Also fuzzy 
systems have difficulties to transform several variables and 
transformations are not smooth enough to be useful.  Such 
nonlinear transformations can be done efficiently using neural 
networks, but their practical implementation face another 
challenge.  Until now neural networks are mostly implemented 
on computers with significant computational abilities to solve 
many types of real world problems[1-4].  Many people have 
put neural networks on FPGAs, DSPS, or high end embedded 
processors such as the ARM  cores[2][4].   

In this paper it is shown that it is possible to implement 
relatively complex neural networks on one of the simplest 
microcontrollers available the PIC microcontroller made by 
Microchip.  Such implementation was possible because of 
several improvements.   .  In order to fully utilize the power of 
neural networks, particularly powerful architectures were used 
with arbitrarily connected neurons.  In order to automate the 
process a new Training tool and cross compiler was developed 
for fast and efficient assembly code generation.  Assembly 
language implementation of the Neuron by Neuron approach 
which allows for faster and shorter code.  Next is the pseudo 
floating point calculations which allow for integer computation 
complexity to be used for high accuracy computation.  Also a 
new implementation of the activation function which allows for 
fast and accurate methods of calculations of hyperbolic tangent 
(tanh) was produced.  Finally, an example calculation of the 
position of a robotic arm based on simulated sensor data. 

II.   ABITRARILY CONNECTED NETWORKS 
Neural networks are most powerful in certain 

configurations.  It has been shown that fully connected 
networks are easier to train and produce better results with 
smaller networks [13-16]. 

Fully connected networks are extremely powerful 
compared to the most common multi layer perceptron (MLP) 
networks.  A great example of this is where a double spiral 
problem was solved using MLP networks with 35 to 38 
neurons [12].  The same problem has been solved with as few 
as 8 neurons with a fully connected architecture shown in 
Figures 1 and 2.  This is why fully connected networks are 
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chosen over MLP networks.  Most all sensor linearization 
problems are far less complicated than this double spiral 
problem.  This particular problem is considered a very difficult 
problem to solve with neural networks [10,11]. 

In order to effectively train arbitrarily connected neural 
networks a new training software was developed in Matlab.  It 
allows the user to train networks with any feed forward 
architecture.  It trains using the Neuron By Neuron method as 
described previously.  Other training tools such as Matlab's 
Neural Network Toolbox does not allow connections across 
the layers.  This Neuron by Neuron method uniquely allows 
networks to be trained more efficiently.  This has resulted in 
the ability to solve very difficult problems such as the double 
spiral problem on inexpensive 8-bit microcontrollers.  These 
microcontrollers cost less than two dollars and do not even 
have a divide function yet they are able to handle complex 
neural networks.   

 
Figure 1.  Double Spiral problem trained with 8 neurons fully 
connected architecture shown in figure 2.  

 
Figure 2.  Fully connected eight neuron architecture for 
solving double spiral problem. 

 

III. NEURON BY NEURON PROCESS IN ASSEMBLY 
Assembly language was chosen for the embedded neural 

network to optimize for faster and more memory efficient 
code.  In order to automate the process of converting the 
neural network architectures from a text file used for training 
to assembly language a Matlab Cross compiler was created.  
The networks are trained in Matlab using the Neural Network 

Trainer (NNT) as described in section XX.  NNT was 
modified to incorporate a cross compiler that generates 
assembly and C text files to for easy programming of the 
Microcontroller.  This process allows any neural network 
architecture to be trained and implemented in the hardware 
system in a matter of minutes with no room for human error.  
The actual assembly calculations only need to follow the 
forward calculation process.  The training and initial floating 
point values are calculated in Matlab prior to being 
programmed to the microcontroller to speed up the process. 

This process of forward calculations is a unique method 
compared to most neural network implementations because it 
is uses the Neuron By Neuron method described in [15].  This 
method requires special modifications due to the fact that 
assembly language is used with very limited memory 
resources.  The process is written so that each neuron is 
calculated individually in a series of nested loops see Figure 3.  
The number of calculations for each loop and values for each 
node are all stored in two simple arrays in memory.  The 
assembly language code does not require any modification to 
change network’s architecture.  The only change that is 
required is to update these two arrays that are loaded into 
program memory.  These arrays contain the architecture and 
the weights of the network. 
 

Topology Array [8-bits] 
[Input Scale; Number of Neurons; Weight Scale (1); 
Number of Connections(1), Output Node(1), 
Connection(1a), Connection(1b),…Connection(1n); 
Weight Scale (2), Number of Connections(2), Output 
Node(2), Connection(2a), Connection(2b),… 
Connection(2n);…  Weight Scale (n), Number of 
Connections(n), Output Node(n), Connection(na), 
Connection(nb),…Connection(nn);] 
 

Weight Array [16 bits] 
[Number of Weights; Weight(1);Weight(2);…Weight(n)]; 

 
The arrays automatically generated by the NNT as 

described in Section Error! Bookmark not defined..  The 
forward calculation steps through each node of network 
without regard for the complexity of the network.  Similar to a 
netlist in Spice, the topology array has the running list of 
connections and allowing the user to make as many cross layer 
connections as desired only limited by the total number of 
weights.   

As seen in Figure  the network starts with an initialization 
block that configures the microcontroller by setting up the 
hardware for inputs and outs.  Next the tables for the network 
are initialized.    The weights are stored in ROM or off chip 
and are loaded into RAM for faster calculations.  Finally there 
are numerous constants that are configured such as scale 
values and saturated neuron values. 

After the initialization block, the Main Loop begins.  This 
loop is an infinite loop that keeps the network sampling new 
inputs and then starting the forward calculations.  With the 
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next input sampled the network resets pointers and index 
values and enters the Network Loop. 

The Network Loop is essentially a for loop that executes the 
number of times as the number of neurons.  The Network is 
responsible for the architecture of the network as well as the 
output of the network.  It reads the scale factors and neuron 
connections and sets the corresponding values for the Neuron 
loop.   

The neuron loop begins with all of its indexes and pointers 
correctly initialized and it simply begins calculations.  This 
loop is only responsible for calculating the output of a single 
neuron without information about the rest of the network.  It 
begins by checking to see if the current connection is the bias 
connection or a standard input connection.  Once the Net 
Value is calculated it passes the information to the Activation 
function.  The process of the individual calculation can be 
seen in more detail in Section 4.2.  The Activation Function 
details can be seen in Section 5. 

After the Activation Function is finished the Network loop 
determines when all neurons have been calculated.  Once they 
are finished it removes the scale factor and sends the output.  
The process is then repeated indefinitely.  The details of the 
pseudo floating point arithmetic is shown in Figure 3. 

IV. PSEUDO FLOATING ARITHMETIC 
The first method was to use 16 bits to represent the weights, 

nodes, and inputs for the neural network.  These 16-bits are all 
significant digits in this pseudo floating point protocol.  This 
16 bits consisted of an 8-bit signed integer and an 8-bit 
fraction fractional part.  The nonconventional part of this 
floating point routine is the way the exponent and mantissa are 
stored.  Essentially all sixteen bits are the mantissa and the 
exponent for the entire neuron is stored elsewhere.  This has 
several advantages.  It allows more significant digits for every 
weight using less memory.  This pseudo floating point 
protocol is tailored directly around the needs of the neural 
network forward calculations.  This solution requires the 
analysis of the weights of each neuron and scales them 
accordingly and assigns an exponent for the entire neuron.  A 
similar process is used for the inputs so the entire range will 
share a single scale factor.  This scaling is done off chip before 
programming in order to save valuable processing time on 
each and every forward calculation. 

Scaling does two things, first it prevents overflow by 
keeping the numbers within operating regions, and secondly 
automatically filters out inactive weights.  For example if a 
neuron has weights that are several orders of magnitudes 
larger than others it will automatically round the smallest 
weights to zero.  These weights being zero allow the 
calculations to be optimized unlike using traditional floating 
point arithmetic.  However, if all of the weights are the same 
magnitude they are all scaled to values that allow maximum 
precision and significant digits.  In other words, the weights 
are stored in a manner that minimizes error on a system with 
limited accuracy.  Thus far, all of these decisions for scaling 
the weights are made before the network is programmed to the 
microcontroller.  This process has been automated for ease of 

use.  The Neural Network Trainer [15] was modified to 
automatically scale the weights and inputs after it trains the 
network. The largest weight is scaled to be as close to but not 
exceeding 127 which is the largest positive number that can be 
represented using this protocol.  As a consequence of the 
scaling the largest weight uses all 16-bits of the mantissa.     
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Figure 3 Block diagram of Neural Network forward 
calculations using the nested loop structure for cross layer 
connected networks. 

 
The Neuron calculations go through several steps in order to 

process the pseudo floating point arithmetic.  The first step is 
the net value calculation which is shown in Figure . 
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Figure 4.  PF stands for Pseudo Floating point number.  The 
Numbers in brackets refer to the number of bits that represent 
that particular value. 

 
The inputs are multiplied by the corresponding weights and 

the result is stored in the 32-bit Net register.  This is 
essentially a multiply and accumulate register designed for this 
particular stage.  It is very important to keep all 32-bits in this 
stage for adding and subtracting.   Without the 32-bits of 
precision at this step it would be very easy for an overflow to 
occur during the summing process that would not be present in 
the final net value.  

The next stage is to turn the pseudo floating point number 
into a fixed point number this process can be seen in the figure 
5. 
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Figure 5.  Pre Activation Function Routine.  The 
transformation between a pseudo floating point number to a 
fixed point number that the activation function can use. 

 
The next step is to convert the pseudo floating point number 
into a fixed point number that the activation function can 
correctly handle.  First, the weight scale and input scale are 
summed.  If the two factors exactly cancel then there is no 
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scaling needed however if not the formula shown in Figure 5 
is used.  This raised to the N power is always the same as shift 
by N because the way the scale factors are calculated as 
described in Section Error! Reference source not found..  
This makes the scaling process very fast opposed to having to 
actually execute the multiplication instructions.  Next, the sign 
of the net value is stored and the absolute value of net is used 
for the next steps.  The net value is then examined and a 
decision is made.  If the net value is too large then the tanh is 
approximately saturated and the appropriate output is 
assigned.  However if the now fixed point number is within 
the operating range it is clipped to 16-bits and sent to the 
activation function.   The activation function is detailed in the 
following section.   
 

V. ACTIVATION FUNCTION 
A Soft activation function was needed for the neural 

network.  The most common activation function is tanh and 
the definition is shown below. 
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xx
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 (1) 

 
The pure definition tanh was not a reasonable solution for 

several reasons.  Mainly the exponents would be very difficult 
to calculate accurately with the limited hardware in a timely 
fashion.  Also the floating point division would also be very 
time consuming without any hardware such hardware.  The 
next possible activation function was to use Elliott’s function 
shown in Equation 3. 

1+n
n

 
(2) 

This activation function was also rejected.  The Elliot 
function does approach one hyperbolically but not at the same 
rate as tanh and therefore is not interchangeable.  Networks 
with the Elliot approach are less powerful that those with tanh.  
This means the networks would have to be trained using the 
Elliott function which was not desirable.  The other pitfall 
with the Elliott function is that it requires division.  Without 
dedicated hardware division will be too slow of a process for 
the final solution.  The solution chosen was a second order 
approximation of tanh. 

Several features were added to the activation function 
besides simply calculating a second order approximation of 
tanh.  One of these features analyze the inputs to the activation 
function and convert negative numbers to positive to make the 
internal calculations faster and reducing the number of values 
that must be stored in the lookup table.  The sign is then 
restored at the end of the activation function.  Another feature 
that is added is a check for numbers that when calculated will 
round to either extreme.  In this case the second order 
approximation is skipped and the neuron is put into saturation.  
These features that incase the second order approximation can 
be seen in better detail in Figure . 

Scale)Input ()32( 22 LogLog −

 
Figure 6.  Logical block diagram of the activation function. 

 
    The routine requires that 30 values be stored in program 

memory.  This is not simply a lookup table for tanh because a 
much more precise value is required.  The tanh equivalent of 
25 numbers between zero and four are stored. These numbers, 
which are the end points of the linear approximation, are 
rounded off to 16-bits of accuracy.    Then a point between 
each pair from the linear approximation is stored.  These 
points are the peaks of a second-order polynomial that crosses 
at the same points as the linear approximations.  Based on the 
four most significant bits that are input into the activation 
function, a linear approximation of tangent hyperbolic is 
selected.   The remaining bits of the number are used in the 
second-order polynomial.  The coefficients for this polynomial 
were previously indexed by the integer value in the first step. 
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The approximation of tanh is calculated by reading the 
values of yA, yB and Δy from memory and then the first linear 
approximation is calculated using  yA and yB. 
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The next step is the second-order function that corrects most 
of the error that was introduced by the linearization of the 
tangent hyperbolic function.   
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In order to utilize 8-bit hardware multiplication, the size of 

Δx was selected as 128. This way the division operation in 
both equations can be replaced by the right shift operation. 
Calculation of y1 requires one subtraction, one 8-bit 
multiplication, one shift right by 7 bits, and one addition. 
Calculation of y2 requires one 8-bit subtraction, two 8-bit 
multiplications and shift right by 14-bits. 
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Figure 7.  Example of linear approximations and parabolas 
between 0 and 4.  Only 4 divisions were used for 
demonstration purposes.  

 
Ideally this activation function would work without any 

modification, but when the neurons are operating in the linear 
region (when the net values are between -1 and 1) the 
activation function is not making full use of the available bits 
for calculating the outputs.  This generates significant error.  
Similarly to the weights and the inputs, a work-around is used 
for the activation function.  Pseudo floating point arithmetics 
is then incorporated.  When the numbers are stored in the 
lookup table they are scaled by 32 because the largest number 
stored is 4.  The net value is also scaled by 32 and if its 
magnitude is greater than 4, the activation function is skipped 
and a 1 or -1 is output.  After multiplying two numbers that 

have been scaled, the product is shifted to remove the square 
of the scale.  Once the activation function is finished the 
numbers are scaled back to the same factor that was used to 
scale the inputs.  

 

VI. APPLICATION 
The two link planar manipulator was used as a practical 

application for this embedded neural network.  The particular 
aspect is shown for sensing the position of a robotic arm given 
sensor data of the joints.  In this example the embedded neural 
network will calculate the x and y position of the arm based on 
the data read from sensors at the joints.  This is known as 
forward kinematics.  This system we will assume that the 
sensors are linear potentiometers.  The x and y position of the 
arm is very nonlinear.  The position can be calculated by 
equations XX and XX.  In other words we will have a two 
input and two output nonlinear system.  For this experiment 
we will assume that R1 and R2 are fixed length arms.  
However, this same procedure could be adopted for varying 
length arms by simply retraining the neural network with four 
inputs rather than two.  The robotic arm simulated can be seen 
in Figure 8.  Two arm planar manipulator with variables 
shown.Figure 8.   

 
Figure 8.  Two arm planar manipulator with variables shown. 
 

The process is tested with hardware in the loop.  In other 
words, the sensor data is transmitted via the serial port from 
Matlab to the microcontroller.  The microcontroller then 
calculates the arm position and transmits this data via the 
serial port back to Matlab.  The reason for this is to give a 
more accurate test of the results.  In this test system the 
accuracy of the sensors can be avoided.  Also the position of 
the arm would have to be measured by hand and this 
measurement would also introduce error into the final results.  
The error produced by the system is less than the predicted by 
many sensors and measuring techniques.   

The first step of the process was to generate neural network 
training data.  The following equation was used to calculate 
the x and y position based on alpha and beta.  

 

1215



)sin(2)sin(1
)cos(2)cos(1

BetaalphaRalphaRy
BetaalphaRalphaRx

+⋅+⋅=
+⋅+⋅=

 
(4) 

  
The neural network was then trained using this data.  The 

trained network was ran in Matlab to confirm that it functions 
correctly.  Matlab generates a set of test patterns of a user 
selectable size and transmits these values to the 
microcontroller via the serial port and reads the results.  
Matlab is then used to test the output patterns and calculate the 
error.  This process will introduce error in two places.  First 
there will be the error created by using a neural network 
approximation opposed to the original equations.   Then there 
is the error introduced between the ideal neural network and 
the network on the microcontroller.  The sum of these two 
errors has a max value of less than two percent at any single 
point for the given surfaces.   
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Figure 9.  Output x of two output system generated by ideal 
neural network. 
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Figure 10.  Output x of two output system generated by 
embedded neural network. 

 
Figures 11 and 12 show the ideal neural network and the 

output of the microcontroller for the y component of the 
forward kinematics problem.   
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Figure 11.  Output y of two output system generated by ideal 
neural network. 
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Figure 22.  Error between the embedded neural network and 
ideal neural network surface of output y. 
 

VII. CONCLUSION 
In this paper, a novel method of linearizing sensor data for  

nonlinear control problems using neural networks at the 
embedded level.  It has been shown with the correct neural 
network architectures even very difficult problems can be 
solved with a just a few neurons.  When using the NBN 
training method these networks can be easily trained.  Then by 
using the NBN forward calculation method networks with any 
architecture can be used at the embedded level.  For very 
inexpensive and low end microcontrollers a novel floating 
point algorithm has been developed and optimized for neural 
networks.  The second order approximation of tanh in 
conjunction with the pseudo floating point routines allow 
almost any neural network to be embedded in a simple low 
cost microcontroller.   
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